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Background

@ For multicore platforms, tightly-coupled on-chip resources allow faster
data sharing between processing cores, at the same time, suffering
from potentially heavy resource contention

@ Most commercial off-the-shelf systems only provide best effort service
for accessing the shared LLC
e unpredictable caching behaviors
o severe performance degradation
e compromised QoS

@ Performance isolation needed for QoS-demanding systems
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Dynamic Partitioning

@ When to re-partition LLC?
o phase change; absent of a-priori knowledge

@ What is the right partition size?

@ How to recolor memory?
e heavy overhead; inefficient use

@ How to work with over-committed systems?



Contribution

@ Our work tries to solve all problems above associated with
implementing dynamic page coloring in production systems

@ We proposes an efficient page recoloring framework in the Linux
kernel, called COLORIS (COLOR ISolation)
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Page Color Manager

@ Static color assignment
e Cache is divided into N sections of contiguous colors

e Each cache section is statically assigned to a core
o local core; remote core

e Each process is assigned a section of page colors and runs on the
corresponding core

@ local color; remote color



Static Color Assignment
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@ Dynamic color assignment:
e Applications with low cache demand may give up page colors
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Cache Utilization Monitor

@ Measures cache usage of individual applications:

misses

e cache miss rate = accesses

@ Triggers cache re-partitioning:

e miss rate higher than HighThreshold
e miss rate lower than LowThreshold
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Cache Re-partitioning

Color Hotness

The number of processes sharing the color

@ Global Hotness: number of owners on all cores

@ Remote Hotness: number of owners on remote cores

e if color A is in the cache section statically assigned to core X, all other
cores are called remote cores with respect to A



Cache Re-partitioning
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Cache Re-partitioning

procedure alloc_colors(num)
new <— ¢
while num > 0

if needRemote()

@ pick_coldest_remote:
pick a color in a remote
cache section, with the

new + =
. smallest global hotness
pick_coldest_remote()
else :
new -+ — @ pick_coldest_local:

pick a color in the local
cache section, with the
smallest remote hotness

pick_coldest _local()
num < num —1
return new
end procedure



Processes

Color Assignments

1 2 3 4 5 6 7 8 9 10 11 12
P1 |=a==l|l | I I 1 I I /=3 ]
P2 e e e =
P3 O 0| e
P4 O =
P5 e |
P6 || —
P7 o o
P8 LU Joe |5 0
[ P1,P2 [|[ P3,P4 ||| P5,P6 ||| P7,P8 |
Core 1 Core 2 Core 3 Core 4




Cache Re-partitioning
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Cache Re-partitioning

procedure pick_victims(num)
victims < ¢
while num > 0

if hasRemote()

@ pick_hottest_remote:
pick a color in a remote
cache section, with the

VICt.'IITlS + = largest global hotness
pick_hottest_remote()
else ,
victims 4 — @ pick_hottest_local:

pick a color in the local
cache section, with the
largest remote hotness

pick_hottest_local()
num < num —1
return victims
end procedure
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Recoloring Engine
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Recoloring Engine

@ Shrinkage: lazy recoloring [Lin et al:08]

o look for pages of specific colors that are going to be taken away and
clear the present bits of their page table entries

e an unused bit is set to indicate recoloring needed

o allocate new pages from assigned colors in a round-robin manner
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Recoloring Engine

@ Expansion
o Selective Moving:
Assuming n-way set associative cache, scan the whole page table and
recolor one in every n + 1 pages of the same color

o Redistribution:
o clear the access bit of every page table entry
o after a fixed time window, scan the page table again
o apply lazy recoloring to entries with access bits set



Evaluation

o Experiment setup

Dell PowerEdge T410 machine with quad-core Intel Xeon E5506
2.13GHz processor, 8GB RAM, shared 4MB 16-way set-associative L3

cache

@ Benchmark: SPEC CPU2006
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@ Dynamic partitioning for QoS

@ Four benchmarks run together for an hour
In C1 and C2, HighThreshold is 65% and 75% respectively
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@ COLORIS in over-committed systems

o Eight applications run together, with each two pinned to a core
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Conclusion

@ Designed a memory sub-system that provides static/dynamic cache
partitioning capabilities

@ Proposed a scheme for managing page colors, which works for
over-committed systems

@ Studied two page selection policies for effective page recoloring



The End

Thank you!
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