
Hijack: Taking Control of COTS Systems

for Real-Time User-Level Services

Gabriel Parmer and Richard West

Computer Science Deparment
Boston University
Boston, MA 02215

{gabep1, richwest}@cs.bu.edu

April 5, 2007

COTS in RT/Embedded Systems

Commodity Off The Shelf (COTS) general purpose systems
provide many advantages for RT/Embedded systems

Tested and widely deployed code-base

Established development tools/environments

Developer familiarity

→ faster time to market/smaller development costs

Parmer, West, BU CS Hijack 2/33

COTS in RT/Embedded Systems (2)

General purpose systems have a number of disadvantages

General-purpose policies are often insufficient/awkward
for needs of RT applications

QoS, predictability, policies absent for satisfying
app-specific requirements, i.e. EDF

Semantic gap between the requirements of the application and
the functionality/guarantees of the system

Parmer, West, BU CS Hijack 3/33

Shrinking the Semantic Gap

Domain-specific OSs created with a focus on one class of
applications (RTOSs)

Extensible systems allow the modification of system policies in
an application-specific manner

Generally either not COTS, or not isolation preserving

Developing extensions requires skill/experience

Goal: provide app-specific policies using a COTS base in
a safe and predictable manner

Parmer, West, BU CS Hijack 4/33

Hijacking your COTS system

Efficient interposition on service requests from specific
applications allows the definition at user-level of
application-specific policy

Parmer, West, BU CS Hijack 5/33

Hijack Mechanism

Kernel module
Host Kernel

. . .

Background
process

Guest Guest

Hardware (I/O devices)

Executive

Interrupts

IDT

Syscall
interception

Schedule / dispatch

Hijack execution
environment

Unintercepted syscalls

Hijack module receives
specific events

system calls

page faults

possibly device
interrupts

Vector guest service
requests to executive

executive controls execution context of guests

create/switch address spaces

access guest registers

event-triggered executive scheduler

Parmer, West, BU CS Hijack 6/33

Hijack Mechanism (2)

Kernel module
Host Kernel

. . .

Background
process

Guest Guest

Hardware (I/O devices)

Executive

Interrupts

IDT

Syscall
interception

Schedule / dispatch

Hijack execution
environment

Unintercepted syscalls

executive isolated at
user-level

executive harnesses
base system
functionality where
appropriate

Does not require changes to the COTS system
source-code (no kernel recompilation)

One (2000 LOC) hijack module enables flexibility in the
definition of user-level app-specific services

Parmer, West, BU CS Hijack 7/33

Case Study: Guest System Call Interposition

Kernel module
Host Kernel

. . .

Executive

Guest Guest

executive state
(to be restored)

saved guest state

syscall

1 guest service request
intercepted by Hijack module

2 executive region mapped into
current guest address space

3 guest registers saved into
executive region

4 executive registers restored

5 executive executed

executive not present while guest is executing – mapped in
dynamically

executive isolated from guests

Parmer, West, BU CS Hijack 8/33

Case Study: Guest System Call Return

Kernel module
Host Kernel

. . .

Executive

Guest Guest

saved guest state
(to be restored)

saved
executive state

1 executive returns to kernel
module

2 executive registers saved in
module

3 guest registers restored from
executive region

4 executive region unmapped
from guest address space

5 executive’s mappings evicted
from TLB

6 guest executed

Can use global bits to avoid flushing guest pages from TLB

set all guest pages as global

Parmer, West, BU CS Hijack 9/33

Experimental Setup

All experiments conducted

on a 2.4 GHz Pentium 4 processor

on Linux 2.6.13

with a clock tick every 10 milliseconds

Parmer, West, BU CS Hijack 10/33

nanosleep Experiments

A goal of Hijack is to offer the ability to enhance default
system functionality in an application-specific manner

nanosleep: yield for at least a specific number of
nanoseconds

used in multimedia apps such as mplayer

Wake up time variability/unpredictability

clock granularity
COTS CPU scheduler

Parmer, West, BU CS Hijack 11/33

nanosleep Experiments (2)

Hijack-provided extensions:

1 Hijack: Executive can give scheduler preference to tasks
waking from nanosleep

2 Hijack Extended: Executive can busy wait for periods
less than a clock tick

Parmer, West, BU CS Hijack 12/33

nanosleep Experiments (3)

1

10

100

1000

10000

100000

0 1 2 3 4

Number of Background CPU Bound Tasks

Jit
te

r (
Te

ns
 o

f M
icr

os
ec

on
ds

)

Hijack
Linux Task
Hijack Extended

Parmer, West, BU CS Hijack 13/33

QoS for Packet Stream Delivery

Scheduling of Tasks dependent on I/O availability with QoS
constraints: models traffic shapers, QoS aware stream
processing, etc. . .

Four streams of 42,000 16 byte packets/second from
separate hosts over GigE

Single host with four tasks, each receiving a stream

QoS constraints:

Task 0: 35,000 p/s

Task 1: 20,000 p/s

Task 2: 10,000 p/s

Task 3: best effort

higher QoS

��
lower QoS

Start tasks every 5 seconds from Task 3 to Task 0

Parmer, West, BU CS Hijack 14/33

QoS for Packet Stream Delivery (2)

Three scenarios:

1 Linux, tasks with same priority

2 Linux, tasks with different priority

3 Hijack, Executive using policy similar to
proportional-share

Tasks assigned tokens proportional to QoS
select used to probe for I/O activity
Task with tokens and available I/O executed
Tokens refreshed every given period

When guest make system call to read data
read data into guest buffer until no tokens, or no data

Parmer, West, BU CS Hijack 15/33

Packet Delivery QoS Results: Linux Same Priority

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 0 5 10 15 20 25 30

Nu
m

be
r o

f p
ac

ke
ts

 d
el

ive
re

d
to

 a
 ta

sk

Time (seconds)

Task 0
Task 1
Task 2
Task 3

Parmer, West, BU CS Hijack 16/33

Packet Delivery QoS Results: Linux Increasing

Priority

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 0 5 10 15 20 25 30

Nu
m

be
r o

f p
ac

ke
ts

 d
el

ive
re

d
to

 a
 ta

sk

Time (seconds)

Task 0
Task 1
Task 2
Task 3

Parmer, West, BU CS Hijack 17/33

Packet Delivery QoS Results: Hijacked Linux

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 0 5 10 15 20 25 30

Nu
m

be
r o

f p
ac

ke
ts

 d
el

ive
re

d
to

 a
 ta

sk

Time (seconds)

Task 0
Task 1
Task 2
Task 3

Parmer, West, BU CS Hijack 18/33

Related Work

Related work includes:

RTLinux

Separate system into two functional domains for Hard-RT
predictability

Focus is on interrupt latency, not app-specific resource
management policies

VMs

Interface provided to guest OSs (executives) is identical
to the hardware itself

Focus is on HW virtualization, not on providing
app-specific services

Parmer, West, BU CS Hijack 19/33

Conclusions

Hijack enables app-specific, user-level RT policies using a
general purpose computing base

Use interposition on system service requests to redefine
policies

executive defined at user-level can leverage underlying
system functionality where appropriate

Demonstrated that complex policies can be introduced

A useful approach towards shrinking the semantic gap

Parmer, West, BU CS Hijack 20/33

Limitations

global bit trick not ideal for all workloads

can revert to simply flushing whole TLB or use other
techniques

Certain aspects of the system that cannot be hijacked
using these techniques

If utilize functionality in base system, generally cannot
Hijack that functionality
COTS system interrupt handling behavior (prototype
limitation)

Parmer, West, BU CS Hijack 22/33

Using Global-bit Trick to Avoid TLB Flushes

Study the effect of TLB flushes on Executive ↔ Guest
communication

Vary working set size
(WSS) of guest by
touching data/instruction
pages then making system
call

instruction-TLB has 128
entries

data-TLB has 64 entries

Global-bit trick avoids
TLB flush, thus avoiding
misses

 0

 50

 100

 150

 200

 250

 300

 350

 0 50 100 150 200 250 300

iT
LB

 M
iss

es

Instruction WSS

Hijack Guest -> Executive RPC
Linux Pipe

System Call

Parmer, West, BU CS Hijack 23/33

Using the Global-bit Trick to Avoid TLB Flushes

(2)

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 50 100 150 200 250 300

Cy
cle

s

Data WSS

Hijack Guest -> Executive RPC
Linux Pipe

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 50 100 150 200 250 300

Cy
cle

s
Instruction WSS

Hijack Guest -> Executive RPC
Linux Pipe

Parmer, West, BU CS Hijack 24/33

Asynchronous Event Notification Experiments

Timer interrupts in
Executive synthesized
with signals

Predictable notification

Executive can define
customizable policy for
scheduling beyond
what is present in the
COTS system (EDF,
PFAIR, DWCS, etc. . .)

0.0

5.0

10.0

15.0

20.0

25.0

30.0

0 1 2 3 4

Number of Background CPU Bound Tasks

Av
er

ag
e

Si
gn

al
 In

te
ra

rri
va

l T
im

e
(m

illi
se

co
nd

s)

Hijack
Linux Task

Parmer, West, BU CS Hijack 25/33

Hijack Execution Environment Address Space

signal_handler

4KB guard page

executive stack

4KB guard page

sigaltstack

executive

read-only

0x3FC00000

read-writable

Parmer, West, BU CS Hijack 26/33

QoS Expts. Executive Algorithm

main_event_loop () {
next = NULL;
select on the file descriptors for each task;

if (timing period has expired)
for (each task in tasks)

curr_tokens(task) = init_tokens(task);

for (each task in tasks)
if (select indicated that task has data &&

curr_tokens(task) > 0) {
next = task;
break;

}
if (next == NULL)

next = best_effort_task;
execute next;

}

Parmer, West, BU CS Hijack 27/33

QoS Expts. Executive Algorithm (2)

guest_syscall_read(guest_fd, guest_buf, guest_size) {
fd = translate_to_host_fd(guest_fd);
loop until (read doesn’t return data ||

curr_tokens(task) == 0) {
read(fd, guest_buf, guest_size); //nonblocking
curr_tokens(task)--;

}
}

Parmer, West, BU CS Hijack 28/33

Max. Jitter QoS Results: Linux Same Priority

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 0 5 10 15 20 25 30

M
ax

im
um

 s
tre

am
 jit

te
r (

cy
cle

s)

Time (seconds)

Task 0
Task 1
Task 2
Task 3

Parmer, West, BU CS Hijack 29/33

Max. Jitter QoS Results: Linux Increasing Priority

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 0 5 10 15 20 25 30

M
ax

im
um

 s
tre

am
 jit

te
r (

cy
cle

s)

Time (seconds)

Task 0
Task 1
Task 2
Task 3

Parmer, West, BU CS Hijack 30/33

Max. Jitter QoS Results: Hijacked Linux

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 0 5 10 15 20 25 30

M
ax

im
um

 s
tre

am
 jit

te
r (

cy
cle

s)

Time (seconds)

Task 0
Task 1
Task 2
Task 3

Parmer, West, BU CS Hijack 31/33

