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= General purpose systems have limitations:

= Jll-equipped to meet service requirements of
complex real-time applications

= Aim to extend COTS systems to:
= better meet the service needs of applications

= provide finer-grained service management than
at user-level

= adapt system behavior to compensate for
changes in resource needs and availability
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= Linux Dionisys
= Distributed system for run-time service
adaptation
= Allow real-time applications to specify:

= how, when & where actual service should be
adapted to meet required / improved QoS

= MEDEA: Mechanism for Event DrivEn Adaptation
» SafeX: Safe kernel eXtensions



Example System Usage

= Scalable web servers / farms
= Adaptive load-balancing, caching

= Adaptable protocols
= For flow, error, rate control etc

= Coordinated resource management
= e.g., Tradeoffs in CPU versus bandwidth usage



Linux Dionisys Components /7 .%

= Service extensions:
= Service managers (SMs)
= Monitors - influence when to adapt
= Handlers - influence how to adapt

= MEDEA event channel subsystem

= Transport events between SMs, where
adaptation is needed

= SafeX daemons
= Nameserver, library (API)
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MEDEA
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= Provides “event-channels” for communication
= One source (a monitor)
= Potentially many destinations (handlers)
= Events are asynchronous but may be cascaded
= Provides cross-host, cross-address-space &
cross-protection-domain communication
= e.g., kernel upcalls

= Uses "mailbox” abstractions:
= One outbox for every monitor
= One inbox for every service manager
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= MEDEA provides an API for unrestricted
event-driven communication



MEDEA Features

= Can batch or select single events for delivery
= Supports “fast” syscalls that do not block &
real-time upcalls

= Coordinated user-level event delivery and
handling

= Prioritized event delivery

= Can dispatch (receive) events from (into)
mailboxes according to an ordering policy

= Real-time event delivery is possible



SafeX
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= Allows app-specific service extensions to be
dynamically-linked into kernel address space

= Can deploy code on remote hosts

= Provides compile- and run-time support to:
= Enforce bounded execution of extensions
= Guarantee service isolation (using “guard” fns)
» Maintain system integrity



SafeX Features
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= Extensions written in Popcorn & compiled
into Typed Assembly Language (TAL)

= Memory protection:

= Prevents forging pointers to arbitrary addresses
= Prevents de-allocation of memory until safe

= CPU protection:

= Requires resource reservation for extensions
= Aborts extensions exceeding reservations

= [nterfaces to synchronization objec
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A Kernel Service Manager
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Experimental Scenario

= CPU service manager monitors CPU utilization
and adapts process timeslices

= Timeslices adjusted by PID function of target &
actual CPU usage

= Monitoring performed every 10mS

= Kernel monitoring functions invoked via timer
queue

= User-level approach periodically reads
/proc/pid/stat
= Adapts service via kill() syscalls



Monitors and Handlers s
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void monitor () {

actual_cpu = get_attribute (“actual_cpu”);
target_cpu = get_attribute (“target_cpu”);
raise_event ("Error”, target_cpu - actual_cpu);

}

void handler () {
e[n] = ev.value; // nth sampled error

/* Update timeslice adjustment by PID fn of error */
u[n] = (Kp+Kd+Ki).e[n] - Kd.e[n-1] + u[n-1];

set_attribute (“timeslice-adjustment”, u[n]);

}



Guard Functions s
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// Check the QoS safe updates to a process’ timeslice

default_timeslice = target_cpu;

guard (attribute, value):

if (attribute == “timeslice-adjustment”)

if (value in range [0, 0.25*default_timeslice])
if (value is QoS safe)

timeslice = target_cpu + value;
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3 CPU-bound tasks w/ 30, 20 & 10% target CPU shares

= |ess service oscillation in left graph for kernel service
management

= Transient overloads do not affect service guarantees
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Finer-grained kernel service management is capable of
sustaining 20% CPU utilization for 3 process (left graph)

User-level management (right graph) cannot meet needs of
process with target 20% CPU utilization
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Linux Dionisys supports service extensions to
customize system for app-specific needs

SafeX verifies safety of extensions

= Extensions may be dynamically-linked into local & remote
address spaces

MEDEA provides event-based communication
mechanism that triggers service adaptations

Overall system improves service to applications



