OO IIInc) |
Co o

Zhuoqun Cheng, Ye Li, Richard West

Problem Overview

The Mismatch between Arduino Hardware and Software:
 Emerging Arduino-compatible devices
— Faster processors and more complicated I/O architectures
—Increasingly complicated physical computing applications
* The standard Arduino API

—Missing support for multithreaded programs, or specifica-
tion of real-time requirements

— Restricted to the capabilities found on less powerful devices

Qduino

* An operating system and programming environment

e Adds support for real-time, multithreading extensions to the
standard Arduino API

¢ Runs on Quest RTOS for Intel Galileo + future Arduino-
compatible boards

Architecture
* Driver interfaces exposed to user level through system calls.
* GPIO system calls wrapped by user level APIs in libgqduino.
e Sketches run as Quest user processes, linked with libgduino.

Sketch
Quest Quest loopl|---|loopN
Native Native | mzceesoeeesoeeessoeeeoos
App App Qduino Libs
e L UsET
Kernel
| GPIO Driver |
VCPU .
Scheduler | SPI Driver |
| 12C Driver |
""""""""""""""""""""""""""""""""" x86 SOC
Galileo Edison Minnowboard

Figure 1: Qduino Architecture

Advisor: Richard West

Qduino Programming

e Allows Up to 32 100p() functions.

e Fach 1oop() function is assigned to a Quest thread and sched-
uled by the Quest scheduler.

e Makes it easier to write sketches with parallel tasks.

e Experiments show up to 28% performance increase over the
single-loop version.

New APls

Function Signatures Category
loop(loop id, C, T) Structure
interruptsVcpu(C, T),

attachInterruptVcpu(pin, ISR, mode, C, T) Interrupt
spinlockInit(lock),

spinlockLock(lock), Spinlock
spinlockUnlock(lock)

channelWrite(channel, item), E 1 "
item channelRead(channel) OULS10
ringbufInit (buffer, size),

ringbufWrite(buffer, item), ng buffer

ringbufRead (buffer, item)

Sample Sketch - Blinking LEDs

int ledl = 13, led2 = 9; // connect LEDs to pin 13 and 9

int brightness = 0; // how bright the LED is
int fadeAmount = 5; // how many points to fade the LED by
void loop(1,40,100) { // loop 1 with VCPU (40,100) blinks 1ledl
digitalWrite(ledl, HIGH); // turn the LED on
delay (1000) ; // wait for a second
digitalWrite(ledl, LOW); // turn the LED off
delay (1000) ; // wait for a second

+

void loop(2,20,100) { // loop 2 with VCPU (20,100) fades 1led2
analogWrite (led2, brightness); // set the brightness of pin 9
brightness = brightness + fadeAmount; // change the brightness

// reverse the direction of the fading at the ends of the fade

if (brightness == 0 || brightness == 255) {
fadeAmount = -fadeAmount ;
+
delay (30) ; // wait for 30 milliseconds to see the dimming effect

+

void setup () {
pinMode (ledl, OUTPUT) ;
pinMode (led2, OUTPUT) ;

+

Boston University

Temporal Isolation

* The execution of one loop is guaranteed not to interfere with
the timely execution of others.

* Interrupts are handled in threads so that they do not unduly
interfere with the execution of loops.

R 3 e
Q0 00~

@ Q /O VCPUs

\/

PCPUs (Cores)

Address
Space

Figure 2: Quest VCPU Hierarchy

Predictable Events

e User level interrupt handling threads bind to Main VCPUs

* The Main VCPUs are invoked by wakeup events generated by
the bottom half.

e Kernel level threaded bottom half binds to an I/O VCPU
* The I/O VCPU are invoked by hardware interrupt handler
* The above process is bounded by its worst-case delay (WCD):

Awcp = (T, — Cp) + Dy, = (T, — Cpy) +

0
(T;o — Cip) {Cbh 1—‘ - T;o + 0py, mod C;j,
io

* Notation:
- (Cy, Ty) - parameters of the Main VCPU associated with the
user level interrupt handler

—(Cjo, Tjp) - parameters of the I/O VCPU associated with the
bottom half

— Apy, and oy, - the wall-clock time and the required CPU time
to execute the bottom half

Qduino Website: www.cs.bu.edu/fac/richwest/Qduino.php

