
Quest-V: A Secure and
Predictable System for IoT

and Beyond

Richard West
richwest@cs.bu.edu

Computer Science

2

Goals

•  Develop system for high-confidence
(embedded) systems

– Mixed criticalities (timeliness and safety)

•  Predictable – real-time support
•  Secure – resistant to component failures &

malicious attacks
•  Self-healing
•  Online recovery of software

component failures

3

Target Applications

•  Healthcare
•  Avionics
•  Automotive
•  Factory automation
•  Robotics
•  Space exploration
•  Secure/safety-critical domains
•  Internet-of-Things (IoT)

4

Internet of Things

l  Number of Internet-connected devices
> 12.5 billion in 2010
l  World population > 7 billion (2015)
l  Cisco predicts 50 billion Internet devices by
2020
 Challenges:

•  Secure management of vast quantities
 of data
•  Reliable + predictable data exchange

 b/w “smart” devices

5

In the Beginning...Quest
•  Initially a “small” RTOS
•  ~30KB ROM image for uniprocessor version
•  Page-based address spaces
•  Threads
•  Dual-mode kernel-user separation
•  Real-time Virtual CPU (VCPU) Scheduling
•  Later SMP support
•  LAPIC timing

FreeRTOS,
uC/OS-II etc Quest Linux, Windows,

Mac OS X etc

6

From Quest to Quest-V
•  Quest-V for multi-/many-core processors

–  Distributed system on a chip
–  Time as a first-class resource

•  Cycle-accurate time accountability

–  Separate sandbox kernels for system
components

–  Memory isolation using h/w-assisted memory
virtualization

–  Also CPU, I/O, cache partitioning
•  Focus on safety, efficiency, predictability + security

7

Related Work

•  Existing virtualized solutions for resource
partitioning
– Wind River Hypervisor, XtratuM, PikeOS,
Mentor Graphics Hypervisor

– Xen, Oracle PDOMs, IBM LPARs

– Muen, (Siemens) Jailhouse

8

Problem

Traditional Virtual Machine approaches too expensive

–  Require traps to VMM (a.k.a. hypervisor) to
mux & manage machine resources for multiple
guests

–  e.g., ~1500 clock cycles VM-Enter/Exit on
Xeon E5506

Traditional Virtual Machine approaches too memory
intensive for embedded systems in areas such as IoT!

9

Traditional Approach
(Type 1 VMM)

VM VM VM VM VM
...

Type 1 VMM / Hypervisor

Hardware (CPUs, memory, devices)

10

Quest-V Approach

VM VM VM VM VM
...

Hardware (CPUs, memory, devices)

Eliminates hypervisor intervention during
normal virtual machine operations

11

Quest-V Architecture Overview
Sandbox M

Monitor

Sandbox 1

VCPU

. . .

Monitor

Sandbox 2

VCPU VCPU

Monitor

Communication
+

Migration

VCPU VCPU
Sandbox

Address
Space

Thread IO Devices

PCPU(s)

IO Devices

PCPU(s)

IO Devices

PCPU(s)

12

Memory Partitioning

•  Guest kernel page tables for GVA-to-GPA
translation

•  EPTs (a.k.a. shadow page tables) for GPA-to-
HPA translation

– EPTs modifiable only by monitors
–  Intel VT-x: 1GB address spaces require

12KB EPTs w/ 2MB superpaging

13

Quest-V Memory Partitioning Quest-V Memory Partitioning

14

I/O Partitioning
•  Device interrupts directed to each sandbox

–  Use I/O APIC redirection tables
–  Eliminates monitor from control path

•  EPTs prevent unauthorized updates to I/O APIC
memory area by guest kernels

•  Port-addressed devices use in/out instructions
•  VMCS configured to cause monitor trap for specific

port addresses
•  Monitor maintains device "blacklist" for each sandbox

–  DeviceID + VendorID of restricted PCI devices

15

CPU Partitioning

•  Scheduling local to each sandbox
– partitioned rather than global
– avoids monitor intervention

•  Uses real-time VCPU approach for Quest
native kernels [RTAS'11]

16

l  VCPUs for budgeted real-time execution of
threads and system events (e.g., interrupts)

l  Threads mapped to VCPUs

l  VCPUs mapped to physical cores

l  Sandbox kernels perform local scheduling on
assigned cores

l  Avoid VM-Exits to Monitor – eliminate cache/
TLB flushes

Predictability

17

VCPUs in Quest(-V)

Main VCPUs

I/O VCPUs

Threads

PCPUs (Cores)

Address
 Space

18

Example VCPU Schedule Example VCPU Schedule

19

Utilization Bound Test

•  Sandbox with 1 PCPU, n Main VCPUs, and m
I/O VCPUs
– Ci = Budget Capacity of Vi
– Ti = Replenishment Period of Vi
– Main VCPU, Vi
– Uj = Utilization factor for I/O VCPU, Vj

Ci
Tii=0

n−1

∑ + 2−Uj() ⋅Uj
j=0

m−1

∑ ≤ n ⋅ 2n −1()

20

Cache Partitioning

•  Shared caches controlled using color-aware
memory allocator [COLORIS – PACT'14]

•  Cache occupancy prediction based on h/w
performance counters
– E' = E + (1-E/C) * ml – E/C * mo

– Enhanced with hits + misses
[Book Chapter, OSR'11, PACT'10]

21

Linux Front End
•  For low criticality legacy services
•  Based on Puppy Linux 3.8.0
•  Runs entirely out of RAM including root filesystem
•  Low-cost paravirtualization

–  less than 100 lines
–  Restrict observable memory
–  Adjust DMA offsets

•  Grant access to VGA framebuffer + GPU
•  Quest native SBs tunnel terminal I/O to Linux via

shared memory using special drivers

22

Quest-V Linux Screenshot

No VMX or EPT flags

1 CPU + 512 MB

23

Quest-V Performance

100 Million Page Faults 1 Million fork-exec-exit Calls

Quest-V Performance

24

Quest-V Summary
•  Separation kernel built from scratch

–  Distributed system on a chip
–  Uses (optional) h/w virtualization to partition

resources into sandboxes
–  Protected comms channels b/w sandboxes

•  Sandboxes can have different criticalities
–  Linux front-end for less critical legacy services

•  Sandboxes responsible for local resource
management
–  avoids monitor involvement

25

Proposed Work

•  Port of Quest to Intel Galileo [Done]
•  Qduino API [Ongoing]
•  Port of Quest(-V) to Intel

Edison and Minnowboard Max [Started]
•  IoT Applications: 3D printing /

manufacturing, robotics, secure
home automation, etc [To Do]

•  (Secure) Information Flow Analysis [To Do]
•  Real-time Communication [Ongoing]

26

Quest on Galileo

•  Porting Quest to the Galileo board:
– Added multiboot support back to 32-bit

GRUB EFI (GRUB Legacy)
– Developed I2C, SPI controller drivers
– Developed Cypress GPIO Expander and

AD7298 ADC drivers

•  Original Arduino API Support
•  New real-time multithreaded Qduino API

27

Qduino

•  Qduino – Enhanced Arduino API for Quest
– Parallel and predictable loop execution
– Real-time communication b/w loops
– Predictable and efficient interrupt

management
– Real-time event delivery
– Simplifies multithreaded real-time

programming

28

Qduino Multi-loop Example
•  Multiple loop sketch example:

 loop (1, 40, 100) { /* VCPU: C = 40, T = 100 */
 digitalWrite (LED1, HIGH);
 ... /* Blink LED1 */

 }
 loop (2, 20, 100) { /* VCPU: C = 20, T = 100 */
 analogWrite (LED2, brightness);
 ... /* Change brightness of LED2 */
 }

 setup () {
 pinMode (LED1, OUTPUT);
 pinMode (LED2, OUTPUT);
 }

29

Qduino Organization
Sketch

Kernel
User

... Quest
Native
App

Quest
Native
App

Galileo

QDuino Libs

loop1 loopN
...

x86 SoC

Edison Minnowboard

VCPU
Scheduler

GPIO Driver

SPI Driver

I2C Driver

30

Qduino New APIs

Function Signatures Category

l  loop(loop_id, C, T) Structure

l  interruptsVcpu(C,T)
l  attachInterruptVcpu(pin,ISR,mode,C,T)

Interrupt

l  spinlockInit(lock)
l  spinlockLock(lock)
l  spinlockUnlock(lock)

Spinlock

l  channelWrite(channel,item)
l  item channelRead(channel)

Four-slot

l  ringbufInit(buffer,size)
l  ringbufWrite(buffer,item)
l  ringbufRead(buffer,item)

Ring buffer

31

Qduino Event Handling

Main
VCPU

Scheduler

Main
VCPU

Sketch

IO
VCPU

Handler

GPIO Driver

Pin State
Monitoring

CPU Core(s) GPIO Expander

Kernel

User

Real Time
Event attachInterrupt

pthread_create

32

Qduino Temporal Isolation

0

10

20

30

40

50

60

100T 200T 300T 400T 500T

C
ou

nt
er

 (x
10

4)

Time (Periods)

(50,100),2
(50,100),4

(70,100),2
(70,100),4

(90,100),2
(90,100),4

Linux,2
Linux,4

l  Foreground loop increments
 counter during loop period

l  2-4 background loops act

 as potential interference,
consuming remaining
 CPU capacity

l  No temporal isolation or

 timing guarantees w/
 Linux

33

Possible Use Cases

l  Mixed-criticality automotive system
l  Secure home automation
l  3D printer controller
l  IoT interoperability sandboxing

l  Secure virtual networks of untrusted
devices

l  Many others...

34

Mixed-Criticality
Automotive System

Real-time
Command &

Control

Real-time
Sensor Data
Processing

Memory

Monitor

...

...

Core(s) Core(s) Core(s)

Display &
External
Comms

Comms

Monitor Monitor

Memory Memory

I/O Devices
e.g. Motors,

Servos

I/O Devices
e.g. Cameras,

LIDAR

I/O Devices
e.g. GPU,

NIC

H
ar

dw
ar

e
K

er
ne

l

VCPU(s) VCPU(s)

U
se

r

More Critical Less Critical

Sandbox 1 Sandbox 2 Sandbox M ...

V2V, V2I
Infotainment INTERNET

Sandboxes on
multicore
platform replace
CAN bus nodes

35

Secure Home Automation

Real-time
Sensor Data
Processing

Linux

...

...

Core(s) Core(s)

Web Server /
App “Plugins”

Comms

Monitor Monitor

Memory Memory

I/O Devices
e.g. Cameras,
CO+Fire Alarm

I/O Devices
e.g. NIC

H
ar

dw
ar

e

K
er

ne
l

VCPU(s)

U
se

r

More Secure Less Secure

Sandbox 1 Sandbox M

INTERNET

 3rd Party untrusted
services

36

Secure Home Automation

l  Home equipped w/ cameras, alarms, window/
door actuators, HVAC + appliance controls

l  “Home owner” sandbox(es) for localized control
of data, sensors + actuators

l  e.g., smartphone çè appliance control
l  3rd party sandbox(es) for plugin app services

l  e.g., Emergency (police/fire/ambulance)
callouts

37

Secure Home Automation

l  Challenges:
l  Prevent homeowner generating false

alarms
l  Apply penalties from service provider

l  Prevent 3rd parties accessing sensitive
homeowner data (e.g., raw camera feeds)

l  Enforce secure inter-sandbox comms
l  Require services across sandboxes to be

digitally signed by separate entities (non-
collusion)

38

Secure Home Automation
l  External system interface via public Internet only

accesses 3rd party (untrusted) sandboxes
l  Internal system interface via home network accesses

trusted sandboxes

l  Replicated monitors observe suspicious activity

l  e.g., high frequency access to “root” mode
(monitor) via VM-exits

l  Monitors akin to security guards
l  An attacker would have to compromise all such

guards to prevent system recovery

39

Edison 3D Printer Controller

Real-time
Sensing &

Control

Real-time
Job

Scheduling

Linux

Memory

Monitor

Core(s) Core(s) Core(s)

Web Server /
Verification

Comms

Monitor Monitor

Memory Memory

I/O Devices
e.g. Motors,

Extruder,
Temp Sensors

I/O Devices
e.g. Flash
Storage

I/O Devices
e.g. NIC

H
ar

dw
ar

e
K

er
ne

l

VCPU(s) VCPU(s)

U
se

r

U
nt

ru
st

ed

Tr
us

te
d

Sandbox 1 Sandbox 2 Sandbox 3

D
U

A
L

C
O

R
E

AT
O

M
 S

IL
VE

R
M

O
N

T

Q
U

A
R

K
 M

C
U

IN
TE

R
N

ET

40

Distributed Virtual
Manufacturing

l  Extend 3D print service to distributed “customizable”
one-off manufacturing

l  A “Kinkos” 3D printing/manufacturing service
l  Submit requests via web interface

l  Need to verify correctness
l  Verified requests spooled for processing
l  Use real-time comms + Qduino for real-time machine

control
l  Possible to form “job shop” style assembly lines

41

IoT Interoperability Sandboxing

l  Collaborative open-source frameworks
l  IoTivity (Open Interconnect Consortium:

Intel, Samsung, Cisco, GE + many others)
l  Alljoyn (Allseen Alliance), 160+ partners
l  Communication across different transport

media, OSes, and protocols
l  Microsoft Device System Bridges (DSBs)

for Z-wave and BACnet
l  Google's Brillo Weave, Apple Home Kit

42

IoT Interoperability Sandboxing

l  Use Quest-V sandboxes to isolate IoTivity /
Alljoyn software stacks

l  Promote secure isolation of networks of
devices

l  Use replicated / distributed monitor network to
identify “unusual” (potentially malicious)
network activity

43

What Next?
l  Continue port of Quest(-V) to Edison and

Minnowboard Max
l  Develop 3D printer controller

l  Investigate techniques to quarantine and verify 3rd
party service requests before processing

l  Develop autonomous vehicle system
l  Look at real-time control in presence of injected

faults
l  Home automation prototype

l  Provide secure services for 3rd party plugins

44

Conclusions

l  Quest-V uses one monitor per sandbox
l  Heightens security & safety
l  Monitors are small

l  Not needed for resource multiplexing

l  Can potentially exploit this to build new
security models

l  Monitors like multiple system guards

l  Chip-level distributed system
l  Real-time inter-sandbox communication
l  Isolation of 3rd party services

45

The Quest Team

•  Richard West
•  Ye Li
•  Eric Missimer
•  Matt Danish
•  Gary Wong
•  Ying Ye
•  Zhuoqun Cheng

The Quest Team

