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Drones: Cyber-Physical Systems
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"“Have low reactivity & slow response times

" Are highly sensitive to external environmental
dynamics leading to fight inaccuracy and instability
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" Are highly sensitive to external environmental
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* Are unable to continue flight & require emergency
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State-of-Art Flight Management Systems: g
Problems

"“Have low reactivity & slow response times

" Are highly sensitive to external environmental
dynamics leading to fight inaccuracy and instability

* Are unable to continue flight & require emergency
landing
" Manual override

" Execute flight control tasks at the maximum possible
frequencies all the time in adverse conditions!
" Loosely “periodic” executions => soft time period bounds

" Statically defined
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smARTflight Contributions to Challenges W

* Lack of system adaptability to changes in environment
Y Introduce criticality-awareness within the system

v Dynamic adaptation of execution rates of critical flight
controller tasks

* Lack of timing predictable behavior
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smARTflight Contributions to Challenges W

* Lack of system adaptability to changes in environment
Y Introduce criticality-awareness within the system

v Dynamic adaptation of execution rates of critical flight
controller tasks
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Criticality = Measure of severity of the consequences to the system in
case of unpredictable behavior
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v Dynamic adaptation of execution rates of critical flight
controller tasks
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smARTflight Contributions to Challenges W

* Lack of system adaptability to changes in environment
Y Introduce criticality-awareness within the system

v Dynamic adaptation of execution rates of critical flight
controller tasks

. _ye. A . .
Criticality = Measure of severity of the consequences to the system in
case of unpredictable behavior

?

s _ta, A e e _1s .
System Criticality = directly reflects Task Criticality = function of task’s
influence of environment on the system ~ importance to maintenance of flight.
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smARTflight Contributions to Challenges W

* Lack of system adaptability to changes in environment
Y Introduce criticality-awareness within the system

v Dynamic adaptation of execution rates of critical flight
controller tasks

* Lack of timing predictable behavior
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smARTflight Contributions to Challenges W

* Lack of system adaptability to changes in environment
Y Introduce criticality-awareness within the system

v Dynamic adaptation of execution rates of critical flight
controller tasks

* Lack of timing predictable behavior

Y Introduce real-time (RT) task execution constraints enforced by
a real-time scheduler - deterministic flight

* Inefficient use of limited battery power
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Challenges, . ARTAight
Contributions
* Lack of system adaptability to changes in environment

Y Introduce criticality-awareness within the system

v Dynamic adaptation of execution rates of critical flight
controller tasks

" Lack of timing predictable behavior

Y Introduce real-time (RT) task execution constraints enforced by
a real-time scheduler - deterministic flight

“ Inefficient use of limited battery power

v Low execution rates of tasks in stable flying conditions
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Autopilot Flight Control
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smARTflight Dual Criticality Semantics I
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smARTflight Dual Criticality Semantics I

HI (adverse) HI Eiight Mission)
" System < " Task Criticality<
CrItI(D:yanLInEi}:/ I—O(Calm) Statie L (Bookkeeping)

Task Model
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smARTflight Tasks

Task Name Time Period | Execution Static Criticality Description
(ps) Frequency| Priority (smarrflight)
Cleanflight (HZ) (Vanilla CF)

TASK__SYSTEM 100,000 10 Med-High LO Report system statistics
TASK BAT VOLT 20.000 50 Medium Sample battery voltage
TASK__GYROPID | 4,000 / 2,000 | 250 / 500 | Real-Time PIS];‘_"EESI‘; dgégiiiogjn:;d

(Looptime) / 1,000 / 1,000 (highest)

TASK ACCEL 1,000 1,000 Medium HI Sample Accelerometer data

TASK _ATTITUDE 10,000 100 Medium Calculate current attitude
TASK__ RX 20,000 50 High Process recciver commands
TASK__SERIAL 10,000 100 Low LO Serfal communication

with the ground computer

Execution rates (default)

BOSTON
UNIVERSITY
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smARTflight : System Mode Changes T~

" System mode changes are asynchronous events

" Triggers: attitude change with respect to Euler angle
thresholds

" Attitude task registers the change and propagates the mode
change flag to the scheduler

" smARTfliaht scheduler:
Lo Criticality Tasks HI1 Criticality Tasks

Ti(Lsys = LO) S Ti(Leys = H1) | Ti(Lays = LO) 2 Ty(Lays = HI)

LO e-=—» H| LO > Hil
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smARTflight : System Mode Changes T~

" System mode changes are asynchronous events
" Triggers: attitude change with respect to Euler angle

A
Threshold = Maximum tolerable transient deflection from the target
attitude

“SMARITTIIONT sCheduler:

Lo Criticality Tasks HI1 Criticality Tasks

Ti(Lsys = LO) S Ti(Leys = H1) | Ti(Lays = LO) 2 Ty(Lays = HI)

LO e-=—» H| LO > Hil

Image courtesy:
https://www.slideteam.net/flying-drone-robot-with-two-propellers.html



https://www.slideteam.net/flying-drone-robot-with-two-propellers.html

07/2020 41

(OXC)

smARTflight : System Mode Changes T~

" System mode changes are asynchronous events

" Triggers: attitude change with respect to Euler angle
thresholds

" Attitude task registers the change and propagates the mode
change flag to the scheduler

" smARTfliaht scheduler:
Lo Criticality Tasks HI1 Criticality Tasks

Ti(Lsys = LO) S Ti(Leys = H1) | Ti(Lays = LO) 2 Ty(Lays = HI)

LO e-=—» H| LO > Hil
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smARTflight: Schedulability Framework

*RMS CF: no criticality semantics (standard RMS)
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smARTflight: Schedulability Framework

*RMS CF: no criticality semantics (standard RMS)

"smARTflight: extended and modified Liu & Layland’s
RMS algorithm
" Task rates and priorities adapt
" Ready queue updated @ runtime
* Scheduler quantum reprogramming
" Transient system overload checks to avoid failure
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smARTflight : Experiment Type

Rear View
'o Rear View ‘

‘\
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Wind
H «=» |LO
smARTflight
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smARTflight : Experimental Phases

7 LCLERNIFLIGHT

Vanilla CF smARTflight
Static Rate Real-Time Scheduler Adaptive Real-Time
Response Times + Criticality

g-drone-robot-with-two-propellers.
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smARTflight : Experimental Phases

Vanilla CF

smARTflight

Real-Time Scheduler Adaptive Real-Time
+ Criticality

Static Rate
Response Times
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Vanilla Result : 15°Roll-Left Response Times®

Critical Tasks ‘ Default Rates (Hz) Custom Execution Rates (Hz)
GYRrorID/Looptime 1000 ‘ 500 ‘ 250 1000
ACCEL 1000 1000

ATTITUDE 100 200 © 100 | 50

13.5 | 18.5 |

200

50 | 25 | 200 | 100
20| 33 | 33 | 325

Roll: Avg. Response Times (s)
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UNIVERSITY
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smARTflight : Experimental Phases

Vanilla CF

smARTflight

Real-Time Adaptive Real-Time
Scheduler + Criticality

Static Rate
Response Times
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smARTflight : Experimental Phases

7 CLERNIFLIGHT

Vanilla CF

smARTflight

Static Rate Real-Time Adaptive Real-Time
Response Times Scheduler + Criticality
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smARTflight : Roll Thresholds

Angular Displacement of the Quadcopter in Roll/Pitch
-147 -10° -5° Target +5° +10 +14

Trigger Trigger
J HI LO ’L |

Target
* Trigger Trigger *
J HI LO .L LO HI L
Target
l Trigger Trigger
Hi LO LO
Target
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Comparison : 15°Roll-Left Response Time -

smARTflight Threshold Tuning
20

5 Deg
i 10 Deg
15 14 Deg

10

Response Time (s)

27
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Roll-Left Exp
(target * threshold)
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Response Time (s)

-

Comparison : 15°Roll-Left Response Time -

smARTflight Threshold Tuning
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Comparison of Three Autopilots
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Autopilot Comparison Results

— Vanilla:1000 Hz
= RMS:1000 Hz

2 7 smARTflight:10 Deg

0.8 —|

0.6 —f

0.4 —

0.2 —|

Normalized |Total Error|

o s 1 b
] Roll-Left
Cumulative Absolute Error
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Autopilot Comparison Results
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Conclusions —

"smARTflight: an environmentally aware, criticality
based Adaptive, Real-Time flight management system for
multi-copters
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" Dynamic reconfiguration of task execution frequencies

" Modified rate monotonic scheduling framework
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Conclusions —

"smARTflight: an environmentally aware, criticality
based Adaptive, Real-Time flight management system for
multi-copters

" Task and system criticality
" Environmental triggers for system modes
" Dynamic reconfiguration of task execution frequencies

" Modified rate monotonic scheduling framework
" Improved flight performance : {response, energy & absolute error}
" Extends legacy autopilots with smart resource management
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