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@ Complex on-chip memory hierarchies pose significant
challenges for applications with real-time requirements
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@ Memory bus contention:

o bank-aware memory management
e memory throttling
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@ We proposed the use of foreground (reservation) +
background (surplus) scheduling model

Introduction
e improves application performance

o effectively reduces resource contention

o well-integrated with real-time scheduling algorithms

@ We proposed a new bus monitoring metric that accurately
detects traffic
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@ Imprecise computation/Numeric integration

Introduction o MPEG video decoding: mandatory to process I-frames,
optional to process B- and P-frames to improve frame rate

@ Mixed-criticality systems running performance-demanding
applications
e machine learning
e computer vision
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e VCPU model (C, T) in
Quest RTOS
o C: Capacity
o T: Period

Quest RTOS

@ Partitioned scheduling
using RMS

@ Schedulability test
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Foreground  Background

@ VCPU enters background — ! \
mode upon depleting its | ¢ T-C
budget (C) \ /

@ Core enters background mode when all VCPUs are in

Background
Scheduling background mode

@ Background CPU Time (BGT): time a VCPU runs when
core in background mode

@ Background scheduling: schedule VCPUs when core is in
background mode

o fair share of BGT amongst VCPUs on core
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@ Each task reduces its access rate by a factor of (T-t)/T

e Contention in [0, t] remains the same
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Length
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Aware -
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@ requests = 3, occupancy = 10

@ latency = % =33
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e UNC_ARB_TRK_REQUEST.ALL (requests):
counts all memory requests going to the memory
controller request queue

e UNC_ARB_TRK_OCCUPANCY.ALL (occupancy):
counts cycles weighted by the number of pending requests

Memory-

Aware .
Scheduling in the queue

@ Average latency:

__ occupancy
latency " requests
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@ When core gets throttled, background scheduling is
disabled

@ Latency threshold: MAX_MEM_LAT
if latency > MAX_MEM_LAT then
Memory- num,thrott/e + +

Aware
Scheduling

@ Proportional throttling

o Every core is throttled at some point
o Throttled time proportional to core's DRAM access rate
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@ Run migration thread with highest priority on each core:
pushing local VCPUs to other cores (starts from highest
utilization ones)

@ Only one migration thread active during a migration period

@ lIts execution of its entire capacity C does not lead to any
other local VCPUs missing their deadlines

Multicore
VCPU
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@ Constraint on C:

C > 2 x Elock + Estruct
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@ For every core, define Slack-Per-VCPU (SPV):
spy = 1=21(G/Ti)

Core | 10% | 30% 60%

[ [ [
VCPU1 VCPU2 Slack

Multicore
VCPU
Scheduling

SPV — 1—(10‘V2o+30%) = 30%
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VCPU Load Balancing

MARACAS

e Balance Background CPU Time (BGT) used by every
VCPU across cores: equalize SPVs of all cores

e BGT fair sharing
o balanced memory throttling capability on each core

D59 i 5
Lo i 40% 145%
15% 160% :
10% ; wp 10% T
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Cache-Aware Scheduling

MARACAS

@ Static cache partitioning amongst cores
e page coloring

o New API:

bool vepu_create(uint C, uint T, uint cache);

Mticoe @ Extension of VCPU Load Balancing:

Scheduling destination core meets the cache requirement
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@ MARACAS running on the following hardware platform:

Processor Intel Core 15-2500k quad-core

Caches 6MB L3 cache, 12-way set associative, 4 cache slices

Memory 8GB 1333MHz DDR3, 1 channel, 2 ranks, 8KB row buffers

Evaluation
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@ Micro-benchmark m_jump:
byte array[6M];
for (uint32 j = 0; j < 8K; j += 64)
for (uint32 i = j; i < 6M; i += 8K)
< Variable delay added here >
(uint32)array[i] = i;

@ Three m_jump (task 1,2,3) running on separate cores
without memory throttling, utilization (C/T) 50%

Evelveiten @ Each run, insert a different time delay in taskl and task?2,
task3 has no delay
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@ Record the total memory bus traffic, average memory
request latency and task3's instructions retired in
foreground mode:

task3 Instructions

Bus Traffic (GB) | Latency | " tired (x10°)

H 1128 228 249
M 1049 183 304
L 976 157 357

@ Setting comparable thresholds:
o rate-based: derived from Bus Traffic (1128/time)
Evaluation o latency-based: from Latency (228)
@ Last column serves as reference, showing the expected
performance of task3 using the corresponding thresholds
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@ Repeat experiment with memory throttling enabled and
fixed delay for taskl/task2
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Conclusion

MARACAS

@ MARACAS uses background time to improve task
performance; when memory bus is contended, it gets
disabled through throttling

@ MARACAS uses a latency metric to trigger throttling,
outperforming prior rate-based approach

o MARACAS fairly distributes background time across cores,
for both fairness and better throttling

Conclusion
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