
Quest-V – a Virtualized
Multikernel

Richard West

richwest@cs.bu.edu

Ye Li, Eric Missimer

{liye, missimer}@cs.bu.edu

Computer Science

mailto:richwest@cs.bu.edu

2/32

Goals

• Develop system for high-confidence
(embedded) systems

• Predictable – real-time support
• Resistant to component failures & malicious

manipulation
• Self-healing
• Online recovery of software

component failures

3/32

Target Applications

• Healthcare
• Avionics
• Automotive
• Factory automation
• Robotics

• Space exploration
• Other safety-critical domains

4/32

Case Studies

• $327 million Mars Climate Orbiter

– Loss of spacecraft due to
Imperial / Metric conversion
error (September 23, 1999)

• 10 yrs & $7 billion to develop Ariane
5 rocket

– June 4, 1996 rocket destroyed
during flight

– Conversion error from 64-bit
double to 16-bit value

• 50+ million people in 8 states &
Canada in 2003 without electricity
due to software race condition

5/32

Approach

• Quest-V for multicore processors

– Distributed system on a chip

– Time as a first-class resource
• Cycle-accurate time accountability

– Separate sandbox kernels for system sub-components

– Isolation using h/w-assisted memory virtualization
• Extended page tables (EPTs – Intel)

• Nested page tables (NPTs – AMD)

– Security enforcible using VT-d + interrupt remapping (IR)
• Device interrupts scoped to specific sandboxes

• DMA xfers to specific host memory

6/32

Architecture Overview

Sandbox M

Main
VCPU

IO
VCPU

Kernel

Apps

CPU M

Monitor

 Shared Mem / Msg Channel

. . .

Sandbox 1

Main
VCPU

IO
VCPU

Kernel

Apps

CPU 1 . . .

Migration

Monitor

 Shared Drivers

Sandbox 2

Main
VCPU

IO
VCPU

Kernel

Apps

CPU 2

Monitor

7/32

Isolation

● Memory virtualization using EPTs isolates
sandboxes and their components

● Dedicated physical cores assigned to sandboxes

● Temporal isolation using Virtual CPUs (VCPUs)PUs)

8/32

Extended Page Tables

9/32

Quest-V Memory Layout
BIOS

Sandbox Kernel 1

Shared Driver

EPT Data Structure 1

Sandbox Kernel M

Shared Driver

EPT Data Structure M

.

.

.

User Space

Shared Memory Region

0x00000000

0xFFFFFFFF

Monitor 1

Monitor M

.

.

.

Sandbox Kernel M

Shared Driver

EPT Data Structure M

Monitor M

User Space

Shared Memory Region

Physical Memory Layout

Virtual Memory Layout

Sandbox M

.

.

.

Sandbox Kernel 1

Shared Driver

EPT Data Structure 1

Monitor 1

User Space

Shared Memory Region

Virtual Memory Layout

Sandbox 1

.

.

.

0x00000000

0xFFFFFFFF

10/32

● VCPUs for budgeted real-time execution of
threads and system events (e.g., interrupts)

● Threads mapped to VCPUs

● VCPUs mapped to physical cores

● Sandbox kernels perform local scheduling on
assigned cores

● Avoid VM-Exits to Monitor – eliminate
cache/TLB flushes

Predictability

11/32

VCPUs in Quest(-V)

Main VCPUs

I/O VCPUs

Threads

PCPUs (Cores, HTs)

12/32

VCPUs in Quest(-V)

• Two classes
– Main → for conventional tasks
– I/O →for I/O event threads (e.g., ISRs)

• Scheduling policies
– Main → sporadic server (SS)
– I/O → priority inheritance bandwidth-

preserving server (PIBS)

13/32

SS Scheduling

• Model periodic tasks
– Each SS has a pair (C,T) s.t. a server is

guaranteed C CPU cycles every period of
T cycles when runnable

• Guarantee applied at foreground priority
• background priority when budget depleted

– Rate-Monotonic Scheduling theory
applies

14/32

PIBS Scheduling

• IO VCPUs have utilization factor, U
V,IO

• IO VCPUs inherit priorities of tasks (or Main
VCPUs) associated with IO events
– Currently, priorities are ƒ(T) for

corresponding Main VCPU
– IO VCPU budget is limited to:

• T
V,main

*

U

V,IO
 for period T

V,main

15/32

PIBS Scheduling

• IO VCPUs have eligibility times, when they
can execute

• t
e
 = t + C

actual
 / U

V,IO

– t = start of latest execution
– t >= previous eligibility time

16/32

Example VCPU Schedule

17/32

Sporadic Constraint

• Worst-case preemption by a sporadic task for all other tasks
is not greater than that caused by an equivalent periodic task

(1) Replenishment, R must be deferred at least t+T
V

(2) Can be deferred longer

(3) Can merge two overlapping replenishments

• R1.time + R1.amount >= R2.time then MERGE

• Allow replenishment of R1.amount +R2.amount at
R1.time

18/32

Example Replenishments

0

1

10

10

20,00
00,00
00,00

17

20 30 40 50

1 10 1 16 1

60 70 80

10

90 100

12 8

110

02,00
18,50
00,00

02,40
18,50
00,00

18,50
02,90
00,00

02,50
02,90

16,100

02,80
02,90

16,100

02,90
16,100
02,130

16,100
02,130
02,140

0

1

10

10 17

20 30 40 50 60 70 80 90 100 110

1 10 17 1 10 17

amount , time Replenishment Queue Element

VCPU 0 (C=10, T=40, Start=1) VCPU 1 (C=20, T=50, Start=0)

Premature
Replenishment

Corrected
Algorithm

2

IOVCPU (Utilization=4%)

2

2 2

(A)

(B)

Interval [t=0,100] (A) VCPU 1 = 40%, (B) VCPU 1 = 46%

19/32

Utilization Bound Test

• Sandbox with 1 PCPU, n Main VCPUs, and m
I/O VCPUs
– Ci = Budget Capacity of Vi
– Ti = Replenishment Period of Vi
– Main VCPU, Vi
– Uj = Utilization factor for I/O VCPU, Vj

∑
i=0

n−1
Ci
Ti

+∑
j=0

m−1

(2−Uj)⋅Uj≤n⋅(n
√2−1)

20/32

Efficiency

● Lightweight I/O virtualization & interrupt
passthrough capabilities

● e.g., VNICs provide separate interfaces to
single NIC device

● Avoid VM-Exits into monitor for scheduling &
I/O mgmt

21/32

I/O Passthrough

Sandbox M

Main
VCPU

IO
VCPU

Kernel

Apps

CPU M

Monitor

 Shared Mem / Msg Channel

. . .

Sandbox 1

Main
VCPU

IO
VCPU

Kernel

Apps

CPU 1 . . .

Migration

Monitor

 Shared Drivers

Sandbox 2

Main
VCPU

IO
VCPU

Kernel

Apps

CPU 2

Monitor

I/O Device
(e.g., NIC)

22/32

Virtualization Costs
• Example Data TLB overheads
• Xeon E5506 4-core @ 2.13GHz, 4GB RAM

23/32

● Example NIC RX Ring Buffer

Device (Driver) Sharing

24/32

Shared Driver Costs

•

Quest-V Linux Xen (PVM) Xen (HVM)
0

100

200

300

400

500

600

700

800

900

1000

Netperf UDP Throughput Test

1xNetperf

2xNetperf

4xNetperf

Quest

U
D

P
 T

h
ro

u
g

h
p

u
t

(M
b

p
s)

25/32

Example Fault Recovery

Main
VCPU

IO
VCPU

Kernel

Monitor

NIC Driver

Main
VCPU

Kernel

Monitor

NIC Driver

Msg Channel Msg Channel

NIC

(1)

Send Msg

Main
VCPU

Kernel

Monitor

NIC Driver

Msg Channel

Receive
Msg

IO
VCPU

(2)

(3)
(4)

Component
Failure Detection

SB Kernel
(Guest)

Monitor
(Host)

V
M

-E
xi

t

V
M

-E
n

try

Fault Identification
And Handling

Remote Event
Notification via

IPI

Component
Recovery in

Remote Sandbox

Component
Recovery in

Local Sandbox

(1)

(2)

(3)

(4)

26/32

Faulting Driver for Web Server

• httperf with web server in presence of
Realtek NIC driver fault

• Requests / replies set at 120/s
under normal operation

– Single-threaded server

– Focus on one process

– Recovery time rather than
throughput

27/32

Performance Costs

• Core i5-2500K with 8GB RAM

Recovery
Phases

CPU Cycles

Local Recovery Remote Recovery

VM-Exit 885

Driver Switch 10503 N/A

IPI Round Trip N/A 4542

VM-Enter 663

Driver Re-initialization 1.45E+07

Network Re-
initialization

78351

28/32

Inter-Sandbox Communication

• Via Communication VCPUs

– High rate VCPUs: 50/100ms

– Low rate VCPUs: 40/100ms

29/32

The Quest Team

• Rich West
• Ye Li
• Eric Missimer
• Matt Danish
• Gary Wong

30/32

Further Information

• Quest website
• http://www.cs.bu.edu/fac/richwest/quest.html

• Github public repo
• http://questos.github.com

http://www.cs.bu.edu/fac/richwest/quest.html
http://questos.github.com/

31/32

Quest(-V) Summary

• About 11,000 lines of kernel code

• 175,000+ lines including lwIP, drivers, regression
tests

• SMP, IA32, paging, VCPU scheduling, USB, PCI,
networking, etc

• Quest-V requires BSP to send INIT-SIPI-SIPI to
APs, as in SMP system

– BSP launches 1st (guest) sandbox

– APs “VM fork” their sandboxes from BSP copy

32/32

Final Remarks

• Quest-V multikernel
– Leverages H/W virtualization for

safety/isolation
– Avoids VM-Exits for VCPU/thread

scheduling
– Online fault recovery
– Shared memory communication channels
– Lightweight I/O virtualization
– Predictable VCPU scheduling framework

33/32

Isolation

• 4 sandboxes: SB0,..., SB3

– SB1 sends msgs to SB0, SB2 & SB3 at 50ms intervals
• SB0, SB2 & SB3 rx at 100, 800, 1000ms intervals,

respectively

– SB0 handles ICMP requests
• sent remotely at 500ms intervals

– Observe failure + recovery in SB0

– Messaging threads on Main VCPUs: 20ms/100ms

– NIC driver I/O VCPU: 1ms/10ms

34/32

Isolation

35/32

Next Steps

• VCPU/thread migration
• API extensions
• Application development
• Hardware performance monitoring
• RT-USB sub-system

• Fault detection

36/32

Real-Time Migration

• At t, guarantee VCPU, V
src

, moves from SB
src

→SB
dest

without violating:

(a) Remote VCPU requirements,∀V
dest

∈SB
dest

(b) Requirements of V
src

• Use migration VCPUs, V
migrate

 [C
mig

,T
mig

]

• Ensure:

• Ensure: C[memcpy of V
src

+thread(s)] <= C
mig

– while V
src

 is ineligible for execution

U dest+
C src

T src

≤(n+1)(n+1√2−1) ,∣V dest∣=n@t '<t

37/32

Real-Time Migration
Make migration

decision
(Find destination)

SB Kernel
(Guest)

Monitor
(Host)

V
M

-E
xi

t

V
M

-E
n

try

Push quest_tss
address(es) to

destination

Copy quest_tss
structure(s)

Resume local
scheduling

Resume local
scheduling

(1)

(2)

(3)

(4)

Move addr space
and VCPU from

source

(5)

Migration
thread event

received

Main
VCPU

IO
VCPU

Kernel

Monitor

Scheduler

Main
VCPU

Kernel

Monitor

(1)

Main
VCPU

Kernel

Monitor

Scheduler

Main
VCPU

(2)

(3)

(4)
(5)

IO
VCPU

Migration
Thread

Scheduler

38/32

VCPU API

• Full thread support
– NB: Limit a VCPU to one address space
– Reduces migration costs

int VCPU_create(struct vcpu_param *param)

struct vcpu_param {

 int vcpuid;

 policy; // SCHED_SPORADIC, SCHED_PIBS

 int mask; // affinity mask

 int C; // budget

 int T; // period

}

39/32

VCPU API

• int VCPU_destroy(int vcpuid, int force);

• int VCPU_setparam(int vcpuid, struct vcpu_param
*param);

• int VCPU_getparam(struct vcpu_param *param);

• Int VCPU_bind_task(int vcpuid);

• Policy:

– Which sandboxes assigned which VCPUs?

• Utilization considerations

• Cache usage (perfmon)

• Have SBs announce their utilization (bidding)

40/32

Real-Time Fault Recovery

• Real-time fault recovery

– Local & remote

– Requires SB with working scheduler for
predictable recovery

– Remote recovery can avoid re-initialization
of faulting service

41/32

Real-Time Fault Recovery

Fault Recovery Thread

Exit Code Entry Code

Restore Machine State
for Recovery Code

Start / Continue
Recovery Procedure

Monitor LAPIC Timer
Handler

Save Machine State
for Recovery Code

LAPIC Timer Interrupt

Schedule De-schedule

Sandbox Kernel

Monitor

42/32

Applications

• RacerX
• TORCS
• Benchmarks

– Web server
– Netperf
– Canny
– Others?

43/32

Performance Monitoring

• (LLC) Cache hits, misses, instrs retired, TSC,...
• Can predict s/w thread LLC occupancy in real-

time

– E' = E + (1-E/C)*M
l
 - E/C*M

o

– See West, Zaroo, Waldspurger & Zhang
• OSR, December 2010

44/32

Experiments

• Intel Core2 Extreme QX6700 @ 2.66GHz
• 4GB RAM
• Gigabit Ethernet (Intel 8254x “e1000”)
• UHCI USB Host Controller

– 1GB USB memory stick
• Parallel ATA CDROM in PIO mode

• Measurements over 5sec windows using
bandwidth-preserving logging thread

45/32

Experiments

• CPU-bound threads: increment a counter
• CD ROM/USB threads: read 64KB data from

filesystem on corresponding device

46/32

I/O Effects on VCPUs

VCPU V
C

V
T

threads

VCPU0 2 5 CPU-bound

VCPU1 2 8 Reading CD,
CPU-bound

VCPU2 1 4 CPU-bound

VCPU3 1 10 Logging, CPU-
bound

IOVCPU 10% ATA

47/32

I/O Effects on VCPUs

48/32

PIBS vs SS IO VCPU
Scheduling

VCPU V
C

V
T

threads

VCPU0 1 20 CPU-bound

VCPU1 1 30 CPU-bound

VCPU2 10 100 Network, CPU-
bound

VCPU3 20 100 Logging, CPU-
bound

IOVCPU 1% Network

49/32

PIBS vs SS IO VCPU
Scheduling

t=50 start ICMP ping flood. Here, we see comparison overheads of two
scheduling policies

50/32

PIBS vs SS IO VCPU
Scheduling

Network bandwidth of two scheduling policies

51/32

IO VCPU Sharing

VCPU V
C

V
T

threads

VCPU0 30 100 USB, CPU-bound

VCPU1 10 110 CPU-bound

VCPU2 10 90 Network, CPU-bound

VCPU3 100 200 Logging, CPU-bound

IO VCPU 1% USB,Network

VCPU0 30 100 USB, CPU-bound

VCPU1 10 110 CPU-bound

VCPU2 10 90 Network, CPU-bound

VCPU3 100 200 Logging, CPU-bound

IO VCPU1 1% USB

IO VCPU2 1% Network

52/32

IO VCPU Sharing

53/32

Conclusions

• Temporal isolation on IO events and tasks
• PIBS + SS Main & IO VCPUs can guarantee

utilization bounds
• Future investigation of higher-level policies
• Future investigation of h/w performance

counters for VCPU-to-PCPU scheduling

54/32

Architecture Overview

55/32

Example Fault Recovery

Main
VCPU

Main
VCPU

IO
VCPU

IO
VCPU

Kernel

MonitorMonitor

NIC Driver

Main
VCPU

Main
VCPU

Kernel

MonitorMonitor

NIC Driver

Msg Channel Msg Channel

NICNIC

(1)

Main
VCPU

Main
VCPU

Kernel

MonitorMonitor

NIC Driver

Msg Channel

IO
VCPU

IO
VCPU

(2)

(3)
(4)

Component
Failure Detection

Component
Failure Detection

SB Kernel
(Guest)

Monitor
(Host)

V
M

-E
xi

t V
M

-E
ntry

Fault Identification
And Handling

Fault Identification
And Handling

Remote Event
Notification (IPI)

Remote Event
Notification (IPI)

Component
Recovery in

Remote Sandbox

Component
Recovery in

Remote Sandbox

Component
Recovery in

Local Sandbox

Component
Recovery in

Local Sandbox

(1)

(2)

(3)
(4)

	Quest-V – a Virtualized Multikernel
	Goals
	Target Applications
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	SS Scheduling
	PIBS Scheduling
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Further Information
	Quest Summary
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Experiments
	Slide 45
	I/O Effects on VCPUs
	Slide 47
	PIBS vs SS IO VCPU Scheduling
	Slide 49
	Slide 50
	IO VCPU Sharing
	Slide 52
	Conclusions
	PowerPoint Presentation
	Slide 55

