The Quest Kernel

4

1 Motivation

Computer Science

Richard West and Gary Wong

Boston University

Computer Science,

= Develop a relatively small kernel for research and
educational purposes
= Avoid complexities of existing open source systems
= e.g., Linux is now millions of lines (including drivers)

= Quest core has less than 7000 lines of C and
assembly, with ~ 600-700 lines of assembly

= Quest library < 1000 lines of C
= Learn about design and implementation of systems
on the “bare metal”
= From bootstrapping to low-level device driver interaction
= Use as a vehicle for researching new / novel
mechanisms and policies on diverse hardware
platforms

1 Design (1 of 2)

Computer Science

= Quest currently works on x86 (32 bit)
= Features include:
Elementary shell (no significant CLI yet)
Support for IDE disks, keyboard, text-based terminal and
VGA graphics
Limited implementation of EXT2 filesystem (taken from
GRUB bootloader)
= Mount, open, read filesystem features
Virtual memory (paging) capabilities
Fork / exec / exit process control semantics
O(1) preemptive priority queue scheduling
Minimalist “libc” system library
= malloc / free ...

" Design (2 of 2)

Computer Science

= Quest leverages hardware-controlled task-switching
on x86
= Differs from software-based context switching on Linux
= One “tss” per process / task in Quest unlike one per CPU
in Linux
= x86 “nested task” support for switchback to prior
preempted task

= e.g., terminal server and shell implemented as user-
space tasks invoked via call gates

= Possibility for user-space services ala p-kernels

1 Main File Organization

Computer Science

= boot.S, interrupt.S
= Assembly code for initializing IDT, syscall table, paging capabilities, memory
layout (GDT for segments, initial kernel stack etc)
= terminal_server.c
= User-space access capabilities to (text-mode) video RAM
shell.c, kernel.c
sched.c, heap.c
= Policy-specific queue routines
= initc
= C final boot-stage code (called from boot.S)
= ELF module code, PIC / PIT initialization etc
= diskio.c
= Low-level IDE CHS/LBA block read/write code
interrupt_handler.c
= Syscall / interrupt handler bodies
= fsys_ext2fs.c
= EXT2 filesystem support

" Example Applications

Computer Science

= Basic fork / exec / exit memory-leak tester
= Advent

= 1970s text-based adventure game (ported from
FORTRAN)

= Pacman
= Mame-based implementation ©

= NB: It's not a system if it can’t play PACMAN!

o Sample Screenshots (1 of 2) il L in

Computer Science

o Sample Screenshots (2 of 2)

Computer Science

dventure.data, using adventure.text...

ce used:
of 12500 885 travel opt
330 185 locati
of 160 i
6 of 277
of 26 hin 5 turn thresht

elcome to Adventure!? Would you like instructior

g at the end of a road before a small brick building.
a all stream flous out of the building and

Ponil sl

¥ Quest Projects

Computer Science

& Virtual Memory Layout (1 of 2)

Computer Science

Port to ARM / XScale
= Add SMP support for x86 implementation
= Add ULS / Hijack executive features to Quest
= Develop new service management features
= Scheduling / synchronization policies
= Filesystem support
= |IPC mechanisms
= Look at interrupt management / accounting strategies

= Investigate shared cache policies (e.g., L2-aware
scheduling)
= Add virtual machine interface (VMI) or user-space event

delivery API

kern_pg_table GDT
e null
ke tabl ke |1 CS
OxFFFF1000———-pg_table it
video memory* kernel DS
Kernel PGD OxFFFFO00(
OXFFFFFEFF OXFFEEF00 IDT, GDT user CS
global kernel pg table [1023 —2X' . user DS
0xFFC00000
OXFF800000 per-process pg table |1022 read/write e
- T
. read-only
(4KB page for IDT + GDT)
.
. per-process pg table
Data / BSS
Text / R.O. Data
4MB @ phys addr0 | 0 kernel stack pg addr 4
(kernel image)
PDBR
cr3

*See next slide for map to video memory

& Virtual Memory Layout (2 of 2)

Computer Science

per-process (kernel) page table

Kernel PGD - esp0
. 4KB
EXEEEZZZFOFO kern_pg_table]1023 Kernel stack
X per-process pg table |1022 —_kernel stack pg addr |
0xFF800000
0 user page table esp
user stack (64KB) 64kB
. . User stack
. video memory*
Video memory @
0x000B8000 phys addr

Data / BSS

user page table 00— |

Text / R.O. Data

PDBR
a3 *video memory mapped at virtual addr 0x00200000 in user page table

