
Tuned Pipes: End-to-end 
Throughput and Delay 
Guarantees for USB Devices

Ahmad Golchin, Zhuoqun Cheng and Richard West
Boston University



Motivations

● Cyber-physical systems
● Ubiquity of USB
● Sensor-actuator loops
● Need for predictable I/O communication

○ Between device & application tasks
● Avoid manually fine-tuning system parameters for 

control & data flow

02/22



Contributions

● Tuned Pipes system framework
○ Guarantees end-to-end latency and throughput requirements 

between USB devices and host tasks

● A host controller driver with early demultiplexing
○ Allows USB bottom-half handler to run with the right priority and 

in a timely manner as opposed to Linux

● Extended our previous USB bus scheduling algorithm 
to comply with xHCI

03/22



Quest RTOS

● Real-time OS supporting multicore x86 platforms
○ Intel’s Aero, UP, UP2, Skull Canyon, Edison, Minnowmax,...

● Dual-mode kernel
● Unified task and I/O (bottom-half) scheduling 

through time-budgeted virtual CPUs (VCPUs)
○ Tasks scheduling: Main VCPUs
○ Interrupt bottom-half scheduling: I/O VCPUs

● More info: www.questos.org

04/22



VCPU Scheduling in Quest RTOS

● Main VCPUs
○ Sporadic Server + RMS
○ Guarantees budget C 

every period T for tasks
● I/O VCPUs

○ PIBS 
○ BW limited by utilization 

factor Uj
○ Inherits T from the task

● Temporal isolation condition:

05/22



Tuned Pipes

● Host-to-device 
communication channel

● Throughput and delay 
bounds (QoS)

● Temporal isolation
● Endpoint-pipe: 1:N 

registered by drivers

06/22



Tuned Pipes - User-level API

07/22



Tuned Pipes - User-level API

07/22

tpipe()



Tuned Pipes - User-level API

07/22

tpipe()
Callback



Tuned Pipes - User-level API

07/22

tpipe()
Callback

QoS



Tuned Pipes - User-level API

QoS Specification:

● Execution Time (C)
● Throughput (λ)
● IO Buffer Size (B)

08/22



Tuned Pipes - User-level API

QoS Specification:

● Execution Time (C)
● Throughput (λ)
● IO Buffer Size (B)

Example:

tput = 500Kbps
IObufsize = 128 bytes
texec_time = 1 ms

08/22



Tuned Pipes - User-level API

QoS Specification:

● Execution Time (C)
● Throughput (λ)
● IO Buffer Size (B)

Example:

tput = 500Kbps
IObufsize = 128 bytes
texec_time = 1 ms

Little’s law: B = λT

08/22



Tuned Pipes - User-level API

QoS Specification:

● Execution Time (C)
● Throughput (λ)
● IO Buffer Size (B)

Example:

tput = 500Kbps
IObufsize = 128 bytes
texec_time = 1 ms

Little’s law: B = λT
C = 1ms
T = 128*8 / 512000 = 2ms

08/22

Main VCPU Parameters



Tuned Pipes - Kernel API

Endpoint:

● Endpoint attributes
● IOVCPU & sched param
● MainVCPU & sched param

Endpoint Attributes:

● Max # of Channels

● Max Throughput

● Min Latency

● Min/Max EP Buffer Size

● Min/Max Packet Size

09/22



Tuned Pipes - Kernel API
Example
● 4 channels at 500Kbps
● 1 channel at 250Kbps
● max_tput = 2.25Mbps
● ebuf_sz = 4KB
● Driver applies Little’s law to set 

proper budget and period for 
it’s I/O thread:

● E.g.: C = 2ms, T= 14ms
10/22



End-to-end Rx Data Path

11/22

4 Delay contributors
● User thread
● Driver thread
● DMA of data
● USB bottom-half

Question:
How to enforce QoS?



End-to-end Rx Data Path

11/22

- Q: Main VCPU
- L: SCHED_DEADLINE

4 Delay contributors
● User thread
● Driver thread
● DMA of data
● USB bottom-half

Question:
How to enforce QoS?



End-to-end Rx Data Path

11/22

- Q: Main VCPU
- L: SCHED_DEADLINE

4 Delay contributors
● User thread
● Driver thread
● DMA of data
● USB bottom-half

Question:
How to enforce QoS?

- Q: Main VCPU
- L: SCHED_DEADLINE



End-to-end Rx Data Path

11/22

- Q: Main VCPU
- L: SCHED_DEADLINE

4 Delay contributors
● User thread
● Driver thread
● DMA of data
● USB bottom-half

Question:
How to enforce QoS?

- Q: Main VCPU
- L: SCHED_DEADLINE

Bounded Delay



End-to-end Rx Data Path

11/22

- Q: Main VCPU
- L: SCHED_DEADLINE

4 Delay contributors
● User thread
● Driver thread
● DMA of data
● USB bottom-half

Question:
How to enforce QoS?

- Q: Main VCPU
- L: SCHED_DEADLINE

- Quest: IOVCPU
- Linux: !!!!

Bounded Delay



End-to-end Data Path - Challenges

12/22

Challenges with Linux:
● USB BUS scheduling
● USB bottom-half handler priority mismatch!

What currently happens:
- Soft-IRQs

Highest priority until MAX_SOFTIRQ_RESTART→ Low priority

- Threaded-IRQs (e.g. PREEMPT_RT)
Fixed SCHED_FIFO priority (Default: 50)



Experimental Environment

CAN Interface
● Kvaser USBcan Pro 

5xHS
● 5 channels: up to 

1Mbps w/ 4KB buffer
● 2 ECUs: each 

exposing 2 channels
● 1 Arduino UNO + 

CAN-BUS Shield

13/22



Experimental Environment

UPSquared SBC
● Dual-core Celeron 

N3350 @ 1.1 GHz
● xHCI 1.1 Interface

Quest RTOS
● VCPU Scheduling

Ubilinux (PREEMPT_RT)
● SCHED_DEADLINE

14/22



Test 1 - Endpoint Guarantees

Objective: Receiving frames without:
● Loss of CAN packets
● Intervening with other tasks of higher priority
Generated data traffic:

15/22

Bus CAN1 CAN2 CAN3 CAN4 CAN5

Bandwidth (bps) 500K 250K 500K 500K 500K

Throughput % 10 20 30 40 69



Test 1 - Endpoint Guarantees

16/22



Test 1 - Endpoint Guarantees

16/22

C = 2ms
T = 14ms

C = 1ms
T = 7ms



Test 1 - Endpoint Guarantees

Observations:
● Quest: 

○ No buffer overrun
○ Negligible interference

● Linux: 
○ 230 overruns over 30 seconds
○ 405 overruns over 60 seconds
○ More interference

17/22



Test 2 - End-to-end Guarantees - Rx
Objective: Guaranteeing throughput using tuned pipes
● 5 Tuned pipes receiving data
● CAN 4 & 5 Throughput: 2730 to 2752 fps 
● QoS: tput=2752, IObufsz=128, exec_time=2ms

Bus CAN1 CAN2 CAN3 CAN4 CAN5

Bandwidth (bps) 500K 250K 500K 500K 500K

Throughput % 10 20 30 69 69

18/22



Test 2 - End-to-end Guarantees - Rx

19/22



Test 2 - End-to-end Guarantees - Rx

20/22



Conclusions

● Tuned pipes abstraction
● Auto-tuning of system parameters
● Guarantee of throughput and delay constraints

○ Not solved with SCHED_DEADLINE in Linux
● Early demultiplexing of entities waiting for INT
● Handling BH with the RIGHT priority (IOVCPU)

○ Not solved with PREEMPT_RT Linux patch

21/22



Thank you!

Comments or Questions ?



Test 3 - End-to-end Guarantees - Tx
Objective: Guaranteeing throughput using tuned pipes

Similar to the previous test, except:
● CAN 4 & 5 Receiving data every 325.4 to 327.5 uS
● Arrival rate: 3053 to 3073
● QoS: tput=3073, IObufsz=128, exec_time=2ms



Test 3 - End-to-end Guarantees - Tx



Test 3 - End-to-end Guarantees - Tx


