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4 Introduction

Computer Science

= Our goal is a multicast system which can:
» Guarantee timely delivery of data
= Scale to many thousands of end hosts
= We consider an overlay infrastructure built using a
regular graph topology, to:
» Reduce the end-to-end hop count
» Allow simple and flexible routing

= Minimise link stress on the underlying physical network

= Two regular graphs: k-ary n-cubes and de Bruijn
graphs



4 k-ary n-cubes all it

Computer Science

= M=k" nodes
= Node ID: n base-k digits

= Neighbors have n-1
common digits in their
IDs

= ith digit in each ID differs
by +/- 1 mod k

= Graph diameter: n k/2]

[011] [111]
10

[000] [100]
Node F ID = 001, Node D ID = 110

Nodes B and E are failed nodes



1 deBruijn Graphs

Computer Science

= M=k" hodes

* Node ID: n base-k digits

= Neighbors: directed
edge from A to B Iff last
n-1 digits of A match 15t
n-1 digits of B

= Graph diameter: n

[001]

[011]

e Q [101] [111]
[000 [010]

[100]

[110]



+ Route Avallability

Computer Science

= How many routes exist between a given
source/destination pair?

= k-ary n-cubes: (Lk/2Jn)!/ (k20"

= de Bruijn graphs:
* Only a single path with minimal hop count exists

* |f we allow the source to route via an alternative peer (for
redundancy), then in general there exist k-1 non-
overlapping “backup” paths, of length n+1



4 Fault Resilience

= What if a node along path from source (S) to
destination (D) fails?

= Suppose node H hops from D fails:

= k-ary n-cubes: (H-1)(H-1)! alternative shortest paths
= de Bruijn graphs: no backup paths as short as original



# Tableof Various Properties
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Hop Count Local Routes Global Routes
Nodes | Degree | Med | Max Min Med Max Med Max
K n | k-ary n-cubes
2 20 1M 20 10 20 1 10 20 3.6M | 2x10%8
3 13 1.6M 26 9 13 1 9 13 363K 6.2G
kK | de Bruijn graphs
2 1M 2 19 20 1 1 (2) 1 (2)
3 1.6M 3 13 13 1 1 (3) 1 (3)
4 1M 4 10 10 1 1 (4) 1 (4)
5 2M 5 9 9 1 1 (5) 1 (5)
20 3.2M 20 5 5 1 1 (20) 1 (20)
26 12M 26 5 5 1 1 (26) 1 (26)




* Multicast Tree Construction

Computer Science

= Consider different methods for multicast tree construction
using regular overlay topologies, that affect:

» Relative delay penalty: ratio of end-to-end delay across
overlay to equivalent unicast latency at (physical)
network level

» Link stress: ratio of total msg transmissions to number
of physical links involved

= Normalized lateness:

* 0 if end-to-end overlay delay (d) within subscriber
deadlines (D)

= (d - D)/ D otherwise

» Success ratio: Fraction of all subscribers satisfying
their deadlines (D)



+ Experimental Evaluation

Computer Science

= GT-ITM used to simulate physical network w/ 5050 routers

= Compare performance of each overlay using various routing
strategies:

= k-ary n-cubes:
* ODR - route in a specific order of dimensions

» Random - route in random dimensions as long as
distance to destination is reduced at each hop

» Greedy — choose next hop with lowest latency

= de Bruijn — shift-based routing
= e.g. 000 - 010:000 - 001 - 010



* Redative Delay Penalty
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* k=2 n=16, SPT = Dijkstra’s shortest path routing across overlay




Link Stress (7 %

Computer Science
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* 3-ary 13-cube versus de Bruijn graph with k=10 and n=6



® Lateness
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® Success Ratio

Computer Science

subscriber deadline = random[min physical link delay,
max link delay * diameter of k-ary n-cube]

NOTE: success ratio is a relative metric --
Can be improved by increasing subscriber deadlines

0.547

0.53 ; O de Bruijn (undirected)
O k-ary n-cube (greedy)
0.52 1
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Success Ratio

243 729 2187 6561 19683 59049

Group Size
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% Dynamic Characteristics  ol.u’

oi>

e e.d., supporting hosts joining system for k-ary n-cubes

* |D space is set to M=k" with physical hosts randomly
assigned logical IDs in this space

e Each host responsible for 1 or more logical IDs depending
on ID originally chosen randomly
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- Conclusions and Future o
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= Compare k-ary n-cubes and de Bruijn graphs for routing data
between source and many destinations w/ per-subscriber
service constraints

= May be less effective than building end-system multicast trees
from the “ground up” (w/o considering overlay topology) BUT
much simpler

= Regular topologies could be candidates for large-scale
streaming applications

= Future work: An Internet-wide system for processing &
delivery of data w/ per subscriber QoS



