

A Virtual Deadline Scheduler for Window-Constrained Service Guarantees

Yuting Zhang, Richard West, Xin Qi

Boston University

- Multimedia & weakly-hard real-time systems:
 - Not every deadline needs to be met
 - Impossible to meet every deadline in overload case
 - Can tolerate some deadlines being late or missed without degrading service too much
 - Loss- or window-constraints on service

- Guarantee a fraction of service over a fixed window of job instances
 - (m,k) window-constraint:
 - At least m out of every k job instances meet their deadlines
 - Example:

- Provides independent service guarantees
 - Each job gets a minimum fixed share of service without being affected by others
- Is suitable for overload cases
 - Strategically skip some deadlines
 - Min utilization may still be 100% for feasible schedule
- Has bounded delay and jitter
 - Within a given window

- Dynamic Window-Constrained Scheduling
 - Consider periodic jobs with deadlines at the ends of their request periods
 - Separately considers deadlines and window-constraints to order jobs
 - Can guarantee the service with unit process time, constant request period up to 100% utilization
 - May fail to provide service guarantees with different periods, even when the utilization is fairly low
 - Problem: How to improve service guarantees when periods (or deadlines) are different?

- ✓ Motivation
- >>> VDS algorithm
- Simulations
- Experiments
- \odot Conclusions

Feasibility Condition

- Utilization: $U = \Sigma (C_i/T_i)$
- Minimum Utilization: $U_{min} = \Sigma (m_i C_i / k_i T_i)$
- Feasible iff $U_{min} \le 1$ and service time, $C_i = \Delta$
- NP-hard problem for arbitrary C_i and T_i [Mok & Wang]
 - \blacksquare Example: no feasible schedule even if $U_{min} \leq 1$

The Relaxed Model

- At least m_i job instances are served in every window of k_i requests
 - allowing multiple requests that have arrived in the current window to be serviced in the same period
- The proportional share of resources allocated to a job in a window of size k_iT_i is still m_iC_i/k_iT_i, but...
- Job instances can be buffered & scheduled after their deadlines with the relaxed model

- Virtual Deadline Scheduling (VDS) algorithm
 - Works with both relaxed and original window-constrained scheduling models
 - Job with lowest virtual deadline has highest priority
 - Question: How do we calculate virtual deadlines?

- Function of request period and window constraint
- If current constraint is (m',k'), it makes sense to service the next job instance in (k'*T)/m' time
 - This is for proportional fairness
- Virtual deadline:

 $\underline{Vd_{i}(t) = k_{i}'T_{i}/m_{i}' + ts_{i}(t)}$

ts_i(t) : start of current request period at time unit t

Service Constraint Updates

After serving job J_i with the lowest virtual deadline: $C_i' = C_i' - \Delta;$ if $(C_i) == 0$ $m_i' == 0$ For every job J_i: if $((Vd_i \le \Delta + t) \&\& (j!=1) \&\& (C_i' > 0))$ Tag J_i with a violation if (a new job instance arrives) { k_{i}' --; $C_{i}' = Cj$; if $(k_i' == 0) \{ m_i' = m_i; k_i' = k_i; \}$ if $(m_i' > 0)$ update Vd_i //only for relaxed model if $(((k_i - k_i') \ge (m_i - m_i')) \&\& (C_i' == 0))$ $C_{i} = C_{i};$

- Schedule eligible job with the lowest virtual deadline
 - Eligibility in every request period (C' >0)

Eligibility in every request window (m'>0)

$\underline{Vd_{i}(t) = k_{i}'T_{i}/m_{i}' + ts_{i}(t)}$

- If every k_i is a multiple of m_i, VDS reduces to <u>EDF</u>
 Where C_i = process time, k_iT_i/m_i = request period
- If all T_is are constant, VDS reduces to <u>DWCS</u>
 Vd ∝ k'/m'
- In these cases, VDS can guarantee 100% utilization for the same situations as EDF and DWCS
- When T_i, m_i, k_i are arbitrary, VDS more accurately captures information about a job's combined urgency and importance

- Eligibility-based Window Deadline First
 - Target for the relaxed model
 - A variant of EDF with (service time=m_iC_i, period=k_iT_i)
 - Common window deadline for all job instances in the same window
 - Eligibility test is the same as VDS

EWDF

- Feasible for the relaxed model if $U_{min} \leq 1$
- Worst case delay: (k_iT_i-m_iC_i)
- More deadlines missed
- Complexity: O(n) in worst case

EWDF: $k_iT_i-m_iC_i$

If a feasible VDS schedule exists:

- The minimum service share for each job i is m_iC_i/k_iT_i
- The maximum delay for each job i is $(k_i m_i + 1)T_i C_i$

VDS guarantees 100% utilization for a job set with all $C_i=\Delta$, and $T_i = q_i\Delta$ in the relaxed model

- Proof by reduction to a derived EDF scheduling problem
 - Derived EDF: $(C_i, k_i T_i/m_i)$ with only m_i instances
 - VDS equivalent: (C_i, Vd_i) with only m_i instances
 - U(VDS) = U(derived EDF)
 - The relaxed model assures no idle time before overflow
 - Note: VDS allows preemption at the granularity of Δ

- Work load:
 - Randomly generate 1,300,000 job sets
 - Variable number of jobs (n) per job set, unit process time C, variable T, m and k for every job
- Performance metrics:
 - Vtest_s: # of job sets that violate service requirement
 - Vtest_d: # of job sets that violate deadline requirement
 - V_s: the total service violation rate of all jobs
 - V_d: the total *deadline violation rate* of all jobs

- $Vtest_d = Vtest_s V_d = V_s$
- Violation in underload cases:
 - DWCS: U_{min} > 0.6
 - EDF-Pfair: U_{min}> 0.9
 - VDS: U_{min} > 0.9

0.9 <u<sub>mir</u<sub>	_≤1.0
------------------------	-------

	Vtestd	Vd
DWCS	14555	340.46707
EDF-Pfair	77	4.679056
VDS	14	0.6

- VDS has more violations in overload case
 - Tries to maintain proportional fairness

CPU Scheduling – Linux Kernel

00

mouter

Science

- We propose a relaxed (m,k) window-constrained model
 - Appropriate for many classes of applications
 - e.g., multimedia streaming & real-time data sampling
- We present a new algorithm: VDS
 - Can make full use of resources while guaranteeing window-constraints
- Benefits of VDS shown via simulations and real implementation in the Linux kernel