Analysis and Design
Flight Controller

Zhuoqun Cheng, Richard West, Craig Einstein
Boston University



(o

Emerging Drone Applications




Current State of the Art s

Most drone apps controlled by humans

e Use SBCs based predominantly on STM32 ARM Cortex M3/M4 single-core platforms
e Firmwares include Cleanflight, Ardupilot, PX4, etc
e Lack support for complete autonomous control with adaptable mission objectives

Emerging trend towards autonomous drones

e e.g., give examples such as Skydio for object tracking
e Still not flexible enough to support reconfigurable missions
e Use separate flight control and mission processing boards

o e.g., PX4 + Aero board, DJI example
o Our AIM to combine flight control + mission objectives onto SBC
with sufficient processing power, while meeting SWaP constraints



State of the Art

Most drones are controlled by humans
o STM32 ARM Cortex M3/M4 single-core SBCs
o Popular firmwares include Cleanflight, Ardupilot, PX4
o Lack support for autonomous control w/ adaptable mission
objectives




State of the Art s

e Emerging trend towards autonomous drones
o Object-tracking drone, e.g., Skydio
o Shortcomings:
m Not flexible enough to support reconfigurable missions
m Dual board architecture: Microcontroller w/ FC firmware +
powerful SBC w/ GPOS
e DJIl Matrice 100: N1 flight controller + DJI Manifold
e Intel Ready-to-Fly drone: Intel Aero board + PX4

o Intel® Aero Compute Board

Intel® Aero Flight Controller, preprogrammed
with Dronecode* PX4* autopilot

(0] e Intel® RealSense R200 Camera for
3D depth sensing

o 8 MP RGB camera (front-facing)

VGA camera, global shutter, monochrome
(down-facing) (not visible in photo)

G GPS and Compass

o Four ESCs, Motors, Propellers
0 Carbon Fiber Chassis (Fully Assembled)

e Radio Control Transmitter and Reciever



O
ol

Autonomous Drone example

e Traditional approach
o Dual board
m Microcontroller w/ FC firmware + powerful SBC w/ GPOS
e DJIl Matrice 100: N1 flight controller + DJI Manifold
e Intel Ready-to-Fly drone: Intel Aero board + PX4

a Intel® Aero Compute Board

Intel® Aero Flight Controller, preprogrammed
with Dronecode* PX4* autopilot

(0] 9 Intel® RealSense R200 Camera for
3D depth sensing

o 8 MP RGB camera (front-facing)

VGA camera, global shutter, monochrome
(down-facing) (not visible in photo)

G GPS and Compass

o Four ESCs, Motors, Propellers
e Carbon Fiber Chassis (Fully Assembled)

e Radio Control Transmitter and Reciever



Our Objective el

e Combine flight control & mission objectives onto one powerful SBC
o Aim to meet SWaP (Size Weight and Power) constraints
o Use Quest-V virtualized separation kernel
m Virtualization-based CPU, memory and I/O partitioning
m Quest RTOS and Linux in two sandboxes

Flight I Image Data 3rd-party
Controller Processing Logging Apps

Quest Quest-V Linux Quest-V

Main Memory




Scope of This Work el

e Refactoring Cleanflight
o Popular racing drone flight controller
o Firmware on ARM Cortex M3/M4 STM32 SoC
o Multithreaded application on Quest RTOS

Image Data 3rd-party

Cleanflight Processing  Logging Apps

Linux Quest-V

Main Memory

Quest Quest-V



Quest RTOS

Supports a series of x86-based SoC
o Aero, UP2, Edison, MinnowMAX, etc.

Supports user & kernel threads

o periodic task ~ user thread; driver INT handler ~ kernel thread

Each thread mapped to a VCPU

Task Task Interrupt
handler
VCPU VCPU VCPU
VCPU

Scheduler

Further info:
www.questos.org



VCPU Scheduling

e Task associated with CPU resource container called VCPU:

budget C and period T

e VCPUs scheduled by RMS
o guarantees C within T if task is runnable

Task

=

VCPU
CIT

Task

=

VCPU
CIT

Interrupt
handler

=

VCPU
CIT

N/

RMS Scheduler




Challenges

e Apart from timing properties of individual tasks, ...
e ... also crucial to guarantee application-wide end-to-end times

B - T Device T — [Data — —
Driver Alignment
Device
Driver

i Device Data
Driver Alignment




Task Pipeline

e A chain of tasks from sensor to actuator
o Used to quantify system reaction time, etc.
o E.g., Delay b/w motor speed reaction to attitude change

yaw 5
{ o/ pitch

ﬁe Task1 | > Task2 |

= =

VCPU VCPU VCPU

RMS Scheduler




<Y
ol

End-to-end Times

e [wo semantics

©)

End-to-end reaction time: the interval between a
sampled input and its first corresponding output
End-to-end freshness time: the interval between a
sampled input and its last corresponding output

| /t;sk1 Four-slot /t;skz
input | Buffer - output
é é WC Reaction: 1 ms
T=10 _ WC Freshness: 10 ms
ms T=1ms

~

RMS Scheduler




End-to-end Times

e Two semantics
o End-to-end reaction time: affected by the consumer
o End-to-end freshness time: affected by the producer
o Use: a combination of reaction and freshness times can
bound the periods of tasks

input

<Y
ol

/t;sk1 Four-slot /t;skz
/ Buffer output
é é WC Reaction: 1 ms
T=10 _ WC Freshness: 10 ms
ms T=1ms

~

RMS Scheduler




Problem Definition

e Given a task pipeline and VCPU parameters of each task
within the pipeline, determine the pipeline’s worst case
end-to-end reaction and freshness times

A
|

yn@ ‘.c“:pucn SPI
Four-slot AHRS Four-slot
» Interrupt Buffer Buffer
: handler Task utre

= =

C: 200us C: 100us C:1ms
T: 1ms T: 5ms T: dms

\//

RMS Scheduler




Execution Models

e Task model: periodic tasks

e Scheduling model: VCPU scheduling

e Communication model:
o three stages: Read, Process, Write
o Freshness-oriented: Simpson’s four-slot buffer
o Asynchronous

R
/%/ Buffer /%/
VCPU VCPU

~

RMS Scheduler




End-to-end Times

e Two semantics
End-to-end reaction time: the interval between a
sampled input and its first corresponding output
End-to-end freshness time: the interval between a
sampled input and its last corresponding output

©)

O
ol

_ /% single-slot /%
input W FIFO W output
é é WC Reaction: 10 ms
_ T=10 WC Freshness: 1 ms
T=1ms ms

~

RMS Scheduler




O
ol

End-to-end Times

e Two semantics
o End-to-end reaction time: affected by the consumer
o End-to-end freshness time: affected by the producer
o Intuition: a combination of reaction and freshness times
bounds the periods of tasks

R A R R A R
P P P P
W S W W S W
= _ = = _
Reaction: 1 Reaction: 10

Freshness: 10 L 1 Freshness: 1

N N




e \Worst case reaction time: first corresponding output

A Base Case

e Pipeline of two tasks
e Periority: producer (T=3) < consumer (T=2)

Din

producer

—_—

RPW

RPW

consumer

‘RPW

fRPW

|

Dout



A Base Case

e \Worst case reaction time: move apart
e Pipeline of two tasks
e Periority: producer (T=3) < consumer (T=2)

Worst case| end-to-end reaction time?

Din ||= = = < _

producer AR P W \ RP W

\
consumer ‘r \R\P \J R P Wr

hl |
Dout Dout



A Base Case

e \Worst case reaction time: move closer
e Pipeline of two tasks
e Periority: producer (T=3) < consumer (T=2)

producer

inﬂ___

R P

- oy
= .

RPW

consumer




A Base Case

e \Worst case reaction time: move even closer
e Pipeline of two tasks
e Periority: producer (T=3) < consumer (T=2)

producer

on]|_

R

_— e .,

RPW

consumer




e \Worst case reaction time

A Base Case

e Pipeline of two tasks
e Periority: producer (T=3) < consumer (T=2)

Worst case end-to-end|reaction rtime!

inﬂ
R —— -
producer RP W\\ RP W

\

\
consumer fRPW YR P W fRPW

N
~
| >
Dold Dout



End-to-end Timing Analysis ™

e For two tasks, the same intuition applies for:
o reaction time, producer has higher priority

o freshness time, producer has lower priority

o freshness time, producer has higher priority

e For longer pipelines:

o Composability: appending tasks to a pipeline might
preempt previous tasks, but will not affect the worst case
reaction and freshness times of the prior tasks as long as
all the tasks are schedulable

o End-to-end time of the pipeline is extended by the period
of each appended task plus scheduling latency b/w them



Flipping the Problem -

e A combination of reaction and freshness times can bound the
periods of tasks

e Given a pipeline’s end-to-end timing requirements, determine
its tasks’ VCPU periods

Reaction: 4ms
Freshness: 8ms

SPI single-slot single-slot

Interrupt — Ig”:o —— AHRS ., IgIFO

handler Task

C: 200us C: 100us C:1ms
T:? T:? T:?

\//

RMS Scheduler




End-to-end Design

Worst case end-to-end times should be bounded by the specified
requirements

Use linear programming to find a feasible set of periods that satisfy
the inequations

o To prune the search space, start w/ Tprod > Tcons
o Also use sensor & actuator hardware frequency

Reaction Freshness
En-—)mln-)m < 10, Fn-—)mln-nm < 20,
E7’2'—)772|T4'—)7T4 S 1‘5’ F‘f’z'—)ﬂzl7‘4'—)ﬂ’4 S 30’

ETz'~"rz|75H7fs|Te'—er <25, F"‘zH"les'—*ﬂslTs'-We < 50,
Em»-mghy—nre < 15 F‘ry—nr3|‘r(,>-)11'6 < 20;
Schedulability Execution Time
Vje{L2, -6}
| d=d =3,
a5 <6(v2-1) W} = Wi =20,
§ =8 =0.1,
P = 0.5;

O
ol



Evaluation

Intel Aero board:

o Atom x7-Z8750 4 cores @1.6 GHz (only use core 0 for now)

o On-board IMU, PWM

A refactored multithreaded Cleanflight on Quest

o Port Cleanflight to Linux to measure end-to-end times

o Profile task execution time

1>1 SPI bus

reading

=
C
A
=
=
O

M

Senscir dat /

+ 2| [Accel| ™ Accelerometer Desired Throttle &
; task /- reading Attitud
. / . itude

. | : ,\"\

| s Radio data

]

Radio| ~~~__~~TTTemmmmmmmmmmmmmmmmTmmmTTTTTTT

\Various
buses

FPGA

O
ol



Evaluation

e Intel Aero board:
o Atom x7-Z8750 4 cores @1.6 GHz (only use core 0 for now)
o On-board IMU, PWM

e A refactored multithreaded Cleanflight on Quest
o Port Cleanflight to Linux to measure end-to-end times
o Profile task execution time

QO
ol

Gyro

AHRS

Exec Times

(ns) 174

10

IMU

Sens

reading

Accelerometer

B A = 1 (i n——
/

R:10 m§;

Motor Cde

— ; .

=
\Various| SPI
buses bus

ms
ms



Intel Aero board:

o Atom x7-Z8750 4 cores @1.6 GHz (only use core 0 for now)
o On-board IMU,

A refactored multithreaded Cleanflight on Quest

Evaluation

PWM

o Use end-to-end design to derive task periods

Gyro | AHRS | PID | PWM | Accl | Radio
Exec Times (us) 174 10 2 970 167 12
E R:10 msj)\F: 23 ms ;
MU iiv:igzréfﬂ“‘“ A ... . A p—— N ‘
Task Gyro AHRS PID
Budget/Period (us) 200/1000 100/5000 | 100/2000
Task PWM Accl Radio
Budget/Period (,us) 1000/5000 | 200/1000 | 100/10000
1 —&auy udia uasr ;
Radio Bttt ittt
\Various) SPI
buses ‘ ‘ . bus

O
ol



Evaluation

Timestamp data exchanged along the task pipeline

©)

Observed worst reaction and freshness end-to-end times
are always less than timing constraints

24000 t O(gbservgc\iN Best gase —
21000 ¢ sene g;'setdic?gg zezezezeze! §
Constraint \
18000 | §
g 15000 | §
£ 12000 | §
" 9000 §
\
6000 } §
3000 ¢ §
N

Reaction Freshness



Conclusion

Temporal isolation between individual tasks can be used to derive
worst-case end-to-end times of task pipelines

End-to-end timing requirements can be used to derive task periods

End-to-end timing analysis and design can be used to meet drone
flight controllers’ end-to-end timing requirements



ank. you

Comments or Questions?



Future Work

e Communication b/w flight controller & 3rd-party apps
e Applications for autonomous drone

Flight I Image Data 3rd-party
Controller | Processing Logging Apps
|
Quest|Quest-V | Linux




