o

Cuckoo: a Language for
Implementing Memory- and Thread-
safe System Services

Richard West and Gary Wong

Boston University

,/g;ﬂ?!* Uy,
[/ -

At

ALISE

Computer Scienc

'
Ny

D

G
=} Introduction

Computer Science

= Recent emphasis on COTS systems for diverse
applications

* e.g., Linux for real-time

ALIS®

= Desirable to customize system for application-
specific needs - system extensibility

= Dangers with customizing kernels with untrusted code

= Can use type/memory-safe languages, hardware

protection, software-fault isolation, proof-carrying codes
etc

= Here, we focus on language support for memory-
and thread-safety

oe‘o” ”ﬁ-r;;;ﬂ
= Why Thread Safety?

= Languages such as Cyclone support memory-

safety using “fat pointers” but these are not
atomically updated

= Asynchronous control flow can lead to memory violations

= Asynchronous control flow fundamental to system
design!

= Support for interrupts, signals etc
= Multi-threaded address spaces

=1 Memory Safety 7%

Computer Science

= We define a program as memory safe if it satisfies
the following conditions:

= |t cannot read/write memory which is not reserved by a
trusted runtime system;

* |t cannot jump to any location which is not the address of
a trusted instruction.

= \WWe enforce type safety only in so far as required to
enforce memory safety

= Memory safety in Cuckoo does not guarantee
program correctness

» Memory Safety Issues

Computer Science

= Stack safety
= \We do not assume hardware detection of stack overflows

= Pointers and array bounds

= We assume that bound information is associated with the array itself,
and is immutable; bounds are not associated with (mutable) pointers

= Pointer arithmetic is ruled out
» Instead, arithmetic on indices into arrays referenced by pointers
= Dangling pointers

= We rely on the type system to rule out dangling pointers to automatic
storage

= Type homogeneity
= Dynamic memory allocator is type-aware
= Memory reuse is permitted only between compatible types

»! Example: Stack Checking

Computer Science

extern int a(...) { // suppose stack usage is small
I/ In this block
char a_local,;
if (...) b();
}
static void b (...) { // again, minimal stack usage
if (...) c();
}
static int c() {
char c_local[65536]; // stack-allocate lots of memory

" Thread Safety

Computer Science

= Memory-safe checks must be atomic with respect to
multiple threads of control

= Null pointer checks:
= Made atomic by loading pointer value into a register, R
* R is guaranteed to be used for both the checking and
dereferencing of any pointer
= Array bound checks:

» Made atomic by associating array bound info not with
pointer BUT array

= Since array sizes are immutable bound checks can never
Involve race conditions

»

Array Types in C versus Cuckoo

Computer Science

O 0O 00

nar a[5];
nar cl1=*a; // valid in C but not Cuckoo
nar c2=al0]; // valid in Cuckoo, s.t. c2=cl asinC

nar c3=(*a)|0]; // also valid in Cuckoo

=1 Example Casts in C and Cuckoo

Computer Science

struct foo {
Int a[5];
char *s;
}
struct foo *p;
int x=*((int *)p); // legal in C but not Cuckoo
int y=*((int (*)[5])p); /I also illegal in Cuckoo
int z=((int (*)[5])p)[0]; // now legal in Cuckoo
// assigns z 15t element of array

Potentially unsafe Memory Realloc o
Int *p;

char **q;

p=new(int); /[heap-alloc an integer

...delete(p); /Il release memory ref'd by p
g=new(char *); /[reuse memory freed at addr p
*pP=123; /[assign values after p Is freed

... **q=45; // memory[123]=45 -> dangerous!

Type-homogeneous dynamic memory allocation
needed to avoid reallocating memory to incompatible

types

» Experimental Results

‘-;‘GN u‘*-’/
O L
S S
yh
il | S
SR

Computer Science

Compiler Time (user) Time (system) Size (code) Size (data) Size (BSS)
SUBSET SUM

Cuckoo 30.96 n/a 2377 288 152
gcc —-02 17.86 n/a 1833 280 192
gcc 24.75 n/a 1945 280 192
PRODUCER-CONSUMER

Cuckoo 2.50 5.13 2527 308 428
gcc —02 2.46 5.10 2001 300 480
gcc 2.50 5.14 2093 300 480
FIND-PRIMES

Cuckoo 10.17 n/a 1301 260 10016
Cuckoo (OPT) 6.78 n/a 1285 260 10016
gcc 9.56 n/a 874 252 10032
gcc —-02 3.57 n/a 814 252 10032
Cyclone 12.43 n/a 91721 3340 59996
SFI 10.79 n/a 970 252 10032

Times in seconds (2.8GHz Pentium 4); sizes in bytes

» Exec. Times (Parallel Subset-sum)

® %
w
=

{4 1
S PN

Computer Science

Compiler Parallel time (real)
Cuckoo 9.45
gcc —02 4.59
gcc 7.40

Execution times for 4-threaded subset sum problem on 27

integers (4x2.2GHz Opteron)

Example: Unaligned Address Problem

Computer Science

static void bad(void) {
volatile int x=0xBADCODE;

}

extern int main(void) {

union foo {
char *data;
void (*code)(void);

} bar;

bar.code=bad;

bar.data+=10; // whatever is offset to OXBADCODE
bar.code();

return O;

® Cuckoo versus Alternatives

W e %

Computer Science

System C |Cyclone |Java | SFI | Cuckoo
Efficient memory usage v |V v oY
Memory safe v v YI/N | vV
Stack overflow checking v v |V
Multithreaded memory safe v v |V
Operate without garbage collection v |V v |V
Unrestricted allocation w/o garbage v v v
collection

=1 Conclusions and Future Work

Computer Science

= Multithreaded memory safety can be a key issue In
certain domains e.g., extensible systems

= Safety can be enforced for single- and multi-
threaded programs with relatively low overhead

= Future work:

» Further investigating and optimising the cost of dynamic
memory allocation

» Tradeoffs between permissive type systems and
overheads of runtime checks

* |mplementation and analysis of a trusted runtime system

