COLORIS: A Dynamic Cache Partitioning System Using

Page Coloring

Ying Ye, Richard West, Zhuoqun Cheng, Ye Li

Computer Science Department
Boston University

© Background

© Contribution

© COLORIS Design
@ Evaluation

© Conclusion

Background

@ For multicore platforms, tightly-coupled on-chip resources allow faster
data sharing between processing cores, at the same time, suffering
from potentially heavy resource contention

Background

@ For multicore platforms, tightly-coupled on-chip resources allow faster
data sharing between processing cores, at the same time, suffering
from potentially heavy resource contention

@ Most commercial off-the-shelf systems only provide best effort service
for accessing the shared LLC

Background

@ For multicore platforms, tightly-coupled on-chip resources allow faster
data sharing between processing cores, at the same time, suffering
from potentially heavy resource contention

@ Most commercial off-the-shelf systems only provide best effort service
for accessing the shared LLC
e unpredictable caching behaviors
o severe performance degradation
e compromised QoS

Background

@ For multicore platforms, tightly-coupled on-chip resources allow faster
data sharing between processing cores, at the same time, suffering
from potentially heavy resource contention

@ Most commercial off-the-shelf systems only provide best effort service
for accessing the shared LLC
e unpredictable caching behaviors
o severe performance degradation
e compromised QoS

@ Performance isolation needed for QoS-demanding systems

Page Coloring

Physical
memory
s,
Cache 7 s
address 7 7 7
space , °, e
index % 57
Physical ; . N Xy
Address | Tag olor bItS! Offset : xS 4
——> /%X N\
p bits X NN
NN N
. . NN
Figure : Page Color Bits N NN
NN
N

Figure : Mapping Between Memory
Pages and Cache Space

Page Coloring

App 1 App 2

Page Coloring

Dynamic Partitioning

Dynamic Partitioning

@ When to re-partition LLC?

Dynamic Partitioning

@ When to re-partition LLC?
o phase change; absent of a-priori knowledge

Dynamic Partitioning

@ When to re-partition LLC?
o phase change; absent of a-priori knowledge

@ What is the right partition size?

Dynamic Partitioning

@ When to re-partition LLC?
o phase change; absent of a-priori knowledge

@ What is the right partition size?

@ How to recolor memory?

Dynamic Partitioning

@ When to re-partition LLC?
o phase change; absent of a-priori knowledge

@ What is the right partition size?

@ How to recolor memory?
e heavy overhead; inefficient use

Dynamic Partitioning

@ When to re-partition LLC?
o phase change; absent of a-priori knowledge

@ What is the right partition size?

@ How to recolor memory?
e heavy overhead; inefficient use

@ How to work with over-committed systems?

Contribution

@ Our work tries to solve all problems above associated with
implementing dynamic page coloring in production systems

@ We proposes an efficient page recoloring framework in the Linux
kernel, called COLORIS (COLOR ISolation)

Page COLOR ISolation Architecture

| Application | | Application |
user

kernel

|Cache Utilization Monitod |Cache Utilization Monitor|

| Recoloring Engine |

Page Color Manager

II

| Color-aware Page Allocator |

Figure : COLORIS Architecture

Color-aware Page Allocator

Color-aware Page Allocator

e} (o} -

------ —[pe]

Figure : Page Allocator

Page Color Manager

@ Static color assignment
e Cache is divided into N sections of contiguous colors

e Each cache section is statically assigned to a core
o local core; remote core

e Each process is assigned a section of page colors and runs on the
corresponding core

@ local color; remote color

Static Color Assignment

Processes Color Assignments
A2z 84 5 69 7 8 9 10 U 12
P1 | e [o |
P2 o e [e |
P3 L e
P4 s e |
P5 (] o |
P6 (e e |
P7 o | e e |
P8 Ll L L L ==
[P1P2 ||[P3,P4 ||| P5P6 ||| P7,P8 |
Core 1 Core 2 Core 3 Core 4

Dynamic Color Assignment

@ Dynamic color assignment:
e Applications with low cache demand may give up page colors
e Applications needing more cache may acquire page colors from other
cache sections

Dynamic Color Assignment

@ Dynamic color assignment:
e Applications with low cache demand may give up page colors
e Applications needing more cache may acquire page colors from other
cache sections

Processes Color Assignments
1 2 3 4 5 6 7 8 9 10 1 12
P1 ==l 1 U =]
P2 o i] =
P3 (|
P4 [[l e
P5 (o] e |
P6 O |
pP7 o e [
P8 JUJUU{UuUd|8BE 85
[P1pP2 [|[P3,P4 [|[P5P6 ||| P7,P8 |
Core 1 Core 2 Core 3 Core 4

Cache Utilization Monitor

| Applicaion | | Applicaton |

user
kernel

[Cache Utilization Monitor| [Cache Utilization Monitor|

| Recoloring Engine |

Page Color Manager

0

Cache-aware Page Allocator

Figure : COLORIS Architecture

Cache Utilization Monitor

@ Measures cache usage of individual applications:

misses

e cache miss rate = accesses

Cache Utilization Monitor

@ Measures cache usage of individual applications:

misses

e cache miss rate = accesses

@ Triggers cache re-partitioning:

e miss rate higher than HighThreshold
e miss rate lower than LowThreshold

Cache Re-partitioning

Color Hotness
The number of processes sharing the color

Cache Re-partitioning

Color Hotness
The number of processes sharing the color

@ Global Hotness: number of owners on all cores

@ Remote Hotness: number of owners on remote cores

Cache Re-partitioning

Color Hotness

The number of processes sharing the color

@ Global Hotness: number of owners on all cores

@ Remote Hotness: number of owners on remote cores

e if color A is in the cache section statically assigned to core X, all other
cores are called remote cores with respect to A

Cache Re-partitioning

procedure alloc_colors(num)
new <— ¢
while num >0
if needRemote()
new + =
pick_coldest_remote()
else
new + =
pick_coldest _local()
num < num —1
return new
end procedure

Cache Re-partitioning

procedure alloc_colors(num)

nevE/ « 9 @ pick_coldest_remote:
while num >0 . .
if needRemote() pick a color in a remote
: L cache section, with the
new = smallest global hotness
pick_coldest_remote()
else
new + =

pick_coldest _local()
num < num —1
return new
end procedure

Cache Re-partitioning

procedure alloc_colors(num)
new <— ¢
while num > 0

if needRemote()

@ pick_coldest_remote:
pick a color in a remote
cache section, with the

new + =
. smallest global hotness
pick_coldest_remote()
else :
new -+ — @ pick_coldest_local:

pick a color in the local
cache section, with the
smallest remote hotness

pick_coldest _local()
num < num —1
return new
end procedure

Processes

Color Assignments

1 2 3 4 5 6 7 8 9 10 11 12
P1 |=a==l|l | I I 1 I I /=3]
P2 e e e =
P3 O 0| e
P4 O =
P5 e |
P6 || —
P7 o o
P8 LU Joe |5 0
[P1,P2 [|[P3,P4 ||| P5,P6 ||| P7,P8 |
Core 1 Core 2 Core 3 Core 4

Cache Re-partitioning

procedure pick_victims(num)
victims < ¢
while num >0
if hasRemote()
victims + =
pick_hottest_remote()
else
victims + =
pick_hottest_local()
num < num —1
return victims
end procedure

Cache Re-partitioning

procedure pick_victims(num)
victims < ¢
while num >0
if hasRemote()
victims + =
pick_hottest_remote()
else
victims + =
pick_hottest_local()
num < num —1
return victims
end procedure

@ pick_hottest_remote:
pick a color in a remote
cache section, with the
largest global hotness

Cache Re-partitioning

procedure pick_victims(num)
victims < ¢
while num > 0

if hasRemote()

@ pick_hottest_remote:
pick a color in a remote
cache section, with the

VICt.'IITlS + = largest global hotness
pick_hottest_remote()
else ,
victims 4 — @ pick_hottest_local:

pick a color in the local
cache section, with the
largest remote hotness

pick_hottest_local()
num < num —1
return victims
end procedure

Processes

Color Assignments

1 2 3 4 5 6 7 8 9 10 1 12

P1 (===l I I I =l]

P2] o e I i]

P3 e e e |

P4 e e |

P5 e] |

P6 | —

P7 o | o | |
[P1,P2 [|[P3,P4 ||| P5,P6 ||| P7,P8 |
Core 1 Core 2 Core 3 Core 4

Recoloring Engine

| Applicaion | | Applicaton |

user
kernel

[Cache Utilization Monitor| |Cache Utilization Monitor|

| Recoloring Engine |

Page Color Manager

0

Cache-aware Page Allocator

Figure : COLORIS Architecture

Recoloring Engine

@ Shrinkage: lazy recoloring [Lin et al:08]

o look for pages of specific colors that are going to be taken away and
clear the present bits of their page table entries

e an unused bit is set to indicate recoloring needed

o allocate new pages from assigned colors in a round-robin manner

Recoloring Engine

@ Expansion

Recoloring Engine

@ Expansion
o Selective Moving:
Assuming n-way set associative cache, scan the whole page table and
recolor one in every n + 1 pages of the same color

Recoloring Engine

@ Expansion
o Selective Moving:
Assuming n-way set associative cache, scan the whole page table and
recolor one in every n + 1 pages of the same color

o Redistribution:
o clear the access bit of every page table entry
o after a fixed time window, scan the page table again
o apply lazy recoloring to entries with access bits set

Evaluation

o Experiment setup

Dell PowerEdge T410 machine with quad-core Intel Xeon E5506
2.13GHz processor, 8GB RAM, shared 4MB 16-way set-associative L3

cache

@ Benchmark: SPEC CPU2006

Evaluation

@ Dynamic partitioning for QoS
@ Four benchmarks run together for an hour

Evaluation

@ Dynamic partitioning for QoS

@ Four benchmarks run together for an hour
In C1 and C2, HighThreshold is 65% and 75% respectively

c1 (023
100 T - 100 -
Selective_Moving Selective_Moving C——1
Redistribution s Redistribution =
80 Static m— 80 Static m—

LLC miss rate (%)
LLC miss rate (%)

Evaluation

@ COLORIS in over-committed systems
o Eight applications run together, with each two pinned to a core

Evaluation

@ COLORIS in over-committed systems

o Eight applications run together, with each two pinned to a core
C7: Dynamic; C8: Static; C9: None (Linux default)

65 Cc7 1 % [0y g —
= 60 m C8 80 C8 im—
o CO mmmmm CO mmmmm
; 55 § 70
E o 2
-3 Qo
L 4 g%
2 40 g
2 8

3

§ 35 o 40
3 0 2 30
2 25 20 Il

20 4. & % 10 % %

s, %, %5, %y, S, %, 5, %, % 0, % % 7 %,
S B 0 %, % SR

Conclusion

@ Designed a memory sub-system that provides static/dynamic cache
partitioning capabilities

@ Proposed a scheme for managing page colors, which works for
over-committed systems

@ Studied two page selection policies for effective page recoloring

The End

Thank you!

	Background
	Contribution
	COLORIS Design
	Evaluation
	Conclusion

