
Jumpstart: Fast Critical Service
Resumption for a Partitioning
Hypervisor in Embedded Systems

Ahmad Golchin and Richard West

Boston University

1

2

DriveOS

Quest RTOS
Critical Vehicle

Control
Tasks

Linux
User IF

(IC, IVI, etc.)

Inter-sandbox

Device I/O

ADAS Sensors

Powertrain,
Chassis and
Body Controllers

Vehicle Management
System

Quest-V

Why PC-class Embedded Systems?

Advantages:

● Higher Processing Capabilities

● Abundant Resources

● H/W Virtualization Technologies

● Smaller Footprint, Lower Cost, etc.

Disadvantages:

● Difficult to Provide Spatial/Temporal Isolation, etc.

● Long Boot Delays

3

Consolidation of
100+ ECUs into

1 Central System

Quest RTOS

● Real-time OS for multicore x86 platforms
○ UP2, DX1100, Intel Aero, Skull Canyon, etc.

● Dual-mode monolithic kernel
● Unified task and I/O scheduling through

time-budgeted virtual CPUs (VCPUs)
○ Main VCPUs for task scheduling
○ I/O VCPUs for interrupt bottom-half scheduling

● More info: www.questos.org

4

5

The Quest-V Partitioning Hypervisor

● RTOS boot-strapped
● Support for Linux SBs
● Static partitioning:

○ CPUs, RAM, I/O

● Shared memory ISBC
● Mixed-criticality

○ Temporal & spatial
separation

Boot Delay of DriveOS

Delay Components

● Firmware ~ 7 seconds

● Bootloader ~ 1.4 seconds

● Virtualization ~ 4.7 seconds

● RTOS Startup ~ 3.5 seconds

● Linux Startup ~ 11.3 seconds

Objective < 1 second for VMS

6

~ 24.5 seconds

Boot Delay of DriveOS

● Firmware and Bootloader
○ At least 2.5 kernels between the Guest and IA-PC H/W (Minich et al)

■ UEFI Firmware

■ Intel Management Engine (IME) running Minix

■ Intel System Management Mode (SMM)

○ Existing solutions: NERF, Coreboot, Intel Slim

■ Reduced F/W, ROM-hosted OS images, etc.

● Hypervisor
○ Architectural setup, Resource Partitioning, etc.

● Guest Kernel and Drivers
● User-space Services

7

Issues:
Portability
Stage Coverage

UEFI vs Intel Slim Bootloader

8

Power Management

● ACPI(CA)
● PCI-PM
● Dynamic vs Static
● Virtual vs Real

9

Feasibility of a PM Solution

10

2.643 W2.473 W

Jumpstart

Framework

● Quest/Linux Kernel Modules
● Quest-V Monitor Module

Function

● Turns System-wide
Shutdown/Boot into ACPI S3
Suspend/Resume

Achieves

● ~600ms Quest
● ~1050ms Linux

11

Jumpstart Power Management

Challenges

● Unauthorized guest access to the system’s Embedded Controller
○ I/O Ports & ACPI memory

● Orchestration of system-wide power transition
○ Power Master & Inter-sandbox IPC

● Resumption of critical real-time tasks
○ Idempotent vs Resumption

● Resumption of critical real-time sandbox with lower latency
○ Shared boot logic of Quest and Quest-V

Requirements

● ACPI-compliance platform
● Support of ACPI S3 natively by the guest

12

Control Flow

User-space

Kernel

Hypervisor

ISB IPC

Synch. Point

13

Save/Rstr Guest

Control Flow

Kernel

Hypervisor

H/W & F/W

14

Resumption Delay of DriveOS with Jumpstart

15

Delay Components

● Firmware ~ 500 ms

● Quest-V ~ 30 ms

● Quest Guest ~ 66 ms

● Linux Guest ~ 510 ms

 Quest : 600 ms

 Linux : 1040 ms

Jumpstart vs Standalone Quest/Linux

16

Conclusions and Future Work

- Why Jumpstart?
- Similar power consumption of Suspend-to-RAM and Shutdown

- Higher degree of portability

- Faster parallel resumption of partitioned guests w.r.t. Standalone

- Complementary to firmware optimizations

- Future Direction
- Fast non-volatile memories and ACPI S4

17

Thank you!

Q & A

18

