'QoS Safe’ Kernel Extensions
for Real-Time
Resource Management

Richard West and Jason Gloudon
Boston University

Introduction 7 L%

L . '
T o

Computer Science

= General purpose systems have limitations:

= Jll-equipped to meet service requirements of complex
real-time applications

= Aim to extend COTS systems to:

better meet the service needs of individual applications

provide finer-grained service management than at user-
evel

= adapt system behavior to compensate for changes in
resource needs and availability

Bridging the " Semantic Gap’ /7, .

Computer Science

= There is a semantic gap’ between the needs of
applications and services provided by the system

= Prior solutions to bridge this gap include:
= Middleware (e.g., RT CORBA, QuO)
= Heavyweight
= Implementing functionality directly in applications
= Inflexible
= Must leverage system abstractions in complex ways
= Special systems designed for extensibility
= e.g., SPIN, VINO
= Not COTS-based or " QoS Safe’

Extending COTS Systems (& %

Computer Science

= Desktop systems now support QoS-constrained
applications

= e.g., Windows Media Player, RealNetworks Real Player

= Therefore desirable to extend COTS systems but...

= Many such systems are monolithic and not easily
extended

= Some systems provide limited extensibility
= e.g., kernel modules for device drivers in Linux

= However, no support for extensions to override system-
wide service policies

Extensibility and Safety

T - '
T o

Computer Science

= Kernel-level extensions must be QoS safe’
= Traditional safety concerns must be maintained

= Address space / memory protection & type-safety
= Need to maintain integrity of system

= Resource management decisions for one application must
not adversely affect another application

» Extension code must have bounded execution time

= Execution time must be small enough not to impact
behavior of system

4 Contributions 7%

T - '
T o

Computer Science
= SafeX — Safe Kernel Extensions
= Extension architecture for general purpose systems
= Allow applications to customize system behavior
= Extensions affect service management decisions

= Can lead to fewer service violations for RT tasks,
compared to user-level management methods

= Mechanisms to provide QoS Safety’

* Provide mechanisms for meeting application-specific QoS
constraints while maintaining system integrity

SafeX Goals

Computer Science

= To allow untrusted apps to dynamically-link “ QoS
safe’ code into the kernel

= Can deploy code on remote hosts

= To allow app-specific service monitoring and
adaptation

= To improve QoS for real-time applications
= even When there are changing resource demands
= compared to user-level solutions

SafeX Approach (7 8

Computer Science

= Supports compile- and run-time safety checks to:
= Guarantee QoS
= The QoS contract requirement
= Enforce timely & bounded execution of extensions
» The predictability requirement

= Guarantee an extension does not improve QoS for one
application at the cost of another

= The isolation requirement
= Guarantee internal state of the system is not jeopardized
= The integrity requirement

SafeX Features LT

2, 485 h-_'.:,_' “I
Computer Science

= Extensions written in Popcorn & compiled into
Typed Assembly Language (TAL)
= TAL adds typing annotations / rules to assembly code

= Memory protection:
= Prevents forging (casting) pointers to arbitrary addresses
= Prevents de-allocation of memory until safe

= CPU protection:
= Requires resource reservation for extensions
= Aborts extensions exceeding reservations

= SafeX decrements a counter at each timer interrupt to
enforce extension time limits

Exception Handling

Computer Science

= The compiler inserts runtime safety checks into
extensions

= Exceptions e.g., div-zero, null-pointer derefencing
are caught by specified extensions handlers or
default SafeX handlers

Synchronization 7

L . '
T o

Computer Science

= Extensions cannot mask interrupts

= Could violate CPU protection since expiration counter
cannot decrement

= Problems aborting an extension holding locks
= e.g., extension runs too long

= May leave resources inaccessible or in wrong state

= SafeX restricts synchronization primitives to core kernel
code or SafeX code

» Extensions access shared resources via SafeX
interfaces

Additional Support

Computer Science

= SafeX runs in the daemon processes of the Linux
Dionisys QoS system

= Applications link w/ the Dionisys library to create:

Service monitoring extensions (monitors)
Service adaptation extensions (handlers)
Application-specific service manager extensions

QoS attribute classes
Event channels between monitors and handlers

Linux Dionisys Overview

Daemon

RPCs

Host 1

Dionisys
Library

SM1

Nameserver

Lookup /
Translation

SM 2
(eg., Network)

Daemon

Dionisys
Library

SMm
(eg., Buffer)

User

Kernel
Level

Event Channels

Service Managers -

Computer Science

= Encapsulations of resource management
subsystems

= Have policies for providing service of a specific type

= e.g., a CPU service manager has policies for CPU
scheduling and synchronization

= Run as bottom-half handlers (in Linux)

= Invoked periodically or in response to events within
system

= Tnvoke monitor and handler extensions

= Can execute asynchronously to application processes

= Apps may influence resource allocations even when not
running

Kernel Service Managers -

Computer Science

Kernel timer queue of
bottom half (SM)
functions

/get_attributes() \
Kernel
Events out Class 1

| policy-specific

| | |Classz structures

| Class k l | l |

\Set_attribl—'tes()‘)Attribute Classes

Kernel Service Manager

_/

= Monitors & handlers operate on attribute classes
= name-value pairs (e.g. process priority — value)

= Service extensions with valid access rights can modify
attributes

Attribute Classes & Guards ./ .

Computer Science

= Fach host of a Dionisys system has an attribute
class per application

= Identified by class descriptors

= Attribute classes can be deployed on remote hosts

= Access to these classes is granted to the extensions of
processes that acquire permission from the class creators

= Guard functions are generated by SafeX

= Responsible for mapping values in attribute classes to
kernel data structures

= Can enforce range and QoS guarantee checks

SafeX Interfaces (7 1

Computer Science

= SafeX provides get_/set_attribute () interfaces

= Extensions use these interfaces to update service
attributes

= Extensions are not allowed to directly access kernel data
structures

= Interfaces can only be used by extensions having
necessary capabilities

= Capabilities are type-safe (unforgeable) pointers

= Interfaces limit global affects of extensions

= Balance application control over resources with system
stability

Experimental Evaluation LT e

Computer Science

= Experiments to compare adaptive CPU service
management at kernel- and user-levels

= Aim: to meet the needs of CPU-bound RT tasks
under changing resource demands from a
" disturbance’ process

= Platform:
= 500MHz Pentium III, 128MB RAM
= Patched 2.4.17 Linux kernel w/ SafeX & Dionisys features

Kernel Service Management

Computer Science

= A service manager monitors CPU utilization and
adapts process timeslices

= Timeslices adjusted by PID function of target & actual
CPU usage

= Monitoring performed every 10mS

= Kernel monitoring functions invoked via timer
queue

User-Level Management

Computer Science

= A periodic RT process acts as a CPU service
manager
= Reads /proc/pid/stat
= Adapts service via kill() syscalls
= Using SIGSTOP & SIGCONT signals

Experimental Setup (1) -

Computer Science

= (A) 3 MPEG encoding processes, P1, P2 & P3
= P1 —target CPU = 20mS every period = 100mS
= P2 —target CPU = 30mS every 100mS
= P3 —target CPU = 80mS every 200mS
= Repeatedly encode 56KB frames (160x120, 24bit)

= (B) 3 hardloop processes, P1, P2 & P3

= P1 —target CPU = 40mS every period = 400mS
= P2 —target CPU = 100mS every 500mS
= P3 — target CPU = 60mS every 200mS

= An MMPP disturbance (CPU “hog”)

= 10 sec exponential inter-burst gap & 3 sec geometric burst lengths

Experimental Setup (2) 7

Computer Science

Each app process has initial RT priority =
80 x (target / period)
= target & period denote target CPU time in a given period

User-level service manager & disturbance start at
RT priority = 96

Kernel daemons run at RT priority = 97
Utilization points recorded over 1 sec intervals

Monitors and Handlers s

Computer Science

void monitor () {

actual_cpu = get_attribute (“actual_cpu”);
target_cpu = get_attribute (“target_cpu”);
raise_event ("Error”, target_cpu - actual_cpu);

}

void handler () {
e[n] = ev.value; // nth sampled error

/* Update timeslice adjustment by PID fn of error */
u[n] = (Kp+Kd+Ki).e[n] - Kd.e[n-1] + u[n-1];

set_attribute (“timeslice-adjustment”, u[n]);

}

Guard Functions 7 13

T - '
T o

Computer Science

// Check the QoS safe updates to a process’ timeslice

guard (attribute, value):

if (attribute == “timeslice-adjustment”)
if (CPU utilization is QoS safe)

timeslice = max (0, target_cpu + value);
else block process;

e CPU utilization is deemed QoS safe if:
Avg utilization over 2*period <= target utilization

50f
20} Disturbance:-] a0t V_,v Dyglvrbance --------
) I D V V
o o
O 7 — . O 30t ‘:--"------ll"---- SV e "-: Rt
© \ S y %'] y
O\o 20 s'..' .. J O\O 20 TUTAPTITY ‘::3-:_..:
’ H 3’ ¥ i
10} 10
0 R L i { ; L i , , 0 Py I T . H . .
O 10 20 30 40 50 60 70 80 90 100 O 10 20 30 40 50 60 70 80 90 100
time (seconds) time (seconds)

= |ess service oscillation in left graph for kernel service
management

= Transient overloads do not affect service guarantees
= Right graph uses SCHED_RR scheduler for disturbance

(A) MPEG Encoding Results

Computer Science

100 1 1 1 I_ ::I 1 :I:‘ 1 T

80 r Distursbé:mce

60 [i -

% of CPU

40 ~ : : .
~ » 0N a - F
N A I,V‘v/\’ LA NLVARARNV A RLVAN PN \‘ l----------"l
X i |
i [
o 1 R R _
H H
H H

2, ’,
ORI susmsmsmnmnnnmnnns®ion . s
"
.
.
.
.
.
.

0 . 1 r ¥ L . : ;)
O 10 20 30 40 50 60 70 80 90 100
time (seconds)

= Results for SCHED_FIFO scheduling
» User-level SM is blocked for duration of disturbance

(B) Hardloop Results

Computer Science

P3—
S0f p2-----
D. bPl
. isturbance
407 - {
D : P
o 30[%
o
< ooV I s o Vol
(o] R e S S

0
0

10 20 30 40 50 60 70 80 90 100
time (seconds)

a1
o

N
o

w
o

% of CPU

,J
“w -:H.--.. SEEnEnaa,
- . annnsdl

.
- H - ! -~
I e = o 1\ -

/] V HAY 1 v,
:
I H
1 H H o
] " . - . H .1
[} e H . H . . :
Jl- :€' H HEY) HE) - H i
e = KN o SN . 02 g £ w, oL~ o
R B LR R S SO T DR !
R D IO R SR YR, SO o et v
T W e :
- A : H .
. -] - H
Poor o= - : :
ol o= -

time (seconds)

= Left = kernel service management
= Right = user-level management w/ SCHED_RR scheduling

O=Ei.5.i i g . :
O 10 20 30 40 50 60 70 80 90 100

Computer Science

100 T - . T : -
n L p2 -
L Pl
80 Dlsturbance
2 60}
@)
©
S 40 |
ol

time (seconds)

= Results for SCHED_FIFO scheduling

» User-level SM is blocked for duration of disturbance

O 10 20 30 40 50 60 70 80 90 100

Service Violations

Computer Science

60 [

50 f

20 f

10

70
(7))
c
9
ks
9
>
Y
(@)
H+

0

40 t

30 f

T T T T T T I r :
Kernel Mpeg
Kernel hardloop -=---- o
User Mpeg,RR ww=eee e
User Mpeg,FIFQ e i
i 4
a
User hardloop,FIFO =-=-=-=~ i
.y
e |
T
17 7
i |
r:
i
i:. ()
i:. ----------------------- .
e
m.—‘-,-.,-.r;,.-...f.-rrff:-'-\" |
s

10 20 30 40 50 60 70 80 90 100
time (seconds)

= Service violations occur when processes receive less than
their target fraction of CPU time over their specified periods

4 Benchmarks

Computer Science

= User-level:
= Signal dispatch = 1.5uS
= Context-switch between SM and app process = 2.99uS
= Reading /proc/pid/stat = 53.87uS
= Monitors and handlers (for 3 processes) = 190uS

= Kernel-level:

= Executing monitors and handlers
(for 3 processes) = 20uS

Conclusions

Computer Science

= SafeX supports safe dynamic-linkage of code into
the (Linux) kernel

= SafeX uses compile- & run-time support to create
protection domains in the kernel

= Provides memory and CPU protection for extensions

= Safe kernel extensions provide finer-grained service
than user-level approaches
= No scheduling of processes for service management

= Not dependent on scheduling policies and timeslice
granularities

