
Quest(-V): A Secure and Predictable
System for Smart IoT Devices

Richard West

richwest@cs.bu.edu

Computer Science

2

Emerging “Smart” Devices
Need an OS

● Multiple cores
● GPIOs
● PWM
● Virtualization support
● Integrated Graphics
● Various bus interfaces
● Timing + data

security
requirements

3

Recap: Quest-V Separation Kernel

Sandbox M

Monitor

Sandbox 1

VCPU

. . .

Monitor

Sandbox 2

VCPU VCPU

Monitor

Communication
+

Migration

VCPU VCPU
Sandbox

Address
Space

ThreadIO Devices IO Devices IO Devices

PCPU(s) PCPU(s) PCPU(s)

Exploit VT-x/EPT capabilities on Intel multicore processors for efficient sandboxing

4

VCPUs in Quest(-V)

Main VCPUs

I/O VCPUs

Threads

PCPUs (Cores)

Address
 Space

● Temporal isolation between VCPUs
● Guarantee budget C every T cycles (or time units)
● I/O VCPUs use simpler bandwidth preservation

scheme
● Reduces timer reprogramming overheads for

short-lived interrupts

5

Proposed Work

• Implement and study Quest(-V) on Intel SBCs

• Port of Quest to Intel Galileo [Done]

• Port of Quest(-V) to Intel Edison and
Minnowboard Max [Quest is working]

• Qduino API [Version 1 complete]

– Now working on QduinoMC [In progress]

• IoT “smart” devices/apps: 3D printing /
manufacturing, robotics, secure home
automation, UAVs, etc [In progress]

6

Smart Devices
• Dumb device?

– Requires remote inputs to function

– No autonomy

• Smart device?

– Ability to make own decisions, at least partly, based on sensory
inputs that determine the state of the environment and the
device itself

• e.g., Smart 3D printer

– Spool requests via webserver

– High level (STL file) requests rather than g-codes

– Local slicer engine & g-code parser

– Local verifier for “correctness” of requests

– Possible communication/coordination with other smart devices

7

Developments 1/2

● Built 3D printer controller circuit using:
– MinnowMax/Turbot
– RAMPS 1.4
– ADS7828 I2C Analog-to-Digital Converter
– 4 x 4988 Pololu Stepper Motor drivers
– PNP/NPN transistors, resistors etc for level shifting

● Tested on a Printrbot Simple Metal
– See: www.cs.bu.edu/fac/richwest/smartprint3d.php

http://www.cs.bu.edu/fac/richwest/smartprint3d.php

8

Developments 2/2

● Ported Marlin 3D printer firmware to Yocto Linux
– Used Intel IoT devkit libmraa library to interface w/

I2C ADC and GPIOs via sysfs

● Ported Quest to MinnowMax and Turbot
– Developed test scenarios for 3D print objects
– Details to follow

● Papers
– Qduino – RTSS'15
– Quest-V – ACM TOCS

9

Marlin on Arduino

● One loop and two timer interrupt handlers
– Loop: read G-code commands, translate them to

motor movements and fan/heater operations
– A high frequency, sporadic timer interrupt to drive

motors (up to 10 Khz)
• Trapezoidal speed control

– A low frequency, periodic timer interrupt to read
extruder temperature (1 KHz)

10

Real-Time Challenges

● Nanosleep timing for stepper motor control
● Matching extrusion rate with bed motion

● Let:
– B = gear pitch (e.g., 2mm for GT2 pulley)
– C = gear tooth count (e.g., 20)
– S = stepper motor steps per revolution (e.g., 200)
– = microstepping (e.g., 16 for 4988 driver)
– V = feedrate in given axis (e.g., 125mm/s)

● GPIO stepper pulse frequency, F:

– F = (V * S * / (B * C) = 10kHz using above params

– Requires 100 microsecond pulse timing

– Won't work with Linux scheduling accuracy!

11

Marlin on Linux/MinnowBoard Max

● Ported Marlin to a Linux program
– Replaced hardware timer interrupts with high

resolution software timers
• Linux hrtimer-based nanosleep

– Replaced architecture-dependent I/O operations
with mraa library functions

– Cons: approach fails to utilize underlying
hardware parallelism

12

Marlin on Linux

Read Gcode

Translate
coordinates

 to steps

Use
temperature
to do PID

control

Extract steps
from the block and
 pulse the steppers

Buffer: each block
contains steps for one
command File system

Motors

Read temperature
and adjust

Fan & heater

Temperature

PID output

Fan & Heater

13

Quest on MinnowBoard Max

●Ported Quest to MinnowBoard Max
– Added I2C Driver
– Added GPIO Driver
– Updated ACPI firmware to latest version

● Implemented partial mraa library on Quest
– I2C Module (read/write bytes on I2C bus)
– GPIO Module (get/set value+direction of GPIOs)

● Qduino Framework

14

Marlin on Quest/MinnowMax

●Three Qduino loops
– Loop 1: command reading and path planning

• Calculate & buffer steps+direction along each axis

– Loop 2: motor driving

• Smallest period and largest CPU utilization

– Loop 3: temperature reading & adjustment
• Largest period and smallest utilization

15

Marlin on Quest/MinnowMax

Quest
Kernel

VCPUVCPU VCPU

Qduino
Library

G-code translation
Temperature PID

control

Loop 1
Extract steps

from the block and
 pulse the steppers

Read temperature
and adjust
fan/heater

Loop 2 Loop 3

buffer

Temperature

PID output

MinnowBoard
Core 1 Core 2

16

Qduino

• Qduino – Enhanced Arduino API for Quest

– Parallel and predictable loop execution

– Real-time communication b/w loops

– Predictable and efficient interrupt management

– Real-time event delivery

– Backward compatible with Arduino API

– Simplifies multithreaded real-time programming

17

Interleaved Sketches

//Sketch 2: toggle pin 10 every 3s
int val10 = 0;

void setup() {
pinMode(10, OUTPUT);

}

void loop() {
val10 = !val10; //flip the output

value
digitalWrite(10, val10);
delay(3000); //delay 3s

}

// Sketch 1: toggle GPIO pin 9
// every 2s
int val9 = 0;

void setup() {
pinMode(9, OUTPUT);

}

void loop() {
val9 = !val9; //flip the output value
digitalWrite(9, val9);
delay(2000); //delay 2s

}

How do you merge the sketches and
keep the correct delays?

18

Interleaved Sketches

int val9, val10 = 0;
int next_flip9, next_flip10 = 0;

void setup() {
pinMode(9, OUTPUT);
pinMode(10, OUTPUT);

}
void loop() {

if (millis() >= next_flip9) {
val9 = !val9; //flip the output value
digitalWrite(9, val9);
next_flip9 += 2000;

}
if (millis() >= next_flip10) {

val10 = !val10; //flip the output value
digitalWrite(10, val10);
next_flip10 += 3000;

}
}

● Do scheduling by
hand

● Inefficient

● Hard to scale

19

Qduino Multi-threaded Sketch
int val9, val10 = 0;
int C = 500, T = 1000;

void setup() {
pinMode(9, OUTPUT);
pinMode(10, OUTPUT);

}

void loop(1, C, T) {
val9 = !val9; // flip the output value
digitalWrite(9, val9);
delay(2000);

}

void loop(2, C, T) {
val10 = !val10; // flip the output value
digitalWrite(10, val10);
delay(3000);

}

20

Qduino Organization

Sketch

Kernel

User

...Quest
Native
App

Quest
Native
App

Galileo

QDuino Libs

loop1 loopN
...

x86 SoC

Edison Minnowboard

GPIO Driver

SPI Driver

I2C Driver

21

Qduino New APIs
Function Signatures Category

● loop(loop_id, C, T) Structure

● interruptsVcpu(C,T) ← I/O VCPU
● attachInterruptVcpu(pin,ISR,mode,C,T) ←Main VCPU

Interrupt

● spinlockInit(lock)
● spinlockLock(lock)
● spinlockUnlock(lock)

Spinlock

● channelWrite(channel,item)
● item channelRead(channel)

Four-slot

● ringbufInit(buffer,size)
● ringbufWrite(buffer,item)
● ringbufRead(buffer,item)

Ring buffer

22

Qduino Event Handling

 Scheduler

Main
VCPU

Main
VCPU

Sketch
Thread

I/O
VCPU

User Interrupt
Handler

Interrupt
Bottom

Half

CPU Core(s) GPIO Expander

Kernel

User

Wakeup

attachInterruptVcpu

interrupt return

GPIO Driver

Hardware
Interrupt

23

Qduino Temporal Isolation

0

10

20

30

40

50

60

100T 200T 300T 400T 500T

C
ou

nt
er

 (
x1

04)

Time (Periods)

(50,100),2
(50,100),4

(70,100),2
(70,100),4

(90,100),2
(90,100),4

Linux,2
Linux,4 ● Foreground loop increments

counter during loop period

● 2-4 background loops act
as potential interference,
consuming remaining
CPU capacity

● No temporal isolation or
timing guarantees w/
Linux

24

Qduino Rover

● Autonomous Vehicle
● Collision avoidance using ultrasonic

sensor

● Two tasks:
● A sensing task detects distance to an

obstacle – delay(200)
● An actuation task controls the motors -

delay(100)

25

Rover Performance

● Measure the time interval
between two consecutive calls to
the motor actuation code

● Clanton Linux single loop
● delay from both sensing

and actuation task
● Qduino multi-loop

● No delay from sensing
loop

● No delay from sensor
timeout

● The shorter the worst case
time interval, the faster the
vehicle can drive

0

100

200

300

400

500

600

700

800

10 20 30 40 50 60 70 80 90 100

T
im

e
(m

ill
is

ec
on

ds
)

Sample #

Clanton Single-loop
Qduino Multi-loop

Qduino Single-loop
Clanton Interrupt

26

RacerX Autonomous Vehicle

27

Edison 3D Printer Controller

Real-time
Sensing &

Control

Real-time
Sensing &

Control

Real-time
Job

Scheduling

Real-time
Job

Scheduling

LinuxLinux

MemoryMemory

MonitorMonitor

Core(s)Core(s) Core(s)Core(s) Core(s)Core(s)

Web Server /
Verification

Web Server /
Verification

Comms

MonitorMonitor MonitorMonitor

MemoryMemory MemoryMemory

I/O Devices
e.g. Motors,

Extruder,
Temp Sensors

I/O Devices
e.g. Motors,

Extruder,
Temp Sensors

I/O Devices
e.g. Flash

Storage

I/O Devices
e.g. Flash

Storage

I/O Devices
e.g. NIC

I/O Devices
e.g. NIC

H
ar

dw
ar

e
K

er
ne

l

VCPU(s)VCPU(s) VCPU(s)VCPU(s)

U
se

r

U
nt

ru
st

ed
T

ru
st

ed

Sandbox 1 Sandbox 2 Sandbox 3

D
U

A
L

 C
O

R
E

A
T

O
M

 S
IL

V
E

R
M

O
N

T

Q
U

A
R

K
 M

C
U

IN
T

E
R

N
E

T

28

MinnowMax 3D Printer Controller

http://www.cs.bu.edu/fac/richwest/smartprint3d.php

29

MinnowMax 3D Printer Controller

7805

GND

7404

1N47281K

GND

Z_STOP

+12V

Z_STOP Sensor

5V
REG

1
2
3
4
5
6
7

14
13
12
11
10
9
8GND

CH0

CH1

CH2

CH3

CH4

CH5

CH6

CH7

NC

SCL

SDA

REF

VCC

ADS7828 I2C-ADC
THERM0 +5V

+5V

Y_ENABLE

Z_ENABLE

RAMPS 1.4

4988 4988

4988

4988

A0
A1
A0

A0A2

X_STEP
X_DIR

A0
A7
A6

A0A8

Y_STEP
Y_DIR

A
0

D
46

Z
_

S
T

E
P

A
0

D
48

Z
_

D
IR

A
0

D
38

X
_

E
N

A
B

L
E

A
0

D
26

E
0

_
S

T
E

P
A

0
D

28
E

0
_

D
IR

A
0

D
24

E
0

_
E

N
A

B
L

E

D3
X_STOP

D15
Y_STOP_max

HEAT_IN

D9
FAN_IN

D10

X

Y

Z

E0

-
- s

s Y_STOP_max

G
N

D

+
1

2
V

+- -+

D9 D10

THERM0
A0A13 X_STOP Switch

T0

Thermistor

1
3
5
7
9

11
13
15
17
19
21
23
25

2
4
6
8

10
12
14
16
18
20
22
24
26

GND GND

+5V +3.3V

SCL

SDA

PWM0

FAN

HEATER X_STEP

SPI_MISO

SPI_MOSI

Z_ENABLE

E0_STEP

E0_DIR

X_STOP

Y_STOP_max

Z_STOP E0_ENABLE

Z_DIR

Z_STEP

Y_ENABLE

Y_DIR

Y_STEP

X_ENABLE

X_DIR

MINNOWBOARD MAX

2N3906

2N3904

1K

GND

4.7K

+5V

GND

+3.3V

4.7K

FAN
 or
HEATER

FAN_IN (D9)
or
HEAT_IN (D10)

Circuit x2

30

Future Directions

• QduinoMC

– API support to map loops to cores

– Load balancing via MARACAS [RTSS'16] framework

– Pub/sub communications between Quest-V
sandboxes

• e.g., Linux ↔ Quest

• QROS

– Legacy Linux ROS nodes communicate w/ time-
critical Quest services

31

Future Directions

• Smart Devices / Apps

– Use Intel SBCs/SoCs (Up board, Edison, MinnowMax,
Celeron Braswell, Skylake U, Kaby/Apollo Lake NUCs)

– Energy + CPU + GPU + latency-sensitive I/O requirements

– RacerX autonomous rover

– Smart drones

• Configurable mission objectives (indoor / outdoor)

• Search & rescue, surveillance, package delivery, SLAM, target
tracking

• Real-time adaptive control (e.g. in windy conditions)

– Biokinematic / body sensor network (Edison/Curie)

32

Future Directions

• Quest-V on Edison, MinnowMax, Up board,
other Intel SBCs/SoCs

– Mixed-criticality: Linux + Quest

– Mixed-criticality scheduling (ECRTS'16)

– TMR fault tolerance using replicated sandboxes

33

MARACAS Framework

• Quest memory+cache-aware scheduling
framework

– Supports VCPU load balancing to share
background cycles across cores

• Background cycles: 1-C/T

• Uses h/w perf counters to identify bus congestion

• Congestion? Throttle select cores with available
background cycles

• Reduces memory/bus congestion while guaranteeing
VCPU foreground timing requirements

34

MARACAS Framework

• Avg memory request latency = Occupancy / Requests

• Occupancy = UNC_ARB_TRK_OCCUPANCY.ALL

– Cycles weighted by queued memory requests

• Requests = UNC_ARB_TRK_REQUEST.ALL

– # of requests to memory controller request queue

• If latency exceeds threshold apply weighted throttling
to cores

• Use COLORIS [PACT'14] dynamic page coloring for
cache isolation

35

Lessons Learned

• Intel SBCs for “smart” devices

– Multiple cores (good for multi-tasking)

– VT-x capabilities for
security/isolation/fault tolerance

– GPIOs for interfacing sensors + actuators

– PWMs for motor & servo control

– Serial interfaces for device communication

– Shared caches + memory bus affects temporal isolation
(not good for real-time!)

• ARINC 653 requires space-time isolation b/w cores

36

Wish List 1/2

• Intel SBCs for “smart” devices

– Temporal isolation b/w cores

• TI ARM PRU-like features for dedicated core(s)

• Quark offers something close on the Edison

• Support for cache + bus isolation (way partitioning, page coloring, TDMA bus
management?)

– Better GPU support

• Needed for vision+AI+deep learning tasks

• Georgia Tech AutoRally vehicle uses Mini-ITX + Nvidia GTX 750 Ti PCIe
card, which is too power-hungry and heavy

– Low-wattage “PC” with GPIOs, serial buses, GPU ala Nvidia Jetson
(but better!)

• e.g., “smart” drone has energy and weight restrictions

37

Wish List 2/2

• Intel SBCs for “smart” devices

– Simplified VT-x support

• Basic memory partitioning b/w sandboxes (no EPT walking)

• Like segmentation with simplified VMCS

• Simplified IOMMU w/ DMA to sandbox physical offset address

– Tagged memory for confidentiality + integrity on secure
information flows between sandboxes

– H/W-assisted port-based I/O interposition

• To prevent sandbox discovery/access to unauthorized devices

38

The End

? || /* */

39

Extra Slides

40

Goals

• Develop high-confidence (embedded) systems
– Mixed criticalities: timeliness and safety

• Predictable

• Secure

• Safe / Fault tolerant

• Efficient

41

Target Applications

• Healthcare
• Avionics
• Automotive
• Factory automation
• Robotics
• Space exploration
• Internet-of-Things (IoT)
• Industry 4.0 smart factories
• Smart drones, other devices

42

Internet of Things

● Number of Internet-connected devices

> 12.5 billion in 2010

● World population > 7 billion (2015)

● Cisco predicts 50 billion Internet devices by

2020

● Challenges:

● Secure management of data
● Reliable + predictable data processing & exchange
● Device interoperability

43

Background: Quest Real-Time OS

• Initially a “small” RTOS

• ~30KB ROM image for uniprocessor version

• Page-based address spaces

• Threads

• Dual-mode kernel-user separation

• Real-time Virtual CPU (VCPU) Scheduling

• Later SMP support

• LAPIC timing

FreeRTOS,
uC/OS-II etc

Quest
Linux, Windows,

Mac OS X etc

44

From Quest to Quest-V

• Quest-V for multi-/many-core processors
– Distributed system on a chip

– Time as a first-class resource

• Cycle-accurate time accountability

– Separate sandbox kernels for system components

– Memory isolation using h/w-assisted memory virtualization

– Also CPU, I/O, cache partitioning

• Focus on safety, efficiency, predictability + security

45

Related Work

• Existing virtualized solutions for resource
partitioning

– Wind River Hypervisor, XtratuM, PikeOS,

Mentor Graphics Hypervisor

– Xen, Oracle PDOMs, IBM LPARs

– Muen, (Siemens) Jailhouse

46

SS Scheduling

• Model periodic tasks
– Each SS has a pair (C,T) s.t. a server is

guaranteed C CPU cycles every period of T
cycles when runnable
• Guarantee applied at foreground priority
• background priority when budget depleted

– Rate-Monotonic Scheduling theory applies

47

PIBS Scheduling

• IO VCPUs have utilization factor, UV,IO

• IO VCPUs inherit priorities of tasks (or Main
VCPUs) associated with IO events
– Currently, priorities are (T) for corresponding

Main VCPU
– IO VCPU budget is limited to:
● TV,main* UV,IO for period TV,main

48

PIBS Scheduling

• IO VCPUs have eligibility times, when they
can execute

• te = t + Cactual / UV,IO

– t = start of latest execution

– t >= previous eligibility time

49

Example VCPU ScheduleExample SS-Only Schedule

τ1 Main Application
Sporadic Server

C=8 T=16

0 8 16 24 32

0 8 16 24 32

0 8 16 24 32

τ2 I/O Interrupt BH
Sporadic Server

C=4 T=16

Execution

I/O Event
Initiated Interrupts Occur

Missed
Deadline

8,0 8,16

4,0

4,9

3,9 1,25

3,11 1,25

2,11 1,25 1,27

time

2,25 1,27 1,29

2,27 1,29 1,41

50

Example VCPU ScheduleExample SS+PIBS Schedule

τ1 Main Application
Sporadic Server

C=8 T=16

0 8 16 24 32

0 8 16 24 32

0 8 16 24 32

τ2 I/O Interrupt BH
PIBS

U=0.25

Execution

I/O Event
Initiated Interrupts Occur

8,0 8,16

time

8,32

4,0
4,9

4,13
4,25

No Missed
Deadline

51

Utilization Bound Test

• Sandbox with 1 PCPU, n Main VCPUs, and
m I/O VCPUs
– Ci = Budget Capacity of Vi

– Ti = Replenishment Period of Vi

– Main VCPU, Vi

– Uj = Utilization factor for I/O VCPU, Vj

∑
i=0

n−1
Ci
Ti

+ ∑
j=0

m−1

(2−Uj)⋅Uj≤n⋅(n
√2−1)

52

Cache Partitioning

• Shared caches controlled using color-aware
memory allocator [COLORIS – PACT'14]

• Cache occupancy prediction based on h/w
performance counters

– E' = E + (1-E/C) * ml – E/C * mo

– Enhanced with hits + misses

[Book Chapter, OSR'11, PACT'10]

● 5 patents (3 awarded so far) w/ VMware

	Quest-V – a Virtualized Multikernel
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	SS Scheduling
	PIBS Scheduling
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

