MARACAS

MARACAS: A Real-Time Multicore VCPU
Scheduling Framework

Ying Ye, Richard West, Jingyi Zhang, Zhuoqun Cheng

Computer Science Department
Boston University

e

MARACAS

@ Introduction
© Quest RTOS

© Background Scheduling

@ Memory-Aware Scheduling
© Multicore VCPU Scheduling
© Evaluation

@ Conclusion

Motivation

MARACAS

@ Multicore platforms are gaining popularity in embedded
and real-time systems

Introduction

concurrent workload support
less circuit area

lower power consumption
lower cost

Motivation

MARACAS

@ Multicore platforms are gaining popularity in embedded
and real-time systems

Introduction

concurrent workload support
less circuit area

lower power consumption
lower cost

@ Complex on-chip memory hierarchies pose significant
challenges for applications with real-time requirements

Motivation

MARACAS

@ Shared cache contention:

Introduction e page coloring

o hardware cache partitioning (Intel CAT)
e static VS dynamic

Motivation

MARACAS

@ Shared cache contention:

Introduction @ page CO|Oring
o hardware cache partitioning (Intel CAT)
e static VS dynamic

@ Memory bus contention:

o bank-aware memory management
e memory throttling

Contribution

MARACAS

@ We proposed the use of foreground (reservation) +
background (surplus) scheduling model

Introduction
e improves application performance

o effectively reduces resource contention

o well-integrated with real-time scheduling algorithms

Contribution

MARACAS

@ We proposed the use of foreground (reservation) +
background (surplus) scheduling model

Introduction
e improves application performance

o effectively reduces resource contention

o well-integrated with real-time scheduling algorithms

@ We proposed a new bus monitoring metric that accurately
detects traffic

Application

MARACAS

@ Imprecise computation/Numeric integration

Introduction o MPEG video decoding: mandatory to process I-frames,
optional to process B- and P-frames to improve frame rate

Application

MARACAS

Ying Y

@ Imprecise computation/Numeric integration

Introduction o MPEG video decoding: mandatory to process I-frames,
optional to process B- and P-frames to improve frame rate

@ Mixed-criticality systems running performance-demanding
applications
e machine learning
e computer vision

MARACAS

e VCPU model (C, T) in
Quest RTOS
o C: Capacity
o T: Period

Quest RTOS

Quest RTOS

MARACAS

e VCPU model (C, T) in
Quest RTOS
o C: Capacity
o T: Period

Quest RTOS

@ Partitioned scheduling
using RMS

=

=

% Threads

/\

I Core |

| Core I

(

Shared Cache

)

I Memory Bus

(

Off-Chip Memory

)

Quest RTOS

MARACAS

e VCPU model (C, T) in
Quest RTOS
o C: Capacity
o T: Period

Quest RTOS

@ Partitioned scheduling
using RMS

@ Schedulability test

Y1) < n(v2-1)

s g S s

/\
I Core | | Core I

[Shared Cache]
I Memory Bus
[Off-Chip Memory]

Background Scheduling

MARACAS

@ VCPU enters background

mode upon depleting its
budget (C)

Background
Scheduling

Foreground

Background

Background Scheduling

MARACAS
Foreground Background

@ VCPU enters background — :

mode upon depleting its | ¢ T-C

budget (C) \

@ Core enters background mode when all VCPUs are in

Background
Scheduling background mode

Background Scheduling

MARACAS
Foreground Background

@ VCPU enters background — ! \
mode upon depleting its | ¢ T-C
budget (C) \ /

@ Core enters background mode when all VCPUs are in

Background
Scheduling background mode

@ Background CPU Time (BGT): time a VCPU runs when
core in background mode

Background Scheduling

MARACAS
Foreground Background

@ VCPU enters background — ! \
mode upon depleting its | ¢ T-C
budget (C) \ /

@ Core enters background mode when all VCPUs are in

Background
Scheduling background mode

@ Background CPU Time (BGT): time a VCPU runs when
core in background mode

@ Background scheduling: schedule VCPUs when core is in
background mode

o fair share of BGT amongst VCPUs on core

DRAM structure

MARACAS

DRAM
bank 0 hank 1 Emmur hank n
Memory-
Aware
Scheduling row buffer row buffer row huffer

1 Bus

Memory-Aware Scheduling

MARACAS

@ Prior work [MemGuard] uses " Rate Metric":
number of DRAM accesses over a certain period

Memory-
Aware
Scheduling

Memory-Aware Scheduling

MARACAS

@ Prior work [MemGuard] uses " Rate Metric":
number of DRAM accesses over a certain period

o Bank-level parallelism

Memory-
Aware
Scheduling

Memory-Aware Scheduling

MARACAS

@ Prior work [MemGuard] uses " Rate Metric":
number of DRAM accesses over a certain period

o Bank-level parallelism
Memory- o Row buffers

Aware
Scheduling

Memory-Aware Scheduling

MARACAS

@ Prior work [MemGuard] uses " Rate Metric":
number of DRAM accesses over a certain period

o Bank-level parallelism
Memory- o Row buffers

/é\rf]aerjunng e Sync Effect

Sync Effect

MARACAS

taskl
task2

Memory- '

Time

Aware

Scheduling 0 t T

Sync Effect

MARACAS

Memory- i E Time
Aware

Scheduling 0

@ Each task reduces its access rate by a factor of (T-t)/T

e Contention in [0, t] remains the same

Latency Metric

MARACAS

A Queue
Length
3
2 | 3 [3 [T3
Memory- rl rl r2 r2 r2 Tlme (CyC|ES)
Aware -
Scheduling 0 1 2 3 a4 5

@ requests = 3, occupancy = 10

Latency Metric

MARACAS

A Queue
Length
3
2 | 3 [3 [T3
Memory- rl rl r2 r2 r2 Tlme (CyC|ES)
Aware -
Scheduling 0 1 2 3 a4 5

@ requests = 3, occupancy = 10

@ latency = % =33

Latency Metric

MARACAS

e UNC_ARB_TRK_REQUEST.ALL (requests):
counts all memory requests going to the memory
controller request queue

e UNC_ARB_TRK_OCCUPANCY.ALL (occupancy):
counts cycles weighted by the number of pending requests

Memory-

Aware .
Scheduling in the queue

Latency Metric

MARACAS

e UNC_ARB_TRK_REQUEST.ALL (requests):
counts all memory requests going to the memory
controller request queue

e UNC_ARB_TRK_OCCUPANCY.ALL (occupancy):
counts cycles weighted by the number of pending requests

Memory-

Aware .
Scheduling in the queue

@ Average latency:

__ occupancy
latency " requests

Memory Throttling

MARACAS

@ When core gets throttled, background scheduling is
disabled

Memory-
Aware
Scheduling

Memory Throttling

MARACAS

@ When core gets throttled, background scheduling is
disabled

@ Latency threshold: MAX_MEM_LAT
if latency > MAX_MEM_LAT then
Memory- num,thrott/e + +

Aware
Scheduling

Memory Throttling

MARACAS

@ When core gets throttled, background scheduling is
disabled

@ Latency threshold: MAX_MEM_LAT
if latency > MAX_MEM_LAT then
Memory- num,thrott/e + +

Aware
Scheduling

@ Proportional throttling

o Every core is throttled at some point
o Throttled time proportional to core's DRAM access rate

MARACAS

Multicore
VCPU
Scheduling

Predictable Migration

MARACAS

@ Run migration thread with highest priority on each core:
pushing local VCPUs to other cores (starts from highest
utilization ones)

Multicore
VCPU
Scheduling

Predictable Migration

MARACAS

@ Run migration thread with highest priority on each core:
pushing local VCPUs to other cores (starts from highest
utilization ones)

@ Only one migration thread active during a migration period
Multicore

VCPU
Scheduling

Predictable Migration

MARACAS

@ Run migration thread with highest priority on each core:
pushing local VCPUs to other cores (starts from highest
utilization ones)

@ Only one migration thread active during a migration period

@ lIts execution of its entire capacity C does not lead to any
other local VCPUs missing their deadlines

Multicore
VCPU
Scheduling

Predictable Migration

MARACAS

@ Run migration thread with highest priority on each core:
pushing local VCPUs to other cores (starts from highest
utilization ones)

@ Only one migration thread active during a migration period

@ lIts execution of its entire capacity C does not lead to any
other local VCPUs missing their deadlines

Multicore
VCPU
Scheduling

@ Constraint on C:

C > 2 x Elock + Estruct

VCPU Load Balancing

MARACAS

@ For every core, define Slack-Per-VCPU (SPV):
spy — 1=21(G/T)

Multicore

VCPU
Scheduling

VCPU Load Balancing

MARACAS

@ For every core, define Slack-Per-VCPU (SPV):
spy = 1=21(G/Ti)

Core | 10% | 30% 60%

[[[
VCPU1 VCPU2 Slack

Multicore
VCPU
Scheduling

SPV — 1—(10‘V2o+30%) = 30%

VCPU Load Balancing

MARACAS

@ Balance Background CPU Time (BGT) used by every
VCPU across cores: equalize SPVs of all cores

Multicore
VCPU
Scheduling

VCPU Load Balancing

MARACAS

@ Balance Background CPU Time (BGT) used by every
VCPU across cores: equalize SPVs of all cores

e BGT fair sharing

Multicore
VCPU
Scheduling

VCPU Load Balancing

MARACAS

@ Balance Background CPU Time (BGT) used by every
VCPU across cores: equalize SPVs of all cores

e BGT fair sharing
o balanced memory throttling capability on each core

Multicore

VCPU
Scheduling

VCPU Load Balancing

MARACAS

e Balance Background CPU Time (BGT) used by every
VCPU across cores: equalize SPVs of all cores

e BGT fair sharing
o balanced memory throttling capability on each core

D59 i 5
Lo i 40% 145%
15% 160% :
10% ; wp 10% T

Multicore

VCPU

Scheduling 50% 40% 50% 40%

Cache-Aware Scheduling

MARACAS

@ Static cache partitioning amongst cores
e page coloring

Multicore
VCPU
Scheduling

Cache-Aware Scheduling

MARACAS

@ Static cache partitioning amongst cores
e page coloring

o New API:

bool vepu_create(uint C, uint T, uint cache);

Multicore
VCPU
Scheduling

Cache-Aware Scheduling

MARACAS

@ Static cache partitioning amongst cores
e page coloring

o New API:

bool vepu_create(uint C, uint T, uint cache);

Mticoe @ Extension of VCPU Load Balancing:

Scheduling destination core meets the cache requirement

Evaluation

MARACAS

@ MARACAS running on the following hardware platform:

Processor Intel Core 15-2500k quad-core

Caches 6MB L3 cache, 12-way set associative, 4 cache slices

Memory 8GB 1333MHz DDR3, 1 channel, 2 ranks, 8KB row buffers

Evaluation

Rate VS Latency

MARACAS

@ Micro-benchmark m_jump:
byte array[6M];
for (uint32 j = 0; j < 8K; j += 64)
for (uint32 i = j; i < 6M; i += 8K)
< Variable delay added here >
(uint32)array[i] = i;

Evaluation

Rate VS Latency

MARACAS

@ Micro-benchmark m_jump:
byte array[6M];
for (uint32 j = 0; j < 8K; j += 64)
for (uint32 i = j; i < 6M; i += 8K)
< Variable delay added here >
(uint32)array[i] = i;

@ Three m_jump (task 1,2,3) running on separate cores
without memory throttling, utilization (C/T) 50%

Evaluation

Rate VS Latency

MARACAS

@ Micro-benchmark m_jump:
byte array[6M];
for (uint32 j = 0; j < 8K; j += 64)
for (uint32 i = j; i < 6M; i += 8K)
< Variable delay added here >
(uint32)array[i] = i;

@ Three m_jump (task 1,2,3) running on separate cores
without memory throttling, utilization (C/T) 50%

Evelveiten @ Each run, insert a different time delay in taskl and task?2,
task3 has no delay

Rate VS Latency

MARACAS

@ Record the total memory bus traffic, average memory
request latency and task3's instructions retired in
foreground mode:

Evaluation

Rate VS Latency

MARACAS

@ Record the total memory bus traffic, average memory
request latency and task3's instructions retired in
foreground mode:

task3 Instructions

Bus Traffic (GB) | Latency | " tired (x10°)

H 1128 228 249
M 1049 183 304
L 976 157 357

Evaluation

Rate VS Latency

MARACAS

@ Record the total memory bus traffic, average memory
request latency and task3's instructions retired in
foreground mode:

task3 Instructions

Bus Traffic (GB) | Latency | " tired (x10°)

H 1128 228 249
M 1049 183 304
L 976 157 357

@ Setting comparable thresholds:

o rate-based: derived from Bus Traffic (1128/time)
o latency-based: from Latency (228)

Evaluation

Rate VS Latency

MARACAS

@ Record the total memory bus traffic, average memory
request latency and task3's instructions retired in
foreground mode:

task3 Instructions

Bus Traffic (GB) | Latency | " tired (x10°)

H 1128 228 249
M 1049 183 304
L 976 157 357

@ Setting comparable thresholds:
o rate-based: derived from Bus Traffic (1128/time)
Evaluation o latency-based: from Latency (228)
@ Last column serves as reference, showing the expected
performance of task3 using the corresponding thresholds

Rate VS Latency

MARACAS @ Repeat experiment with memory throttling enabled and

fixed delay for taskl/task2

Evaluation

Rate VS Latency

MARACAS

@ Repeat experiment with memory throttling enabled and
fixed delay for taskl/task2

400 T ' ' rate .
latency
_ 350 expected m—
[ee]
= 300 t
=
g 250
£ 200
2
o 150
©
£ 100t
Evaluation ‘é’
50 r
0

Conclusion

MARACAS

@ MARACAS uses background time to improve task
performance; when memory bus is contended, it gets
disabled through throttling

Conclusion

Conclusion

MARACAS

@ MARACAS uses background time to improve task
performance; when memory bus is contended, it gets
disabled through throttling

@ MARACAS uses a latency metric to trigger throttling,
outperforming prior rate-based approach

Conclusion

Conclusion

MARACAS

@ MARACAS uses background time to improve task
performance; when memory bus is contended, it gets
disabled through throttling

@ MARACAS uses a latency metric to trigger throttling,
outperforming prior rate-based approach

o MARACAS fairly distributes background time across cores,
for both fairness and better throttling

Conclusion

	Introduction
	Quest RTOS
	Background Scheduling
	Memory-Aware Scheduling
	Multicore VCPU Scheduling
	Evaluation
	Conclusion

