Towards an Internet-wide Distributed
System for Media Stream Processing &
Delivery

Richard West, Xin Qi, Gabriel Parmer,
Jason Gloudon, Gerald Fry

Boston University
Boston, MA
richwest@cs.bu.edu

Computer Science

™ Introduction

Computer Science

* Internet growth has stimulated development of
data- rather than CPU-intensive applications

" e.g., streaming media delivery, interactive distance
learning, webcasting (e.g., SHOUTcast)

= Peer-to-peer (P2P) systems now popular
= Efficiently locate & retrieve data (e.g., mp3s)
" e.g., Gnutella, Freenet, Kazaa, Chord, CAN, Pastry

= To date, limited work on scalable delivery &
processing of (potentially real-time) data streams

® Introduction (2) FIvN:

Computer Science

= Aim:
* Build an Internet-wide distributed system for delivery &
processing data streams
* Implement logical network of end-systems

= Support multiple channels connecting publishers to
1000s of subscribers w/ own QoS constraints

= Rationale:

* Narada provided case for end-system multicast
= Rely only on IP uni-cast routing at network-level

» Overlay routing provides flexibility for app-specific data
processing

=1 “Big Picture” i’

Computer Science

Static
| Subscribers
Wireless
Access -
................ E/
- Overlay =
network ‘:;
:ﬁz/ ““““““
Video sensors | NS .
(publishers) = \ -

= /.%D)) Subscriber

® Research Goals

= |ogical overlay topologies for scalable QoS-
constrained routing

* Leverage ideas from P2P systems & parallel (NUMA)
computer architectures

* Combine scalable properties of P2P systems such as
Chord, CAN & Pastry w/ service guarantees of systems
such as Narada

= Efficient end-host software architecture, supporting:
» App-specific stream processing / routing
* Resource monitoring
= Overlay management

» Contributions

= (1) Analysis of k-ary n-cubes for scalable overlay
topologies
= Optimized initial configurations
= Comparison of routing algorithms

* Dynamic host relocation in logical space based on QoS
constraints

= (2) End-host architecture design
= Efficient support for app-specific service extensions
* Provide safety
* Avoid context-switch overheads
* Reduce communication costs

» Part 1: Scalable Overlay Topologies

Computer Science

= NUMA architectures have scalable interconnects
" e.g., hypercubes — SGI Origin 2/3000

= P2P systems based on distributed hashing implicitly
construct torus or k-ary-n-cube topologies
connecting end-hosts

" e.g., Chord, CAN, Pastry

* For a system of M hosts:
* O(log M) routing state per node

* O(log M) hops between source and destination to find
desired info

» Overlay Routing Example

Computer Science

= Qverlay iIs modeled as an undirected k-ary n-cube graph

* An edge In the overlay corresponds to a uni-cast path in the
physical network

Physical view Logical view
[011] [111]
B 10
2 1
% - 92
3 R1|---2--- R2 5
& F
10 ~— 3
H

[000] [100]

610” Uﬁ'.?#
w
S

1 Definition of k-ary n-cube Graphs yn

i!n‘_;i E “ | :_- i 3 -
Computer Science

= A k-ary n-cube graph is defined by two parameters:
* n =#dimensions

* k =radix (or base) in each dimension

= Fach node Is associated with an identifier
consisting of n base-k digits

= Two nodes are connected by a single edge Iff:
* their identifiers have n-1 identical digits, and

* the ith digits in both identifiers differ by exactly 1
(modulo k)

= Properties of k-ary n-cube Graphs -

Computer Science

= M = k" nodes in the graph
= [f k=2, degree of each node is n
= [f k> 2, degree of each node is 2n

= \Worst-case hop count between nodes:
= nLk/2]
= Average case path length:
= A(k,n) = nl(k%4) | 1/k
= Optimal dimensionality:
"n=|nM
= Minimizes A(k,n) for given k and n

" Logical versus Physical Hosts

Computer Science

= Mapping between physical and logical hosts is not
necessarily one-to-one

= M logical hosts
* m physical hosts

= For routing, we must have m <= M
» Destination identifier would be ambiguous otherwise

= |[f m <M, then some physical host(s) must perform
the routing functions of multiple logical nodes

» M-region Analysis

Computer Science

= Hosts joining / leaving system change value of m

* |nitial system is bootstrapped with overlay that optimizes
A(k,n)

= et M-region be range of values for m for which
A(k,n) is minimized

= Consider two graphs corresponding to (k,,n,) and
(K2,15):
= Suppose k;n; = k,n,and k;"t > k,"2
* The graph corresponding to (k,,n,) is desirable

<ON
&
W e S

Computer Science

Al i‘i’*ﬁ

® Calculating M-regions

Calculate_M-Region(int m) {
=1, k=]=2;
while (M[i,j] < m) i++; // Start with a hypercube
n=i
maxM = M[i,JJ; . :
minA = A[i,jl; Try to find the
incj = 1; largest M such that:

while (i > 0) { - m<=M&A(K,n)is

] ¥=1nCj; 1--; oL

if ((A[i,j] <= minA) && (M[i,j] > maxM)) { minimized
incj = 1;
maxM = M[i,j];
minA = A[i,j];
n=ik=j

}

else incj = 0;

}

return k, n;

b
=

,
D
Q
O
-
7

/LN
/S NG
[l Vil

| e SIS
i T SVIRCREE. B

Computer Science

-

Value of k and n

™ Overlay Routing

= Three routing policies are investigated
* Ordered Dimensional Routing (ODR)
= Random Ordering of Dimensions (Random)
* Proximity-based Greedy Routing (Greedy)

* Forward message to neighbor along logical edge with
lowest cost that reduces hop-distance to destination

= EXperimental analysis done via simulation written
In C
= 5050 routers in physical topology (transit-stub)
* 65536 hosts

Computer Science

Greedy routing Ordered dimensional routing
—_———_— —_———

<ON U
=] ﬂ"’/‘#

* Overlay Routing: 16D Hypercube 8
versus 16-ary 4-cube W a8
Computer Science
100 . . .
2x16 ODR —+—
90 r 2x16 Random ---x---
2x16 Greedy ---x---
80 /* 16x4 ODR -\ -
¥ 16x4 Random --m
70 | 16x4 Greedy --a--
¥ .
60 -

Gre‘edy routing

50 up to 40% better

40
30
20

Cumulative % of Subscribers

16 32 64 128 256 512

Delay Penalty (relative to unicast)

" Adaptive Node Assignment

Computer Science

= |nitially, hosts are assigned random node IDs

= Publisher hosts announce availability of channels
» Super-nodes make info available to peers

= Hosts subscribing to published channels specify
QoS constraints (e.g., latency bounds)

= Subscribers may be relocated in logical space
* to improve QoS

* by considering “physical proximities” of publishers &
subscribers

Adaptive Node Assignment (2)

el oo

[, |

Subscribe (Subscriber S, Publisher P, Depth d) {
If (d == D) return;

find a neighbor i1 of P such that
l.cost(P) is maximal for all neighbors

if (S.cost(P) < i.cost(P))

swap logical positions of i and S;
else

Subscribe (S, i, d+1);
}

e Swap S with node i1 up to D logical hops from P

Computer Science

=1 Simulation Results indli %

Computer Science

= Randomly generated physical topology with 5050
routers

= M=65536 and topology is a 16D hypercube

= Randomly chosen publisher plus some number of
subscribers with QoS (latency) constraints

= Adaptive algorithm used with D=1

= Greedy routing performed with & without adaptive
node assignment

A}U '!..'J'l.,.\\‘t“h

=1 Success Ratio vs Group Size il Lo

Computer Science

0.73 -
0.72 -

Success Ratio

0.67 -
0.66 -
0.65 -

= Success if routing latency <= QoS constraint, c
= Success ratio =

0.71 -

0.7 -
0.69 -
0.68 -

] Adaptive
B Non-adaptive

< Can potentially

™
& & |
| be improved
Group Size

(# successes) / (# subscribers)

= Adaptive node assignment shows up to 5% improvement

. G
=4 Lateness versus Group Size il Lo g

Computer Science

3.5 -
] Adaptive
3- B Non-adaptive

2.5 -
2-
1.5~
1

0.5

Average Normalized Lateness

O]
512 1024 2048 4096 8192 16384 32768 65535
Group Size

* Normalized lateness =0, If S.cost(P) <=c¢
= Normalized lateness = (S.cost(P)-c)/c, otherwise
= Adaptive method can yield >20% latency reduction

»1 Adaptive Node ID Assignment

i e I‘
]

Computer Science

b

ALVS

= |nitial results look encouraging

= Improved performance likely if adaptation considers
nodes at greater depth,D, from publishers
= EXpts only considered D=1

= Adaptive node assignment attempts to minimize

maximum delay between publishers and
subscribers

™ Link Stress

= Previously, aimed to reduce routing latencies

= Important to consider physical link stress:

= Avg times a message is forwarded over a given link, to
multicast info from publisher(s) to all subscribers

= New “split-based greedy” alg:
= Use greedy routing BUT...
= At each hop check neighbor to see if already a subscriber

* |f so, route via neighbor if total delay from publisher to
subscriber is reduced, compared to pure greedy
approach

» Link Stress Simulation Results

Computer Science

= 16D hypercube overlayed on random physical
network

= Randomly chosen publisher plus varying groups of
subscribers

= Multicast trees computed from union of routing
paths between publisher and each subscriber

= Compare greedy versus “split-based” greedy algorithm
= Compare avg physical link stress:
(# times message is forwarded over a link)

(# unique links required to route msg to all subscribers)

=8 Lateness versus Group Size m:ﬁ.

Computer Science

2.4
23 Greedy

B Split-based
2.2 greedy

Average Normalized Lateness

512 1024 2048 4096 8192 16384 32768

Group Size

* Variations in lateness (for pairs of columns) due in part to
random locations of subscribers relative to publisher

=8 Link Stress versus Group Size v

Computer Science

40
35"
30 -
25
20 -

Average Link Stress

o

512 1024 2048 4096 8192 16384 32768

m Greedy
m Split-based

greedy

Group Size

= “Split-based” greedy performs worse as group size increases

= Appears to be due to slightly greater intersection of physical links for
multicast tree (i.e. fewer physical links)

<ON U
s ""v’f&ﬂ

»1 Conclusions

Computer Science

= Analysis of k-ary n-cube graphs as overlay
topologies
= Minimal average hop count

= M-region analysis determines optimal values for k
and n

= Greedy routing
* Leverages physical proximity information

= Significantly lower delay penalties than existing
approaches based on P2P routing

= Adaptive node ID re-assignment for satisfying
QoS constraints

GoN.u,

LN

= Future and Ongoing Work

Computer Science

= Further investigation into alternative adaptive
algorithms

= How does changing the overlay structure
affect per-subscriber QoS constraints?

= Currently building an adaptive distributed
system

* QoS guarantees of NARADA
= Scalablility of systems such as Pastry/Scribe

o"ﬂDN N
<]

<
%
o (=l

» Part 2: End-system Architecture

= Aim is to modify COTS systems to support efficient
methods of application and system extensibility

= \Why?
* To support efficient app-specific routing & processing of
data on end-systems also used for other purposes

= Approach
» User-level sandboxing:

* Provide efficient method for isolating and executing
extensions

* Provide efficient method for passing data between
user-level and network interface

» User-Level Sandboxing (ULS)

Computer Science

= Provide safe environment for service extensions
= Separate kernel from app-specific code

= Use only page-level hardware protection

* Rely on type-safe languages e.g., Cyclone for memory
safety of extensions, or require authorization by trusted
source

= Approach does not require special hardware
protection features
= Segmentation
* Tagged TLBs

0‘}1"3” Uq;j;;ﬂ
» Traditional View of Processes *’

()
e o S
W e B <

Computer Science

P1 P2 Pn
Process

address space

User Level

Kernel Level

Kernel events

& Sandbox Region Shared by

W ;.k.ri
Processes Computer Science
P1 P2 Pn
Process-private| | Mapped data
address space N\
User Level
Sandbox region §) §)
(shared virtual address space) _ :
Extension for P2 Extension for Pn

Kernel Level ' '

Kernel events make
sandbox region
user-level accessible

™ ULS Implementation

= Modify address spaces of all processes to contain
one or more shared pages of virtual addresses

» Shared pages used for sandbox
* Normally inaccessible at user-level

= Kernel upcalls toggle sandbox page protection bits &
perform TLB invalidate on corresponding page(s)

= Current x86 approach
= 2x4MB superpages (one data, one code)
= Modified libc to support mmap, brk, shmget etc
* ELF loader to map code into sandbox
» Supports sandboxed threads that can block on syscalls

M Virtual-to-Physical Memory Mapping o/,

o
—
<

. ! a*r

Computer Science

Process 1

Private
address
space

Sandbox
public
area

Protected
area

-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-

Physical Memory

Extension

Code
+

read-only data

Mapped Data

Extension
Stacks

Process 2

Mapped Data

-~
-~
~
-~
~

~
~
~
~~
~
-~
~
~ -
~

Sandbox
public
area

Protected
area

. 4MB

. 4MB

ULS Implementation (2) 7 it

Computer Science

= Fast Upcalls

* Leverage SYSEXIT/SYSENTER on x86
= Support traditional IRET approach also

= Kernel Events

* Generic interface supports delivery of events to specific
extensions

= Each extension has its own stack & thread struct

» Extensions share credentials (including fds) with
creator

* Events can be queued ala POSIX.4 signals

» End-hosts “Big Picture”

Computer Science

Publisher

*Overlay management
*Resource monitoring

—

Intermediate

Sandbox Region

SPAs
(e.g., routing agents)

"

Subscriber

*Resource monitoring

*Overlay management }

Kernel

Level

Control / Data
Channels

0‘310N N
@ G
W
T 4 SR
M g w3 <
Computer Science

» Preliminary Performance Studies

= (a) Interposition
= Simple syscall tracing extensions based on ptrace
= Compare tradition ptrace implementation against:
» Upcall handler implementation in sandbox
» Kernel-scheduled thread in sandbox

= (b) Inter-Protection Domain Communication
* Look at overheads of IPC between thread pairs
» Exchange 4-byte messages
» Vary the working set of one thread to assess costs

. Interposition Agents: ptrace of

system calls
3500 - -
T 3000 |
o
(&
3
— 2500
)
o .
n
@ 2000 |
Q SESa :'55.‘4:55;;;;: = o
0 Untraced Process ———
g 1900 Sandbox upcall (no TLB flush) -)

Sandbox ufjca” O
Sandbox thread (no TLB flush)

1000 Sandbox thread-—
' Proces§ traced

1500 2000 2500 3000 3500 4000 4500 5000
Requests per second

g m N\

= Experiments on a 1.4GHz Pentium 4 w/ patched Linux 2.4.9
= Ptraced thttpd web server under range of HTTP request loads

® Data and Instruction TLB Misses

Computer Science

140 . - - - - 250
120}
© 200}
" 3
% 100} =
i) an) A
m c
= 60| 2
G © 100}
)5 =
0O 40} 2
20 50}
' User ——
0 o 1, Sandbox
0O 20 40 60 80 100 120 140 160 180 200
Referenced Data Pages Referenced Instruction Pages

* |nter-protection domain communication costs
= Costs of 4-byte messages between two threads using pipes
= Vary working set of one process-private thread while other is in sandbox

" Pipe Latency

Computer Science

Pipe Latency (CPU Cycles x1000)

19

12 ¢ .

11

N
N

B R R R NN
O N © ok

13
12 r;‘-,w\mA:vs'v‘v‘;qf'.‘:‘.ﬁ.-.,vvsf-\va&‘-‘,ﬁ.«»*-,~:«-‘v"“ ot
11

Pipe Latency (CPU Cycles x1000)

User—— 1 i User—— |

$andbo>§

40 60 80 100
Referenced Data Pages

0O 20 40 60 80 100 120 140 160 180 200
Referenced Instruction Pages

20 120

Pipe latency remains lower for RPC with sandboxed thread
» Even when data TLB miss rates are similar
NOTE: d-TLB sizes simulated by thread reading 4 bytes of data from addresses

spaced 4160 bytes apart. i-TLB sizes simulated using relative jumps to
instructions 4160 bytes apart.

» Conclusions

Computer Science

= Sandboxed extensions can improve performance of
traditional services (e.g., ptrace)

= |PC costs reduced due to reduction in thread
context-switching overheads

* No need to flush/reload TLB entries when switching
between a sandboxed thread and process private
address space

» System Service Extensions

= Can we implement system services in the sandbox?

= Here, we show performance of a CPU service
manager (CPU SM)

= Attempt to maintain CPU shares amongst real-time

processes on target in presence of background
disturbance

» Use a MMPP disturbance w/ avg inter-burst times of 10s
and avg burst lengths of 3 seconds

* CPU SM runs a PID control function to adjust thread
priorities

CPU SM: User-level Process

60 1 I L 1 f 1 1 1 1

50 u Pl -
Disturbance

40 -

30

% of CPU

..........

20 H

10 {

[4 1 [}
1 1 : 1]
1 H I - 1 i
\ H1 1 A
1 H | Y N | -, > 4 1
| A | H . HE | S LA S B H [T
I B AR S| B A R N N Y St BN .
\ [PR R N FC AN SRR S 4] HO Y -
) i - ENE :] i *
Fl K H H] H
! ENH E ; A H
] i : E
i 3 4
i ifi
1 1 1 1 1 1 1

O 10 20 30 40 50 60 70 80 90 100
time (seconds)

CPU SM: Sandbox Thread

60 1 I L 1 I 1 1 1 1

50 u Pl -
Disturbance

40 -

30-\ .

== i = . A
| / l; \ S AN 7 Y R [PO -
’ \ ’ , \ N7] i r
/ A [P - AN \ \
1 1 x v\ H il 1 1 1
\ il p v i 1 f \
| \ o i ! i 1 q 1
H THN 1
1 HI N \ t \ 1
1 H i] [e ¥ !

% of CPU

I i v 1
1 1 1 ‘;] 1
I 1 A 1 ! !
i 1 EalE & ' i
i 1 H| HE! A s 1]
] O R H | EEEE a5 W, AR | P, Fe P oA A A P N YL
R & R A S FERRNR WY N N A AR WA SR R -
-I_:': Vi | PRV AR N SN I SRR TR S oW WYV Y A Y
: i Y H H 3 : H :

O 10 20 30 40 50 60 70 80 90 100
time (seconds)

CPU SM: Pure Upcall

% of CPU

60

50

40

30

20

10

1 1 1 1 1 1 1 I:)3I 1
P2
u Pl -
Disturbance
O 10 20 30 40 50 o0 70 80 90 100

time (seconds)

CPU SM: Kernel

% of CPU

60 1 1 1 1 1 1 1 1 1
P3 ——
P2 e
50 L Pl -
Disturbance
40 | -
30 v 7 .
20 o ‘\'Il """""""""""""""""""""""""""""""" T
O i 1 1 1 1 1 1 1 1

10 20 30 40 50 60 70 80 90 100
time (seconds)

» Efficient Communications Lo jout?

Computer Science

= Aim to extend sandbox with features to allow direct
access to hardware

= First step: provide support for efficient
communication between sandbox and NIC

* Avoid data copying via kernel
= Similar to U-Net

= Unlike U-Net, do not need special hardware for “zero
Copy”

8 End-system Architecture 7%

()
ALl o H pr
R e <

Computer Science

USER LEVEL
SANDBOX REGION
*App-specific routing & overlay management
[Main driver} *Resource monitoring functions
‘ SPAS
[Stb drlver} HOST KERNEL

From network

To network

=1 Communication Performance

Computer Science

= Preliminary tests use UML to implement networking
stack in the sandbox

= Results show data forwarding between socket pairs
done at user-level is almost as good as using khttpd
In the kernel
» Sandboxed network protocol stack yields increased

throughput compared to using UML in a traditional
process

= Summary

Computer Science

= Aim Is to use ideas from overlay routing and user-
level sandboxing to implement an Internet-wide
distributed system

* Provide efficient support for app-specific services and
scalable data delivery

