Linux Dionisys: A Kernel-Based
Approach to QoS Management

Richard West & Jason Gloudon

Operating Systems & Services Group

Motivation (7 8

i e
Computer Science

= General purpose systems have limitations:

= Jll-equipped to meet service requirements of
complex real-time applications

= Aim to extend COTS systems to:
= better meet the service needs of applications

= provide finer-grained service management than
at user-level

= adapt system behavior to compensate for
changes in resource needs and availability

4 Approach FIvn

Computer Science

= Linux Dionisys
= Distributed system for run-time service
adaptation
= Allow real-time applications to specify:

= how, when & where actual service should be
adapted to meet required / improved QoS

= MEDEA: Mechanism for Event DrivEn Adaptation
» SafeX: Safe kernel eXtensions

Example System Usage

= Scalable web servers / farms
= Adaptive load-balancing, caching

= Adaptable protocols
= For flow, error, rate control etc

= Coordinated resource management
= e.g., Tradeoffs in CPU versus bandwidth usage

Linux Dionisys Components /7 .%

= Service extensions:
= Service managers (SMs)
= Monitors - influence when to adapt
= Handlers - influence how to adapt

= MEDEA event channel subsystem

= Transport events between SMs, where
adaptation is needed

= SafeX daemons
= Nameserver, library (API)

Linux Dionisys Overview

Daemon

RPCs

Host 1

Dionisys
Library

SM1

Nameserver

Lookup /
Translation

SM 2
(eg., Network)

Daemon

Dionisys
Library

SMm
(eg., Buffer)

User

Kernel
Level

Event Channels

MEDEA

Computer Science

= Provides “event-channels” for communication
= One source (a monitor)
= Potentially many destinations (handlers)
= Events are asynchronous but may be cascaded
= Provides cross-host, cross-address-space &
cross-protection-domain communication
= e.g., kernel upcalls

= Uses "mailbox” abstractions:
= One outbox for every monitor
= One inbox for every service manager

Computer Science

4 N

Monitors

Handlers\

Service
Manager

Event
Dispatcher &
Receiver

-

= MEDEA provides an API for unrestricted
event-driven communication

MEDEA Features

= Can batch or select single events for delivery
= Supports “fast” syscalls that do not block &
real-time upcalls

= Coordinated user-level event delivery and
handling

= Prioritized event delivery

= Can dispatch (receive) events from (into)
mailboxes according to an ordering policy

= Real-time event delivery is possible

SafeX

Computer Science

= Allows app-specific service extensions to be
dynamically-linked into kernel address space

= Can deploy code on remote hosts

= Provides compile- and run-time support to:
= Enforce bounded execution of extensions
= Guarantee service isolation (using “guard” fns)
» Maintain system integrity

SafeX Features

Computer Science

= Extensions written in Popcorn & compiled
into Typed Assembly Language (TAL)

= Memory protection:

= Prevents forging pointers to arbitrary addresses
= Prevents de-allocation of memory until safe

= CPU protection:

= Requires resource reservation for extensions
= Aborts extensions exceeding reservations

= [nterfaces to synchronization objec

(S

A Kernel Service Manager

Computer Science

functions

Kernel timer queue of
bottom half (SM)

/get_attributeS() (‘
Events out Class 1

set_attributes()

| | |Class 2

| Class k

U a——

Attribute Classes

policy-specific
structures

~

Kernel

/

Kernel Service Manager

Experimental Scenario

= CPU service manager monitors CPU utilization
and adapts process timeslices

= Timeslices adjusted by PID function of target &
actual CPU usage

= Monitoring performed every 10mS

= Kernel monitoring functions invoked via timer
queue

= User-level approach periodically reads
/proc/pid/stat
= Adapts service via kill() syscalls

Monitors and Handlers s

Computer Science

void monitor () {

actual_cpu = get_attribute (“actual_cpu”);
target_cpu = get_attribute (“target_cpu”);
raise_event ("Error”, target_cpu - actual_cpu);

}

void handler () {
e[n] = ev.value; // nth sampled error

/* Update timeslice adjustment by PID fn of error */
u[n] = (Kp+Kd+Ki).e[n] - Kd.e[n-1] + u[n-1];

set_attribute (“timeslice-adjustment”, u[n]);

}

Guard Functions s

Computer Science

// Check the QoS safe updates to a process’ timeslice

default_timeslice = target_cpu;

guard (attribute, value):

if (attribute == “timeslice-adjustment”)

if (value in range [0, 0.25*default_timeslice])
if (value is QoS safe)

timeslice = target_cpu + value;

ON U
QO‘JFE ﬁ"rf [

CPU Service Management -1 .“

La
| Pt ol
irr

Computer Science

ALISE>

45 - 45 -
148 3
40 1 40 L 't'
. ; i i
35 35 :
S osl i S 25 i
"'6 .,I"‘:E R s B l'\ H éi N
) (T e o O 20 iiE-mmmmmddm o oo
> oy > ! i
15 HH H : H 15 b H i H : H
] HH H] H . H 1 T . H H H
Tt I - S | GEfRzaisaaaiiaagiainiisiasazzcagfiiiiiiaaaa;

1 N HIE M . N HM L L O HE N i i i L " N N
O 10 20 30 40 50 60 70 80 90 100 O 10 20 30 40 50 60 70 80 90 100
time (seconds) time (seconds)

3 CPU-bound tasks w/ 30, 20 & 10% target CPU shares

= |ess service oscillation in left graph for kernel service
management

= Transient overloads do not affect service guarantees

‘JioN u"‘ffb

% of CPU

= (a)
CPU Service Management -2 . /(7 .%
" | T e
Computer Science
45 T 45
40 40 A
35F \ 35
I S
30 “ E 30
25 | : O 251
| RS © |
20 E < 20
15 J 15 J ..
10 .l:. 10
5 F
O Syt N] p " 2 L = L L 0 A N S ' . L i M M
O 10 20 30 40 50 60 70 80 90 100 O 10 20 30 40 50 60 70 80 90 100

time (seconds) time (seconds)

3 MPEG processes with 40, 30 & 20% target CPU shares

Finer-grained kernel service management is capable of
sustaining 20% CPU utilization for 3 process (left graph)

User-level management (right graph) cannot meet needs of
process with target 20% CPU utilization

ON U
QO‘JFE ﬁ"rf [

Conclusions n

| Pt ol
irr

Computer Science

ALISE>

Linux Dionisys supports service extensions to
customize system for app-specific needs

SafeX verifies safety of extensions

= Extensions may be dynamically-linked into local & remote
address spaces

MEDEA provides event-based communication
mechanism that triggers service adaptations

Overall system improves service to applications

