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Goals 

•  Develop system for high-confidence 
(embedded) systems 

– Mixed criticalities (timeliness and safety) 
 

•  Predictable – real-time support 
•  Secure – resistant to component failures & 

malicious attacks 
•  Self-healing 
•  Online recovery of software             

component  failures 
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Target Applications 

•  Healthcare 
•  Avionics 
•  Automotive 
•  Factory automation 
•  Robotics 
•  Space exploration 
•  Secure/safety-critical domains 
•  Internet-of-Things (IoT) 
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Internet of Things 

l  Number of Internet-connected devices  
> 12.5 billion in 2010 
l  World population > 7 billion (2015) 
l  Cisco predicts 50 billion Internet devices by   
2020 
  Challenges: 

•  Secure management of vast quantities  
 of data 
•  Reliable + predictable data exchange  

 b/w  “smart” devices 
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In the Beginning...Quest 
•  Initially a “small” RTOS  
•  ~30KB ROM image for uniprocessor version 
•  Page-based address spaces 
•  Threads 
•  Dual-mode kernel-user separation 
•  Real-time Virtual CPU (VCPU) Scheduling 
•  Later SMP support 
•  LAPIC timing 

 
 

FreeRTOS,  
uC/OS-II etc Quest Linux, Windows,  

Mac OS X etc 
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From Quest to Quest-V 
•  Quest-V for multi-/many-core processors 

–  Distributed system on a chip 
–  Time as a first-class resource 

•  Cycle-accurate time accountability 
 

–  Separate sandbox kernels for system 
components 

–  Memory isolation using h/w-assisted memory 
virtualization 

–  Also CPU, I/O, cache partitioning 
•  Focus on safety, efficiency, predictability + security 
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Related Work 

•  Existing virtualized solutions for resource 
partitioning 
– Wind River Hypervisor, XtratuM, PikeOS, 
Mentor Graphics Hypervisor 
 
– Xen, Oracle PDOMs, IBM LPARs 
 
– Muen, (Siemens) Jailhouse 
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Problem 

Traditional Virtual Machine approaches too expensive 
 

–  Require traps to VMM (a.k.a. hypervisor) to  
mux & manage machine resources for multiple 
guests 

–  e.g., ~1500 clock cycles VM-Enter/Exit on   
Xeon E5506 

Traditional Virtual Machine approaches too memory 
intensive for embedded systems in areas such as IoT! 
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Traditional Approach 
(Type 1 VMM) 

VM VM VM VM VM 
... 

Type 1 VMM / Hypervisor 

Hardware (CPUs, memory, devices) 
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Quest-V Approach 

VM VM VM VM VM 
... 

Hardware (CPUs, memory, devices) 

Eliminates hypervisor intervention during  
normal virtual machine operations 
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Quest-V Architecture Overview 
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Memory Partitioning 

•  Guest kernel page tables for GVA-to-GPA 
translation 

•  EPTs (a.k.a. shadow page tables) for GPA-to-
HPA translation 

– EPTs modifiable only by monitors 
–  Intel VT-x: 1GB address spaces require 

12KB EPTs w/ 2MB superpaging 
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Quest-V Memory Partitioning Quest-V Memory Partitioning 
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I/O Partitioning 
•  Device interrupts directed to each sandbox  

–  Use I/O APIC redirection tables 
–  Eliminates monitor from control path  

•  EPTs prevent unauthorized updates to I/O APIC 
memory area by guest kernels 

 
•  Port-addressed devices use in/out instructions 
•  VMCS configured to cause monitor trap for specific 

port addresses 
•  Monitor maintains device "blacklist" for each sandbox 

–  DeviceID + VendorID of restricted PCI devices 
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CPU Partitioning 

•  Scheduling local to each sandbox 
– partitioned rather than global 
– avoids monitor intervention 
 

•  Uses real-time VCPU approach for Quest 
native kernels [RTAS'11] 
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l  VCPUs for budgeted real-time execution of 
threads and system events (e.g., interrupts) 

l  Threads mapped to VCPUs 

l  VCPUs mapped to physical cores 

l  Sandbox kernels perform local scheduling on 
assigned cores 

l  Avoid VM-Exits to Monitor – eliminate cache/
TLB flushes 

Predictability 
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VCPUs in Quest(-V) 

Main VCPUs 

I/O VCPUs 

Threads 

PCPUs (Cores) 

Address 
 Space 
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Example VCPU Schedule Example VCPU Schedule 
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Utilization Bound Test 

•  Sandbox with 1 PCPU, n Main VCPUs, and m 
I/O VCPUs 
– Ci = Budget Capacity of Vi 
– Ti = Replenishment Period of Vi 
– Main VCPU, Vi 
– Uj = Utilization factor for I/O VCPU, Vj 

Ci
Tii=0

n−1

∑ + 2−Uj( ) ⋅Uj
j=0

m−1

∑ ≤ n ⋅ 2n −1( )
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Cache Partitioning 

•  Shared caches controlled using color-aware 
memory allocator [COLORIS – PACT'14] 

•  Cache occupancy prediction based on h/w 
performance counters 
– E' = E + (1-E/C) * ml – E/C * mo 

– Enhanced with hits + misses 
[Book Chapter, OSR'11, PACT'10] 
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Linux Front End 
•  For low criticality legacy services 
•  Based on Puppy Linux 3.8.0 
•  Runs entirely out of RAM including root filesystem 
•  Low-cost paravirtualization 

–  less than 100 lines 
–  Restrict observable memory 
–  Adjust DMA offsets 

•  Grant access to VGA framebuffer + GPU 
•  Quest native SBs tunnel terminal I/O to Linux via 

shared memory using special drivers 
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Quest-V Linux Screenshot 

No VMX or EPT flags 

1 CPU + 512 MB 
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Quest-V Performance 

100 Million Page Faults 1 Million fork-exec-exit Calls 

Quest-V Performance 
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Quest-V Summary 
•  Separation kernel built from scratch 

–  Distributed system on a chip 
–   Uses (optional) h/w virtualization to partition 

resources into sandboxes 
–  Protected comms channels b/w sandboxes 
 

•  Sandboxes can have different criticalities 
–  Linux front-end for less critical legacy services 

•  Sandboxes responsible for local resource 
management 
–  avoids monitor involvement 
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Proposed Work 

•  Port of Quest to Intel Galileo            [Done] 
•  Qduino API                                  [Ongoing] 
•  Port of Quest(-V) to Intel                   

Edison and Minnowboard Max      [Started] 
•  IoT Applications: 3D printing / 

manufacturing, robotics, secure          
home automation, etc                      [To Do] 

•  (Secure) Information Flow Analysis [To Do] 
•  Real-time Communication           [Ongoing] 
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Quest on Galileo 

•  Porting Quest to the Galileo board: 
– Added multiboot support back to 32-bit 

GRUB EFI (GRUB Legacy) 
– Developed I2C, SPI controller drivers 
– Developed Cypress GPIO Expander and 

AD7298 ADC drivers 
 

•  Original Arduino API Support 
•  New real-time multithreaded Qduino API 
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Qduino 

•  Qduino – Enhanced Arduino API for Quest  
– Parallel and predictable loop execution 
– Real-time communication b/w loops 
– Predictable and efficient interrupt 

management 
– Real-time event delivery 
– Simplifies multithreaded real-time 

programming  
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Qduino Multi-loop Example 
•  Multiple loop sketch example: 
 
          loop (1, 40, 100) {  /* VCPU: C = 40, T = 100 */ 
            digitalWrite (LED1, HIGH); 
            ...  /* Blink LED1 */ 

          } 
          loop (2, 20, 100) {  /* VCPU: C = 20, T = 100 */ 
            analogWrite (LED2, brightness); 
            ...  /* Change brightness of LED2 */ 
          } 

          setup () { 
            pinMode (LED1, OUTPUT); 
            pinMode (LED2, OUTPUT); 
          } 
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Qduino Organization 
Sketch 
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... Quest  
Native 
App 

Quest  
Native 
App 
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QDuino Libs  

loop1 loopN 
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x86 SoC 

Edison Minnowboard 

VCPU  
Scheduler 

GPIO Driver 

SPI Driver 

I2C Driver 
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Qduino New APIs 

Function Signatures Category 

l  loop(loop_id, C, T) Structure 

l  interruptsVcpu(C,T) 
l  attachInterruptVcpu(pin,ISR,mode,C,T) 

Interrupt 

l  spinlockInit(lock) 
l  spinlockLock(lock) 
l  spinlockUnlock(lock) 

Spinlock 

l  channelWrite(channel,item) 
l  item channelRead(channel) 

Four-slot 

l  ringbufInit(buffer,size) 
l  ringbufWrite(buffer,item) 
l  ringbufRead(buffer,item) 

Ring buffer 



31 

Qduino Event Handling 

Main 
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Main 
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Qduino Temporal Isolation 
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Possible Use Cases 

l  Mixed-criticality automotive system 
l  Secure home automation 
l  3D printer controller 
l  IoT interoperability sandboxing 

l  Secure virtual networks of untrusted 
devices 

l  Many others... 
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Mixed-Criticality  
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Secure Home Automation 

Real-time 
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Secure Home Automation 

l  Home equipped w/ cameras, alarms, window/
door actuators, HVAC + appliance controls 

l  “Home owner” sandbox(es) for localized control 
of data, sensors + actuators 

l  e.g., smartphone çè appliance control 
l  3rd party sandbox(es) for plugin app services 

l  e.g., Emergency (police/fire/ambulance) 
callouts 
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Secure Home Automation 

l  Challenges: 
l  Prevent homeowner generating false 

alarms 
l  Apply penalties from service provider 

l  Prevent 3rd parties accessing sensitive 
homeowner data (e.g., raw camera feeds) 

l  Enforce secure inter-sandbox comms 
l  Require services across sandboxes to be 

digitally signed by separate entities (non-
collusion) 
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Secure Home Automation 
l  External system interface via public Internet only 

accesses 3rd party (untrusted) sandboxes 
l  Internal system interface via home network accesses 

trusted sandboxes 
 
l  Replicated monitors observe suspicious activity 

l  e.g., high frequency access to “root” mode 
(monitor) via VM-exits 

l  Monitors akin to security guards 
l  An attacker would have to compromise all such 

guards to prevent system recovery 
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Edison 3D Printer Controller 
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Distributed Virtual 
Manufacturing 

l  Extend 3D print service to distributed “customizable” 
one-off manufacturing 

l  A “Kinkos” 3D printing/manufacturing service 
l  Submit requests via web interface 

l  Need to verify correctness 
l  Verified requests spooled for processing 
l  Use real-time comms + Qduino for real-time machine 

control 
l  Possible to form “job shop” style assembly lines 
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IoT Interoperability Sandboxing 

l   Collaborative open-source frameworks 
l  IoTivity (Open Interconnect Consortium: 

Intel, Samsung, Cisco, GE + many others) 
l  Alljoyn (Allseen Alliance), 160+ partners 
l  Communication across different transport 

media, OSes, and protocols   
l  Microsoft Device System Bridges (DSBs) 

for Z-wave and BACnet 
l  Google's Brillo Weave, Apple Home Kit   
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IoT Interoperability Sandboxing 

l  Use Quest-V sandboxes to isolate IoTivity / 
Alljoyn software stacks   

l  Promote secure isolation of networks of 
devices 

l  Use replicated / distributed monitor network to 
identify “unusual” (potentially malicious) 
network activity 
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What Next? 
l  Continue port of Quest(-V) to Edison and   

Minnowboard Max 
l  Develop 3D printer controller 

l  Investigate techniques to quarantine and verify 3rd 
party service requests before processing 

l  Develop autonomous vehicle system 
l  Look at real-time control in presence of injected 

faults 
l  Home automation prototype 

l  Provide secure services for 3rd party plugins 
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Conclusions 

l  Quest-V uses one monitor per sandbox 
l  Heightens security & safety 
l  Monitors are small 

l  Not needed for resource multiplexing 

l  Can potentially exploit this to build new 
security models 

l  Monitors like multiple system guards 

l  Chip-level distributed system 
l  Real-time inter-sandbox communication 
l  Isolation of 3rd party services 
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