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™ Introduction

Computer Science

* Internet growth has stimulated development of
data- rather than CPU-intensive applications

" e.g., streaming media delivery, interactive distance
learning, webcasting (e.g., SHOUTcast)

= Peer-to-peer (P2P) systems now popular
= Efficiently locate & retrieve data (e.g., mp3s)
" e.g., Gnutella, Freenet, Kazaa, Chord, CAN, Pastry

= To date, limited work on scalable delivery &
processing of (potentially real-time) data streams



® Introduction (2) FIvN:
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= Aim:
* Build an Internet-wide distributed system for delivery &
processing data streams
* Implement logical network of end-systems

= Support multiple channels connecting publishers to
1000s of subscribers w/ own QoS constraints

= Rationale:

* Narada provided case for end-system multicast
= Rely only on IP uni-cast routing at network-level

» Overlay routing provides flexibility for app-specific data
processing
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® Research Goals

= |ogical overlay topologies for scalable QoS-
constrained routing

* Leverage ideas from P2P systems & parallel (NUMA)
computer architectures

* Combine scalable properties of P2P systems such as
Chord, CAN & Pastry w/ service guarantees of systems
such as Narada

= Efficient end-host software architecture, supporting:
» App-specific stream processing / routing
* Resource monitoring
= Overlay management



» Contributions

= (1) Analysis of k-ary n-cubes for scalable overlay
topologies
= Optimized initial configurations
= Comparison of routing algorithms

* Dynamic host relocation in logical space based on QoS
constraints

= (2) End-host architecture design
= Efficient support for app-specific service extensions
* Provide safety
* Avoid context-switch overheads
* Reduce communication costs



» Part 1: Scalable Overlay Topologies
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= NUMA architectures have scalable interconnects
" e.g., hypercubes — SGI Origin 2/3000

= P2P systems based on distributed hashing implicitly
construct torus or k-ary-n-cube topologies
connecting end-hosts

" e.g., Chord, CAN, Pastry

* For a system of M hosts:
* O(log M) routing state per node

* O(log M) hops between source and destination to find
desired info



» Overlay Routing Example
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= Qverlay iIs modeled as an undirected k-ary n-cube graph

* An edge In the overlay corresponds to a uni-cast path in the
physical network
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1 Definition of k-ary n-cube Graphs yn
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= A k-ary n-cube graph is defined by two parameters:
* n =#dimensions

* k =radix (or base) in each dimension

= Fach node Is associated with an identifier
consisting of n base-k digits

= Two nodes are connected by a single edge Iff:
* their identifiers have n-1 identical digits, and

* the ith digits in both identifiers differ by exactly 1
(modulo k)



= Properties of k-ary n-cube Graphs -
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= M = k" nodes in the graph
= [f k=2, degree of each node is n
= [f k> 2, degree of each node is 2n

= \Worst-case hop count between nodes:
= nLk/2]
= Average case path length:
= A(k,n) = nl(k%4) | 1/k
= Optimal dimensionality:
"n=|nM
= Minimizes A(k,n) for given k and n



" Logical versus Physical Hosts

Computer Science

= Mapping between physical and logical hosts is not
necessarily one-to-one

= M logical hosts
* m physical hosts

= For routing, we must have m <= M
» Destination identifier would be ambiguous otherwise

= |[f m <M, then some physical host(s) must perform
the routing functions of multiple logical nodes



»  M-region Analysis
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= Hosts joining / leaving system change value of m

* |nitial system is bootstrapped with overlay that optimizes
A(k,n)

= et M-region be range of values for m for which
A(k,n) is minimized

= Consider two graphs corresponding to (k,,n,) and
(K2,15):
= Suppose k;n; = k,n,and k;"t > k,"2
* The graph corresponding to (k,,n,) is desirable
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® Calculating M-regions

Calculate_M-Region(int m) {
=1, k=]=2;
while (M[i,j] < m) i++; // Start with a hypercube
n=i
maxM = M[i,JJ; . :
minA = A[i,jl; Try to find the
incj = 1; largest M such that:

while (i > 0) { - m<=M&A(K,n)is

] ¥=1nCj; 1--; oL

if ((A[i,j] <= minA) && (M[i,j] > maxM)) { minimized
incj = 1;
maxM = M[i,j];
minA = A[i,j];
n=ik=j

}

else incj = 0;

}

return k, n;
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™ Overlay Routing

= Three routing policies are investigated
* Ordered Dimensional Routing (ODR)
= Random Ordering of Dimensions (Random)
* Proximity-based Greedy Routing (Greedy)

* Forward message to neighbor along logical edge with
lowest cost that reduces hop-distance to destination

= EXperimental analysis done via simulation written
In C
= 5050 routers in physical topology (transit-stub)
* 65536 hosts
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* Overlay Routing: 16D Hypercube 8
versus 16-ary 4-cube W a8
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" Adaptive Node Assignment
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= |nitially, hosts are assigned random node IDs

= Publisher hosts announce availability of channels
» Super-nodes make info available to peers

= Hosts subscribing to published channels specify
QoS constraints (e.g., latency bounds)

= Subscribers may be relocated in logical space
* to improve QoS

* by considering “physical proximities” of publishers &
subscribers



Adaptive Node Assignment (2)

el oo

[, |

Subscribe (Subscriber S, Publisher P, Depth d) {
If (d == D) return;

find a neighbor i1 of P such that
l.cost(P) is maximal for all neighbors

if (S.cost(P) < i.cost(P))

swap logical positions of i and S;
else

Subscribe (S, i, d+1);
}

e Swap S with node i1 up to D logical hops from P

Computer Science



=1 Simulation Results indli %
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= Randomly generated physical topology with 5050
routers

= M=65536 and topology is a 16D hypercube

= Randomly chosen publisher plus some number of
subscribers with QoS (latency) constraints

= Adaptive algorithm used with D=1

= Greedy routing performed with & without adaptive
node assignment
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=1 Success Ratio vs Group Size il Lo
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= Adaptive node assignment shows up to 5% improvement
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* Normalized lateness =0, If S.cost(P) <=c¢
= Normalized lateness = (S.cost(P)-c)/c, otherwise
= Adaptive method can yield >20% latency reduction



»1 Adaptive Node ID Assignment
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= |nitial results look encouraging

= Improved performance likely if adaptation considers
nodes at greater depth,D, from publishers
= EXpts only considered D=1

= Adaptive node assignment attempts to minimize

maximum delay between publishers and
subscribers



™ Link Stress

= Previously, aimed to reduce routing latencies

= Important to consider physical link stress:

= Avg times a message is forwarded over a given link, to
multicast info from publisher(s) to all subscribers

= New “split-based greedy” alg:
= Use greedy routing BUT...
= At each hop check neighbor to see if already a subscriber

* |f so, route via neighbor if total delay from publisher to
subscriber is reduced, compared to pure greedy
approach



» Link Stress Simulation Results
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= 16D hypercube overlayed on random physical
network

= Randomly chosen publisher plus varying groups of
subscribers

= Multicast trees computed from union of routing
paths between publisher and each subscriber

= Compare greedy versus “split-based” greedy algorithm
= Compare avg physical link stress:
(# times message is forwarded over a link)

(# unique links required to route msg to all subscribers)



=8 Lateness versus Group Size m:ﬁ.
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* Variations in lateness (for pairs of columns) due in part to
random locations of subscribers relative to publisher



=8 Link Stress versus Group Size v
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= “Split-based” greedy performs worse as group size increases

= Appears to be due to slightly greater intersection of physical links for
multicast tree (i.e. fewer physical links)
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»1 Conclusions

Computer Science

= Analysis of k-ary n-cube graphs as overlay
topologies
= Minimal average hop count

= M-region analysis determines optimal values for k
and n

= Greedy routing
* Leverages physical proximity information

= Significantly lower delay penalties than existing
approaches based on P2P routing

= Adaptive node ID re-assignment for satisfying
QoS constraints
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= Future and Ongoing Work

Computer Science

= Further investigation into alternative adaptive
algorithms

= How does changing the overlay structure
affect per-subscriber QoS constraints?

= Currently building an adaptive distributed
system

* QoS guarantees of NARADA
= Scalablility of systems such as Pastry/Scribe
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» Part 2: End-system Architecture

= Aim is to modify COTS systems to support efficient
methods of application and system extensibility

= \Why?
* To support efficient app-specific routing & processing of
data on end-systems also used for other purposes

= Approach
» User-level sandboxing:

* Provide efficient method for isolating and executing
extensions

* Provide efficient method for passing data between
user-level and network interface



» User-Level Sandboxing (ULS)
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= Provide safe environment for service extensions
= Separate kernel from app-specific code

= Use only page-level hardware protection

* Rely on type-safe languages e.g., Cyclone for memory
safety of extensions, or require authorization by trusted
source

= Approach does not require special hardware
protection features
= Segmentation
* Tagged TLBs
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& Sandbox Region Shared by
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™  ULS Implementation

= Modify address spaces of all processes to contain
one or more shared pages of virtual addresses

» Shared pages used for sandbox
* Normally inaccessible at user-level

= Kernel upcalls toggle sandbox page protection bits &
perform TLB invalidate on corresponding page(s)

= Current x86 approach
= 2x4MB superpages (one data, one code)
= Modified libc to support mmap, brk, shmget etc
* ELF loader to map code into sandbox
» Supports sandboxed threads that can block on syscalls
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# ULS Implementation (2) 7 it
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= Fast Upcalls

* Leverage SYSEXIT/SYSENTER on x86
= Support traditional IRET approach also

= Kernel Events

* Generic interface supports delivery of events to specific
extensions

= Each extension has its own stack & thread struct

» Extensions share credentials (including fds) with
creator

* Events can be queued ala POSIX.4 signals



» End-hosts “Big Picture”
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» Preliminary Performance Studies

= (a) Interposition
= Simple syscall tracing extensions based on ptrace
= Compare tradition ptrace implementation against:
» Upcall handler implementation in sandbox
» Kernel-scheduled thread in sandbox

= (b) Inter-Protection Domain Communication
* Look at overheads of IPC between thread pairs
» Exchange 4-byte messages
» Vary the working set of one thread to assess costs



. Interposition Agents: ptrace of

system calls
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= Experiments on a 1.4GHz Pentium 4 w/ patched Linux 2.4.9
= Ptraced thttpd web server under range of HTTP request loads



® Data and Instruction TLB Misses
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* |nter-protection domain communication costs
= Costs of 4-byte messages between two threads using pipes
= Vary working set of one process-private thread while other is in sandbox



" Pipe Latency
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Pipe latency remains lower for RPC with sandboxed thread
» Even when data TLB miss rates are similar
NOTE: d-TLB sizes simulated by thread reading 4 bytes of data from addresses

spaced 4160 bytes apart. i-TLB sizes simulated using relative jumps to
instructions 4160 bytes apart.



» Conclusions
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= Sandboxed extensions can improve performance of
traditional services (e.g., ptrace)

= |PC costs reduced due to reduction in thread
context-switching overheads

* No need to flush/reload TLB entries when switching
between a sandboxed thread and process private
address space



» System Service Extensions

= Can we implement system services in the sandbox?

= Here, we show performance of a CPU service
manager (CPU SM)

= Attempt to maintain CPU shares amongst real-time

processes on target in presence of background
disturbance

» Use a MMPP disturbance w/ avg inter-burst times of 10s
and avg burst lengths of 3 seconds

* CPU SM runs a PID control function to adjust thread
priorities



CPU SM: User-level Process
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CPU SM: Sandbox Thread
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CPU SM: Pure Upcall
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CPU SM: Kernel
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» Efficient Communications Lo jout?
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= Aim to extend sandbox with features to allow direct
access to hardware

= First step: provide support for efficient
communication between sandbox and NIC

* Avoid data copying via kernel
= Similar to U-Net

= Unlike U-Net, do not need special hardware for “zero
Copy”



8 End-system Architecture 7%
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=1 Communication Performance
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= Preliminary tests use UML to implement networking
stack in the sandbox

= Results show data forwarding between socket pairs
done at user-level is almost as good as using khttpd
In the kernel
» Sandboxed network protocol stack yields increased

throughput compared to using UML in a traditional
process



= Summary
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= Aim Is to use ideas from overlay routing and user-
level sandboxing to implement an Internet-wide
distributed system

* Provide efficient support for app-specific services and
scalable data delivery



