
Mutable Protection Domains: Towards a

Component-based System for Dependable

and Predictable Computing

Gabriel Parmer and Richard West

Computer Science Deparment
Boston University
Boston, MA 02215

{gabep1, richwest}@cs.bu.edu

December 6, 2007

Complexity of Embedded Systems

Traditionally simpler software stack

limited functionality and complexity

focused application domain

Soon cellphones will have

10s of millions of lines of code

downloadable content (with real-time constraints)

Trend towards increasing complexity of embedded systems

Parmer, West, BU CS Mutable Protection Domains 2/27

Consequences of Complexity

Run-time interactions are difficult to predict and can cause
faults

accessing/modifying memory regions unintentionally

corruption data-structures

deadlocks/livelocks

race-conditions

. . .

Faults can cause violations in correctness and predictability

Parmer, West, BU CS Mutable Protection Domains 3/27

Designing for Dependability and Predictability

Given increasing complexity, system design must anticipate
faults

Memory fault isolation: limit scope of adverse side-effects of
errant software

identify and restart smallest possible section of the system

recover from faults with minimal impact on system goals

employ software/hardware techniques

Preserve system reliability and predictability in spite of
misbehaving and/or faulty software

Parmer, West, BU CS Mutable Protection Domains 4/27

Trade-offs in Isolation Granularity

Increased Isolation Reduced Communication Cost

Protection Domains Components

Threads

Stacks

Process Isolation User-Kernel Isolation Library Isolation

Parmer, West, BU CS Mutable Protection Domains 5/27

Static HW Fault Isolation Approaches

(II)

What is the “best” isolation granularity?

P1 P2

user−level
kernel−level

Net FS

Monolithic OSs

provide minimal isolation to allow process independence

large kernel not self-isolated, possibly extend-able

→ Coarse-grained isolation, but low service invocation cost

Both characterized by a static system structure

Parmer, West, BU CS Mutable Protection Domains 6/27

Static HW Fault Isolation Approaches (II)

What is the “best” isolation granularity?

P1 P2

user−level
kernel−level

IPC

Net FS

µ-kernels

segregate system services out of the kernel, interact w/
Inter-Process Communication (IPC)
finer-grained isolation

IPC overhead limits isolation granularity

→ Finer-grained fault isolation, but increased service
invocation cost

Both characterized by a static system structure

Parmer, West, BU CS Mutable Protection Domains 6/27

Static HW Fault Isolation Approaches (II)

What is the “best” isolation granularity?

P1 P2

user−level
kernel−level

IPC

Net FS

µ-kernels

segregate system services out of the kernel, interact w/
Inter-Process Communication (IPC)
finer-grained isolation

IPC overhead limits isolation granularity

→ Finer-grained fault isolation, but increased service
invocation cost

Both characterized by a static system structure

Parmer, West, BU CS Mutable Protection Domains 6/27

Mutable Protection Domains (MPD)

Goal: configure system to have finest grained fault
isolation while still meeting application deadlines

Mutable Protection Domains (MPDs)

dynamically place protection domains between
components in response to

communication overheads due to isolation
application deadlines being satisfied

application close to missing deadlines
→ lessen isolation between components

laxity in application deadlines
→ increase isolation between components

Parmer, West, BU CS Mutable Protection Domains 7/27

Mutable Protection Domains (MPD) (II)

Mutable Protection Domains appropriate for soft real-time
systems

Protection domains can be made immutable where appropriate

Parmer, West, BU CS Mutable Protection Domains 8/27

Setup and Assumptions

TCP UDP

P. Filter

IP

Socket

System is a collection of components

Arranged into a directed acyclic graph (DAG)

nodes = components themselves

edges = communication between them,
indicative of control flow

Isolation over an edge can be configured to
be one of the three isolation levels

Protection Domains Components

Threads

Stacks

Parmer, West, BU CS Mutable Protection Domains 9/27

Isolation cost and benefit

Isolation between components causes a performance penalty
due to:

1 processing cost of a single invocation between those
components

2 the frequency of invocations between those components

→ cost of each isolation level/edge

Different isolation levels yield higher dependability

stronger isolation → higher dependability

Isolation between specific components more important

debugging, testing, unreliable components, . . .

→ benefit of each isolation levels/edge

This paper studies the policies concerning when
and where isolation should be present

Parmer, West, BU CS Mutable Protection Domains 10/27

Isolation cost and benefit

Isolation between components causes a performance penalty
due to:

1 processing cost of a single invocation between those
components

2 the frequency of invocations between those components

→ cost of each isolation level/edge

Different isolation levels yield higher dependability

stronger isolation → higher dependability

Isolation between specific components more important

debugging, testing, unreliable components, . . .

→ benefit of each isolation levels/edge

This paper studies the policies concerning when
and where isolation should be present

Parmer, West, BU CS Mutable Protection Domains 10/27

Problem Definition

For a solution set s
where si ∈
{1, . . . , # isolation levels}

Maximize the dependability of
the system . . .

maximize∑
∀i∈edges benefitisi

While meeting task deadlines
. . .

while∑
∀i∈edges costisi

k

≤
surplus resources

k

For each task in the system ∀k ∈ tasks

Parmer, West, BU CS Mutable Protection Domains 11/27

Problem Definition

For a solution set s
where si ∈
{1, . . . , # isolation levels}

Maximize the dependability of
the system . . .

maximize∑
∀i∈edges benefitisi

While meeting task deadlines
. . .

while∑
∀i∈edges costisi

k

≤
surplus resources

k

For each task in the system ∀k ∈ tasks

Parmer, West, BU CS Mutable Protection Domains 11/27

Problem Definition

For a solution set s
where si ∈
{1, . . . , # isolation levels}

Maximize the dependability of
the system . . .

maximize∑
∀i∈edges benefitisi

While meeting task deadlines
. . .

while∑
∀i∈edges costisi

k

≤
surplus resources

k

For each task in the system ∀k ∈ tasks

Parmer, West, BU CS Mutable Protection Domains 11/27

Problem Definition

For a solution set s
where si ∈
{1, . . . , # isolation levels}

Maximize the dependability of
the system . . .

maximize∑
∀i∈edges benefitisi

While meeting task deadlines
. . .

while∑
∀i∈edges costisik ≤

surplus resourcesk

For each task in the system ∀k ∈ tasks

Parmer, West, BU CS Mutable Protection Domains 11/27

Multi-Dimensional, Multiple-Choice Knapsack

maximize
∑

∀i∈edges

benefitisi

subject to
∑

∀i∈edges

costisik ≤ surplus resourcesk , ∀k ∈ tasks

si ∈ {1, . . . , max isolation level}, ∀i ∈ edges

This problem is a multi-dimensional, multiple-choice knapsack
problem (MMKP)

multi-dimensional - multiple resource constraints

multiple-choice - configure each edge in one of the
isolation levels

NP-Hard problem

heuristics, pseudo-poly dynamic prog., branch-bound
Parmer, West, BU CS Mutable Protection Domains 12/27

One-Dimensional Knapsack Problem

Effective and inexpensive greedy solutions to one-dimensional
knapsack problem exist

sort isolation levels/edges based on benefit density, ratio
of benefit to cost

increase isolation by including isolation levels/edges from
head until resources are expended

. . . but we have multiple dimensions of cost

Parmer, West, BU CS Mutable Protection Domains 13/27

Solutions - Reducing Resource Dimensions

Compute an aggregate cost for each edge

single value representing a combination of the costs for all
tasks for an edge: ∀k , costisik → agg costisi

some tasks very resource constrained, some aren’t

intelligently weight costs for task k to compute aggregate
cost

Parmer, West, BU CS Mutable Protection Domains 14/27

Solutions - HEU

1 compute aggregate cost for each isolation level/edge

2 include isolation level/edge with best benefit density in
solution configuration

3 goto 1 until resources expended

Fine-grained refinement of aggregate cost

recompute once every time an isolation level/edge is
added to the current solution configuration

Parmer, West, BU CS Mutable Protection Domains 15/27

Solutions - coarse and oneshot Refinement

1 compute aggregate cost for each isolation level/edge

2 sort by benefit density

3 include isolation level/edge from head

4 goto 3, until resources expended

5 recompute aggregate costs based on resource surpluses
with solution configuration

6 goto 2 N times and return highest benefit configuration

N > 1: coarse-grained refinement

recompute once per total configuration found

execution time linearly increases with N

N = 1: oneshot

very quick

no aggregate cost refinement
Parmer, West, BU CS Mutable Protection Domains 16/27

Solution Runtimes

1

10

100

1000

10000

100000

1000000

100 500 1500 3000

Number of Isolation Instances

Ru
nt

im
e

(m
icr

os
ec

on
ds

)

 oneshot
 coarse
 fine

Parmer, West, BU CS Mutable Protection Domains 17/27

System Dynamics

System is dynamic

changing communication costs over edges as threads alter
execution paths between components

changing resource availabilities as threads vary
intra-component execution time

per-invocation cost overheads vary

different cache working sets, invocation argument size,
. . .

System must refine the system isolation configuration as these
variables change

Parmer, West, BU CS Mutable Protection Domains 18/27

Solutions over time

System dynamics require re-computation of system
configuration

1 disregard current system state, recompute entirely new
system configuration

traditional knapsack (MMKP) approach: ks

2 solve for the next system configuration starting from the
current system configuration

Successive State Heuristic (ssh)

modifies coarse and oneshot to start from the current
system configuration
aim to reduce isolation changes to existing configuration

Parmer, West, BU CS Mutable Protection Domains 19/27

Experimental Simulations

Simulate a system with

widely varying resource surplus for 3 tasks

changing communication costs

200 edges, 3 isolation levels

Parmer, West, BU CS Mutable Protection Domains 20/27

Resource Usage for Task 1

 0

 2000

 4000

 6000

 8000

 10000

 0 5 10 15 20 25 30 35 40 45 50 55

Re
so

ur
ce

s
Us

ed
 F

or
 Is

ol
at

io
n

(T
as

k
1)

Reconfiguration Number

ks oneshot
ks coarse

ssh oneshot
ssh coarse

ks fine
Resource Avail.

Parmer, West, BU CS Mutable Protection Domains 21/27

System Isolation-Derived Benefit

 10000

 12000

 14000

 16000

 18000

 20000

 22000

 24000

 0 5 10 15 20 25 30 35 40 45 50 55

Be
ne

fit

Reconfiguration Number

ks oneshot
ks coarse

ssh oneshot
ssh coarse

ks fine

Parmer, West, BU CS Mutable Protection Domains 22/27

OS Support for MPD

Composite: component-based OS designed to support MPD

KCap

UCap client
stub

user−level
kernel

client_fn server_fn

stub
server

Parmer, West, BU CS Mutable Protection Domains 23/27

OS Support for MPD (II)

Composite: component-based OS designed to support MPD

KCap

UCap server
stub

client
stub

user−level
kernel

server_fnclient_fn

Parmer, West, BU CS Mutable Protection Domains 24/27

OS Support for MPD (III)

Switching between the two isolation levels requires changing
UCap, KCap, and protection domains

Prototype running on x86 Pentium IV @ 2.4 Ghz

Invocation via kernel - 1510 cycles (0.63 µsecs)

Direct invocation - 55 cycles (0.023 µsecs)

Parmer, West, BU CS Mutable Protection Domains 25/27

Conclusions

Solution to MMKP based on lightweight successive refinement
given dynamic changes in system behavior

possibly useful in e.g. QRAM

Mutable Protection Domains

dynamically reconfigure protection domains to maximize
fault isolation while meeting application deadlines

makes the performance/predictability ↔ fault isolation
tradeoff explicit

Parmer, West, BU CS Mutable Protection Domains 26/27

