Designing Systems for Dependability and
Predictability

»

Richard West

Boston University
Boston, MA
richwest@cs.bu.edu

» Introduction: Existing OSes

» Today’s world of operating systems:
= Desktop
* e.g., MS Vista, Mac OS X, Linux
= Server
* e.g., Solaris, Linux
* Embedded (Real-time, mobile etc)
" e.g., VXWorks, QNX, VRTX, Symbian, PaimOS...

» Revisiting an old idea: Virtualization
= VM kernels and monitors
" e.g., VMware ESX Server, Xen

o) Virtualization — What's the Big Deal?

= Virtualization is BIG!
» Revisiting an idea from 1960s (e.g., IBM s/360)

= New chips from Intel (VT/Vanderpool), AMD (Pacifica)
and others for CPU virtualization

= Good for server consolidation, disaster recovery,
prototyping / sandboxing...

= BUT...
* The VM kernel is the new OS
= |s it really different from other OS kernels?
* e.g., micro-kernels

» So Not Much New Then...

» What's missing with today’s OSes?

(1) Semantic gap
= Dbetween application needs and service provisions of
the system

(2) Time management
= time is not a first-class resource

(3) Static system structure

= Are you a “micro-kernel” guy or a member of the
church of monoliths?

» Focus on Embedded Systems

= Currently numerous proprietary systems for RT/embedded
computing
" e.g., ONX, PSOS, LynxOS, VxWorks, VRTX
= Many diverse hardware platforms
= ARM, x86, PowerPC, Hitachi SH, etc

»= Focus on small footprints, fast context-switching, static
priority/preemptive scheduling, priority
Inheritance/synchronization, limited / no VM, off-line
profiling tools for WCET analysis

w1 COTS/ Open-Source Systems

= COTS hardware and open-source systems emerging

= Eliminate costs of proprietary systems and custom
hardware

= e.g., Linux use in embedded/RT settings

= BUT...
= Problems as mentioned earlier:
= Semantic gap
* Time management
= Static structure

») Bridging the “Semantic Gap’

= There is a semantic gap’ between the needs of applications
and services provided by the system

* Implementing functionality directly in application processes
= Pros: service/resource isolation (e.g., memory protection)
= Cons:
= Does not guarantee necessary responsiveness
= Must leverage system abstractions in complex ways

* Heavyweight scheduling, context-switching and IPC
overheads

» Bridging the “Semantic Gap’ Cont.

= Other approaches:
= Special systems designed for extensibility

= e.g., SPIN, VINO, Exo-/uy-kernels (Aegis / L4), Palladium

= Semantics of new services restricted by those upon which they
are built

»" e.g., IPC costs - no timeliness / predictability guarantees on
service invocation

» Single-address space approaches

= Do not focus on isolation of service extensions from core kernel
(e.g., RTLinux, RTAI) or predictability (e.g., Singularity)

»! Time Management

* Inherent unpredictability in existing systems

= Arbitrary orderings of accesses to shared resources
requires synchronization

» Possibly unbounded blocking delays

= Basic primitives provided by system but may be
iIncorrectly used by programs!

» Deadlocks & races may still occur

* |nterrupts, paging activity, unaccounted time in system
services (scheduling / dispatching / IPC)

= Crosstalk b/w different threads due to resource sharing
(e.g., cache, TLB impacts)

» Time Management (cont.)

= Time IS not a first-class resource

= APIs don’t allow specification of time bounds on service
requests (e.g., read / write 1/O requests)

= Not even implicit specification based on urgency /
Importance of a task

= Scheduling / resource mgmt policies are not explicitly
temporal

» Static System Structure

= Monolithic systems (e.g., Linux) are inflexible to changes in
structure and services they support

= Do support kernel modules (mostly for device drivers),
but...

= Not easily customizable with app-specific services

= No support for extensions to override system-wide
service policies

= While micro-kernels support extensibility, the organization of
system services Is statically-defined

= system designer typically determines which services are
available and how they are isolated

= |s this organization suitable for all applications?

=») Static System Structure (cont.)

» Resource contention and changes in availability affect
predictability of service requests

* |PC costs, scheduling / dispatching / context-switching /
TLB flushing, cache usage patterns, etc

= affect time to complete service requests

= A static organization of services cannot adapt to dynamic
variations in resource usage and service invocation patterns

= Example: App-Specific System Structure

Data acquisition Robot
Exploration

Communication

.

Motor / sensor control

=

Planet surface Earth

» Service Characteristics

= Different timing requirements / criticalities in terms of late or missed
processing

" e.g., can miss some data (image) acquisition but sensor & motor

control operations are more critical

= Safety / dependability trade-offs

Scheduling functionality isolated from services to collect, process &
communicate data

Communication functionality must be maintained in case of need for
remote reboot or changes to mission objectives

Data gathering service not so safety critical

" e.g., direct access to a buffer (and overruns) not catastrophic, as
long as base services remain functional

Design systems around flexibility in system structure

o) Example: Intelligent Home Network

= www.epa.gov/ne/pr/2004/jan/040110.html

= Study suggested that by replacing 5 most used light-
bulbs w/ energy efficient bulbs in every US household
could reduce electricity usage by 800 billion KWh per
year

= Equivalent to $60/yr per homeowner or output from 21
power plants per year

= Would reduce one trillion pounds of greenhouse gases
that cause global warming

= Allow homeowners to control various appliances according
to desired energy plan

w1 Example: Intelligent Home (cont.)

» Homeowner service may qguery service providers billing service BUT
should not be able to change a billing policy

» Gas and Electric Co. may share billing / appliance monitoring services if
part of the same parent company

= Appliance control & usage accounting needs to be predictable — avoid
customer mis-charges for appliance usage

Homeowner
Configurable Energy Plan

Electric Co. Gas Co.
Accnting / Billing Service Accnting / Billing Service

Base services
(Device mgmt)

»! Case Studies

(1) Improving time management (predictability) in existing
systems

* e.g., Process-aware interrupt scheduling and accounting
In Linux

(2) Mutable Protection Domains (MPDs)

= Dynamically reorganize system component services to
meet safety (isolation) and predictability (resource)
requirements

(1) Improving Time Management (Predictabllity)
In EXisting Systems

Process-Aware Interrupt
Scheduling & Accounting

» Commodity OSes for Real-Time

= Many variants based on systems such as Linux:

» Linux/RK, QLinux, RED-Linux, RTAI, KURT Linux, and
RT Linux

* e.g., RTLinux Free provides predictable execution of
kernel-level real-time tasks

* Bounds are enforced on interrupt processing
overheads by deferring non-RT tasks when RT tasks
require service

= NOTE: Many commodity systems suffer
unpredictability (unbounded delays) due to interrupt-
disabling, e.g., in critical sections of poorly-written
device drivers

=) The Problem of Interrupts

= Asynchronous events e.g., from hardware completing 1/0 requests and
timer interrupts...

= Affect process/thread scheduling decisions

= Typically invoke interrupt handlers at priorities above those of
processes/threads

= |.e., interrupt scheduling disparate from process/thread
scheduling

= Time spent handling interrupts impacts the timeliness of RT tasks and
their ability to meet deadlines

= QOverhead of handling an interrupt is charged to the process that is
running when the interrupt occurs

= Not necessarily the process associated (if any) with the interrupt

= Goals

= How to properly account for interrupt processing and
correctly charge CPU time overheads to correct process,
where possible

= How to schedule deferrable interrupt handling so that
predictable task execution is guaranteed

= Interrupt Handling

* Interrupt service routines are often split into “top” and
“bottom” halves

» |deais to avoid lengthy periods of time in “interrupt
context”

= Top half executed at time of interrupt but bottom half may
be deferred (e.g., to a schedulable thread)

'{ Process-Independent Interrupt Service

» Traditional approach:

@-

@

(3)s

I/O service request via kernel

OS sends request to device
via driver code;

Hardware device responds w/
an interrupt, handled by a
“top half”

Deferrable “bottom half”
completes service for prior
Interrupt and wakes waiting
process(es) — Usually runs w/
Interrupts enabled

A woken process can then be
scheduled to resume after
blocking 1/0O request

Processes

Interrupt handler)

Bottom Halves

:@

Top Halves

.
interrupts J

O\
(2)
Hardware

» Example: Linux

= Avoid undue impact of interrupt handling on CPU time for a
running process

= Execute a finite # of pending deferrable fns after top half
execution (in “interrupt context”)

» Linux deferrable fns: softirgs and tasklets (bottom
halves now deprecated)

= |[terate through softirg handling a fixed number of times
to avoid undue delay to processes but good
responsiveness for interrupts (e.g., via network)

= Defer subsequent bottom halves to threads
= Awaken “ksoftirgd _CPUN” kernel thread

=% Linux Problems

= A real-time or high-priority blocked process waiting on 1/O
may be unduly delayed by a deferred bottom half

= Mismatch between bottom half priority and process

» [nterrupt handling takes place in context of an arbitrary
process

= May lead to incorrect CPU time accounting

= Why not schedule bottom halves in accordance with
priorities of processes affected by their execution?

» For fairness and predictability: charge CPU time of interrupt
handling to affected process(es), where possible

! Process-Aware Interrupt Handling

= Not all interrupts associated with specific processes
= e.g., timer interrupt to update system clock tick, IPlIs...

= Not necessarily a problem if we can account for such
costs in execution time of tasks e.g., during scheduling

= |/O requests via syscalls (e.g., read/write) associate a
process with a device that may generate an interrupt

= For this class of interrupts we assign process priorities to
bottom half (deferrable) interrupt handling

= Allow top halves to run with immediate effect but consider
dependency between bottom halves and processes

=¥ Bottom Half Scheduling / Accounting

= Modify Linux kernel to include interrupt

accounting Interrupt handler
= TSC measurements on bottom halves BH accounter

= Determine target process for interrupt

processing and update system time
accordingly BH scheduler

Top Halves

Bottom Halves

= BH/interrupt scheduler immediately
between do_irq() and do_softirqg()

* Predict target process associated with
interrupt and set BH priority
accordingly

= Interrupt Accounting Algorithm

= Measure the average execution time of a bottom half (BH)
across multiple BH executions

*= On x86 use rdtsc since time granularity typically < 1 clock
tick
» Measure total interrupts processed and # processed for
each process in 1 clock tick

= Adjust system CPU time for processes due to mischarged
Interrupt costs

= For simplicity, focus on interrupts for one device type (e.g.,
NIC) but idea applies to all I/O devices

= System CPU Time Compensation (1/2)

N(t) - integer # interrupts whose total BH execution time = 1
clock tick (or jiffy)

= Actually use an Exponentially-Weighted Moving Avg for
N(t), N'(t)
= N'(t) = (1-y)N'(t-1) + yN(t) |0 <y<1

= m(t) - # interrupts processed in last clock tick
= X,(t) - # unaccounted interrupts for process P,

= Let Pi(t) be active at time t
= m(t) — x(t) (if +ve) is # interrupts overcharged to P,

» System CPU Time Compensation (2/2)

= At each clock tick (do_timer) update accounting info as
follows:

Xi(t) = x(t) — m(t); // current # under-charged If +ve
sign = sign of (xi(t));
while (abs(xi(t)) >= N(t)) // update integer # of jiffies
= system_time(P;) += 1*sign;
= timeslice(P;) -= 1*sign;
" Xi(1) = x;(t) — N(t);
m(t) = 0;

Example: System CPU Time Compensation

Ll R T A N PR PO R Y T

P2 P1

X,(1):-3+2=-1, X,(2): -1+ 1=0,
X;3(3):-2+2=0, X4(4) : -3+ 1=-2,

X4(5): -2+ -4+ 0=-6, X,(6):0+-2+2=0,
X(7):-1+-2+4=1, x4(8):0+-3+4=1,

' Interrupt Scheduling Algorithm

= (1) Find candidates associated with interrupt on device, D
= |n top half can determine D

= A blocked process waiting on D may be associated with
the interrupt

= We require I/O requests to register process ID and
priorities with corresponding device

= (2) Predicting process associated with interrupt on D

= Atend of top half select highest priority (pyaxp)) from
processes waiting on D

» Use a heap structure for waiting processes
= (3) Compare priority of BH with running process
= If (pmax(D) - pBH) > Peurrent FUN BH else Process

» Interrupt Scheduling Observations

= No need for ksoftirgd_CPUn
= Run interrupt scheduler at time of process scheduling

» |f pending BH highest prio run in context of current
process, else do switch to highest prio process

= Setting prio of BH (pgy) to highest process prio (Pyaxpy) for
device D

= Rationale: no worse than current approach of always
preferring BH (at least for finite occurrences) over
process

= Simple priority scheme can provide better predictability
for more important processes

= Example: Interrupt Scheduling (1/3)

= t,: P;issues I/O request and blocks, allowing P, to run
= {,: top half interrupt processing for P, in P,’s context

= t,: top half completes

= t,-t:: bottom half runs

= t.: P, wakes up and runs

Traditional case
tl t5 t6

'
Process| P; %%V% / P,

Interrupt Handler - Ity — | IB;

Hardware t, 't t4|

w1 Example: Interrupt Scheduling (2/3)

= Previous case: top and bottom half processing charged to P,
= Our approach: correctly charge bottom half processing to P,

% % Z
Process| P @ W Z Py
Interrupt Handler Ity — | IB;

Hardware t, | t, t,

w1 Example: Interrupt Scheduling (3/3)

= |If P, Is higher priority than P, let P, finish and defer the BH
for P,

Process| P, %7 /A P,

v

Interrupt Handler It — | 1B,

Hardware t, | t, t,

=1 System Implementation

* |Implemented scheduling & accounting framework on top of
existing Linux bottom half (specifically, softirq) mechanism

= Focus on network packet reception (NET_RX SOFTIRQ)

= Read TSC for each net_rx_action call as part of softirq

= Determine # pkts received in one clock tick

= udp_rcv() identifies proper socket/process for arriving pkt(s)

* Modify account_system_time() to compensate processes

= Interrupt scheduling code implemented in do_softirq()
= Before call to softirg handler (e.g., net_rx_action())

») Linux Control Path for UDP Packet Reception

bind() read() read()
Connect() I’eCV() .. I'S reCV()
User recvirom() recvirom()
]] A
v v
sys_ bind() sock_recvmsg())
sys_ connect() .
sock_common_recvmsg() wakeup_interruptible()
. sock_def _readable() ____, skb_copy_datagram_iovec()
udp_recvmsg() 4
udp_queue_rcv_skb() skb_recv 'datagram()

skb_recv_datagram()

Wait_for_packet() e

(block) v,

!

............................ [T PP Wait_for_packet()

netif_receive_skb() (wake up)

(device specific poll fn)

net_rx_action()

__raise_softirg_irqoff ----» g softirq()

netif _rx_schedule(dev)

T

(device specific irg handler)

Kernel
T

Hardware

=% Experiments

= UDP server receives pkts on designated port

* CPU-bound process also active on server to observe
effect of interrupt handling due to pkt processing

= UDP client sends pkts to server at adjustable rates

» Machines have 2.4GHz Pentium IV uniprocessors and
1.2GB RAM each

= Gigabit Ethernet connectivity
= Linux 2.6.14 with 100Hz timer resolution

= Compare base 2.6.14 kernel w/ our patched kernel running
accounting (Linux-1A) and scheduling (Linux-ISA) code

=¥ Accounting Accuracy

= CPU-bound process set to real-time priority 50 In
SCHED_ FIFO class

» Repeatedly runs for 100 secs & then sleeps 10 secs
= UDP server process non-real-time
= UDP client sends 512 byte pkts to server at constant rate

» Read /proc/pid/stat to measure user/system time

= Accounting Accuracy Results

14000

B Linux
12000/ [Linux-1A i
10000gg P!

8000 - - 2

6000 N

4000

2000

0

42 8.6 16.6 31.1 54.1 87.3124.9 218
Packet Sending Rate (10° pkt/s))

Jdiffies Accounted for CPU-bound Proces
|

= Optimal case (Opt) is total user/system-level CPU time that should be charged to
CPU-bound process discounting unrelated interrupt processing

= Linux-lA close to optimal but original Linux miss-charges all interrupt processing

» Ratio of Accounting Error to Optimal

60 —+— Linux
50| ==—- Linux-1A
>
— 40r
o
L
= 30
S
S 20| .
o RN
3 N
U4 \
< 107)l \\
e ol RS
j ______ \\1-~ "‘4*‘ ~~~~~

4.2 86 166 311 54.1 873 124.9 218
Packet Sending Rate (10 pkt/s))

= Error as high as 60% in Linux
» Less than 20% and more often less than 5% using Linux-IA

»! Absolute Compensated Time

Bl CPU-bound B
- I UDP-Server(a)
____luDP-Server(b)

N
o
o
o

30007

2000

=
o
o
&)

Abs(Compensated Time) (jiffies)

omm 1 II(‘ II

4.2 8.6 16.6 31.1 54.1 87.3 124.9 218
Packet Sending Rate (10° pkt/s))

= UDP-Server(a) — charged time for interrupts over 100s of each 110s period of
CPU bound process

= UDP-Server(b) — charged time over full 110s period
= CPU-bound - system service time deducted from CPU-bound process

» Bottom Half Scheduling Effects

(2]

(D)

S -

x 12000 | I Linux

= _|Linux-ISA

3100000 o o o o o -
<

2 8000

@)

2 6000

©

(D)

£ 4000

(7))

5

S 2000

(7p]

G_) O I I I

= 42 86 16.6 31.1 54.1 87.3124.9 218
* Packet Sending Rate (10° pkt/s))

= Linux — CPU-bound process affected by interrupts

» Linux-ISA — defer bottom-half interrupt processing until (higher priority)
real-time CPU-bound process sleeps

* Time Consumed by Interrupts (every
110s)

5000r- \ \
B Linux

4000 _ |Linux-ISA
3000
2000
1000+ I I
om. B I i H

42 8.6 16.6 31.1 54.1 87.3 124.9 218
Packet Sending Rate (103 pkt/s))

Jiffies Consumed by Interrupts

* Time consumed by CPU-server every 110s handling interrupts
= Linux-ISA — bottom half handling deferred to interval [100-110s]
» Linux — bottom half processing not deferred

») UDP-Server Packet Reception Rate

. 12 ‘

GE) —+— LInux

Q10 ~*" Linux-ISA .
' — o 5 = %

% jl- ------ Fm————— e ————— —t—————— —t—————— -Iu\N

> 8 T . 1
B \\\\\ P'
_c ~,
3 6 »*
=

S

3 4 |
X

12

=< 2 .
o

=3

2.2 86 16.6 31.1 54.1 87.3 124.9 218
Packet Sending Rate (103 pkt/s))

i Bursty Packet Transmission Experiments

= UDP-client sends bursts of pkts w/ avg geometric sizes of
5000 pkts

= Different avg exponential burst inter-arrival times

» CPU-bound process is periodic w/ C=0.95s and T=1.0s
= Runs for 100s as before
» Deadline at end of each 1s period

) Deadline Miss Rate

100 - +
—— Linux

e\o/ g0l—— Linux-1SA
()]

3

o 00

0

=

.GE) 40t

5

S

S 20t

32 86 166 311 541 873 1240 218
Packet Sending Rate (103 pkt/s))

= Linux-ISA — no missed deadlines for CPU-bound process

= Bottom half interrupt handling deferred until CPU-bound process
completes each period

'{ Interrupt Overheads (100s interval)

I Linux

~JLinux-ISA
1500+
1000~
500+ I
' B 11

42 8.6 16.6 311 54.1 87.3 124.9 218
Packet Sending Rate (103 pkt/s))

N N

o o)

o o

o o
I

Jiffies Consumed by Interrupts

= Performance of UDP-server

=
N

—+— Linux
- ==+ Linux-ISA

=
o

-
-
-
-
-

N\
NN
\N
~

09]

\\
~
~,
\\
~,

IN

N

% Pkts Received by UDP-server
o)

2 86 16.6 31.1 54.1 87.3 1249 218
Packet Sending Rate (10° pkt/s))

O

= CPU-bound process cannot finish executing in 1s period when interrupt
overheads are high
= Always competes for CPU cycles, starving lower priority UDP-server

» Linux-ISA guarantees “slack” time usage for UDP-server

= Conclusions and Future Work

= Explore dependency between processes and interrupts

= Focus on bottom half scheduling and accounting
= Compensate processes for time spent in bottom halves
= Charge correct processes benefiting from interrupts

= Unify the scheduling of bottom half interrupt handlers w/
processes

* Improve predictability of real-time tasks while avoiding
undue interrupt-handling overheads

= Consequently, benefit non-real-time tasks also!

= Future? Better predictors of process(es) associated w/
Interrupts for scheduling purposes

* [nterrupt management on multi-processors/cores

(2) Mutable Protection Domains

Towards a Component-based
System for Dependable and
Predictable Computing

=1 Complexity of Embedded Systems

= Traditionally simpler software stack
= |imited functionality and complexity
» focused application domain

= Soon cellphones will have 10s of millions of lines of code
= downloadable content (with real-time constraints)

* Trend towards increasing complexity of embedded systems

w1 Consequences of Complexity

* Run-time interactions are difficult to predict and can cause
faults

= accessing/modifying memory regions unintentionally
= corruption to data-structures

= deadlocks/livelocks

* race-conditions

» Faults can cause violations in correctness and predictability

» Designing for Dependability & Predictability

= Given increasing complexity, system design must anticipate
faults

= Memory fault isolation: limit scope of adverse side-effects of
errant software

» identify and restart smallest possible section of the
system

= recover from faults with minimal impact on system goals
= employ software/hardware techniques

Preserve system reliability and predictability in spite of

misbehaving and/or faulty software

® Trade-offs in Isolation Granularity

Increased Isolation Reduced Communication Cost

Protection Domains

P S

S —————-—

——— - —— - —— - (e

o e =
T oo oo o o &

9P

—

QD

O

>
7a

\ Components/

Process Isolation User-kernel Isolation Library Isolation

» Static HW Fault Isolation Approaches

= Whatis the “best” isolation granularity?

N ‘ N ' User-level

Kernel-level

= Monolithic OSs
= provide minimal isolation to allow process independence
= large kernel not self-isolated, possibly extensible

= Coarse-grained isolation, but low service invocation cost

») Static HW Fault Isolation Approaches (l1)

= Whatis the “best” isolation granularity?

N ! S ! S ' S ‘| User-level

UIPC Kernel-level

= u-kernels

» segregate system services out of the kernel, interact w/
Inter-Process Communication (IPC)

= finer-grained isolation
» |PC overhead limits isolation granularity

* Finer-grained fault isolation, but increased service
Invocation cost

» Mutable Protection Domains (MPD)

Goal: configure system to have finest grained fault isolation

while still meeting application deadlines

= Mutable Protection Domains (MPDs)

= dynamically place protection domains between
components in response to

= communication overheads due to isolation
= application deadlines being satisfied
= application close to missing deadlines
* |lessen isolation between components
= |axity in application deadlines
* increase isolation between components

=" Mutable Protection Domains (MPD) (Il)

= Mutable Protection Domains appropriate for soft real-time
systems

= Protection domains can be made immutable where
appropriate

" Setup and Assumptions

= System is a collection of components
= Arranged into a directed acyclic graph (DAG)
* nodes = components themselves
* edges = communication between them, indicative of

control flow

» |solation over an edge can be configured to be one of the

three i1solation levels

Protection Domains

0.

,'\'\ _______ /

Components

» Isolation cost and benefit

* |solation between components causes a performance
penalty due to:

(1) processing cost of a single invocation between those
components

(2) the frequency of invocations between those components
—> cost of each isolation level/edge

» |solation levels affect dependabillity
= stronger isolation = higher dependability

» |solation between specific components more important
= debugging, testing, unreliable components, . . .
= benefit of each isolation levels/edge

=) Problem Definition

= For a solution set s, where s, [1{1, . .. ,# isolation levels}
maximize the dependabillity of the system . . .

" l.e., Maximize 2 eqqes DENETit

while meeting task deadlines:

2 MiDedges COStisi < SuUrplus_resources,

for each task in the system (LIk[Itasks)

* Multi-Dimensional, Multiple-Choice
Knapsack

" Maximize 2 ireqqes PENETit,

Subject t0: 2 geqgqes COStig < surplus_resources,
[Jkltasks, s, I {1, ..., max_isolation_level}, UilJedges

= This problem is a multi-dimensional, multiple-choice
knapsack problem (MMKP)

= multi-dimensional - multiple resource constraints

= multiple-choice - configure each edge in one of the
Isolation levels

= NP-Hard problem: heuristics, pseudo-poly dynamic prog.,
branch-bound

»1 One-Dimensional Knapsack Problem

= Effective and inexpensive greedy solutions to one-
dimensional knapsack problem exist

= sort isolation levels/edges based on benefit density
= ratio of benefit to cost

* increase isolation by including isolation levels/edges from
head until resources are expended

.. . but we have multiple dimensions of cost

- Solutions - Reducing Resource
Dimensions

= Compute an aggregate cost for each edge

» single value representing a combination of the costs for
all tasks for an edge: Lk, cost, — agg_cost;

= some tasks very resource constrained, some aren’t

= ntelligently weight costs for task k to compute aggregate
cost

= Solutions - HEU

= (1) compute aggregate cost for each isolation level/edge

* (2) include isolation level/edge with best benefit density in
solution configuration

(3) goto 1 until resources expended

* Fine-grained refinement of aggregate cost

= Re-compute once every time an isolation level/edge is
added to the current solution configuration

Solutions - coarse and oneshot
Reflnement

(1) compute aggregate cost for each isolation level/edge
(2) sort by benefit density

(3) include isolation level/edge from head

(4) goto 3, until resources expended

(5) re-compute aggregate costs based on resource surpluses with
solution configuration

(6) goto 2 N times and return highest benefit configuration

N > 1. coarse-grained refinement
= Re-compute once per total configuration found
= Execution time linearly increases with N
N = 1: oneshot
= Very quick
= No aggregate cost refinement

i Solution Runtimes

Runtime (microseconds)

1000000

100000

10000

1000

100

10

100

500 1500
Number of Isolation Instances

3000

B oneshot
B coarse
Ofine

» System Dynamics

= System is dynamic

= Changing communication costs over edges as threads
alter execution paths between components

= Changing resource availabilities as threads vary intra-
component execution time

= Per-invocation overheads vary

= Different cache working sets, invocation argument
sSize, etc, . ..

= System must refine the system isolation configuration as
these variables change

» Solutions over time

= System dynamics require re-computation of system
configuration

= (1) disregard current system state, re-compute entirely
new system configuration

» Traditional knapsack (MMKP) approach: ks

= (2) solve for the next system configuration starting from
the current system configuration

= Successive State Heuristic (ssh)

= modifies coarse and oneshot to start from the
current system configuration

» aim to reduce isolation changes to existing
configuration

» Experimental Simulations

= Simulate a system with
= widely varying resource surplus for 3 tasks
» changing communication costs
= 200 edges, 3 isolation levels

» Edge benefits uniform & randomly chosen from [0,255]
for highest isolation level

» Linear decrease to O for corresponding edge’s lowest
Isolation level

¥ Resource Usage for Task 1

Resources Used For Isolation (Task 1)

6000 rixii

4000

2000

0

0 5

| & ks oneshot
"! :-' “.“ ‘ks' coarse
‘él> ssh bne$h0t S
13K T Y ssh coarse - -
bl P i i ks fine ---—o--
hoi Resource Avail.

i

10 15 20 25 30 35 40 45 50 55
Reconfiguration Number

» System Isolation-Derived Benefit

| kS loneslhot SRR
ks coarse -

24000 | |
ik
22000 = Eﬁ ‘ ssh coarse - 7

| fi-
18000 ! ; g‘, 5(;—‘;',++++'!

Benefit

16000 ||| 5 3
14000 |

12000 -

10000 | 3 8%

0O 5 10 15 20 25 30 35 40 45 50 55
Reconfiguration Number

» OS Support for MPD

= Composite: component-based OS designed to support MPD

(e N (e)
: Client fn Client)| | Server fn
B =il .
\I\ ——————————————————————————————— “) A\ e ') User-level

Kernel-level

" OS Support for MPD (l1)

= Composite: component-based OS designed to support MPD

/l _________________________________ N \\
. Client fn o Server fn
- { oca T .
\Smmmmmmmm e N) User-level

Kernel-level

=1 OS Support for MPD (l11)

= Switching between the two isolation levels requires changing
UCap, KCap, and protection domains

= Prototype running on x86 Pentium IV @ 2.4 Ghz
* |nvocation via kernel - 1510 cycles (0.63 psecs)
= Direct invocation - 55 cycles (0.023 psecs)

»% Conclusions

= Solution to MMKP based on lightweight successive
refinement given dynamic changes in system behavior

= possibly useful in e.g. QRAM

= Mutable Protection Domains

= dynamically reconfigure protection domains to maximize
fault isolation while meeting application deadlines

= makes the performance/predictability versus fault
Isolation tradeoff explicit

