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Goals

• Develop system for high-confidence 
(embedded) systems

• Predictable – real-time support
• Resistant to component failures & malicious 

manipulation
• Self-healing
• Online recovery of software           

component failures
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Target Applications

• Healthcare
• Avionics
• Automotive
• Factory automation
• Robotics

• Space exploration
• Other safety-critical domains
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Case Studies

• $327 million Mars Climate Orbiter

– Loss of spacecraft due to 
Imperial / Metric conversion   
error (September 23, 1999)

• 10 yrs & $7 billion to develop Ariane 
5 rocket

– June 4, 1996 rocket destroyed 
during flight

– Conversion error from 64-bit 
double to 16-bit value

• 50+ million people in 8 states & 
Canada in 2003 without electricity 
due to software race condition
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Approach

• Quest-V for multicore processors

– Distributed system on a chip

– Time as a first-class resource
• Cycle-accurate time accountability

– Separate sandbox kernels for system sub-components

– Isolation using h/w-assisted memory virtualization
• Extended page tables (EPTs – Intel)

• Nested page tables (NPTs – AMD)

– Security enforcible using VT-d + interrupt remapping (IR)
• Device interrupts scoped to specific sandboxes

• DMA xfers to specific host memory 
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Architecture Overview
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Isolation

● Memory virtualization using EPTs isolates 
sandboxes and their components 

● Dedicated physical cores assigned to sandboxes

● Temporal isolation using Virtual CPUs (VCPUs)PUs)
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Extended Page Tables
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Quest-V Memory Layout
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● VCPUs for budgeted real-time execution of 
threads and system events (e.g., interrupts)

● Threads mapped to VCPUs

● VCPUs mapped to physical cores

● Sandbox kernels perform local scheduling on 
assigned cores

● Avoid VM-Exits to Monitor – eliminate 
cache/TLB flushes

Predictability
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VCPUs in Quest(-V)
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VCPUs in Quest(-V)

• Two classes
– Main → for conventional tasks
– I/O →for I/O event threads (e.g., ISRs)

• Scheduling policies
– Main → sporadic server (SS)
– I/O → priority inheritance bandwidth-

preserving server (PIBS)
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SS Scheduling

• Model periodic tasks
– Each SS has a pair (C,T) s.t. a server is 

guaranteed C CPU cycles every period of 
T cycles when runnable

• Guarantee applied at foreground priority
• background priority when budget depleted

– Rate-Monotonic Scheduling theory 
applies
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PIBS Scheduling

• IO VCPUs have utilization factor, U
V,IO

• IO VCPUs inherit priorities of tasks (or Main 
VCPUs) associated with IO events
– Currently, priorities are ƒ(T) for 

corresponding Main VCPU
– IO VCPU budget is limited to:

• T
V,main

*
  
U

V,IO
 for period T

V,main
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PIBS Scheduling

• IO VCPUs have eligibility times, when they 
can execute

• t
e
 = t + C

actual
 / U

V,IO

– t = start of latest execution
– t >= previous eligibility time
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Example VCPU Schedule
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Sporadic Constraint

• Worst-case preemption by a sporadic task for all other tasks 
is not greater than that caused by an equivalent periodic task

 

(1) Replenishment, R must be deferred at least t+T
V

(2) Can be deferred longer

(3) Can merge two overlapping replenishments

• R1.time + R1.amount >= R2.time then MERGE

• Allow replenishment of R1.amount +R2.amount at 
R1.time
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Example Replenishments
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Utilization Bound Test

• Sandbox with 1 PCPU, n Main VCPUs, and m 
I/O VCPUs
– Ci = Budget Capacity of Vi
– Ti = Replenishment Period of Vi
– Main VCPU, Vi
– Uj = Utilization factor for I/O VCPU, Vj

∑
i=0

n−1
Ci
Ti

+∑
j=0

m−1

(2−Uj)⋅Uj≤n⋅( n
√2−1)
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Efficiency

● Lightweight I/O virtualization & interrupt 
passthrough capabilities

● e.g., VNICs provide separate interfaces to 
single NIC device

● Avoid VM-Exits into monitor for scheduling &  
I/O mgmt
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I/O Passthrough
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Virtualization Costs
• Example Data TLB overheads
• Xeon E5506 4-core @ 2.13GHz, 4GB RAM
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● Example NIC RX Ring Buffer

Device (Driver) Sharing
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Shared Driver Costs

•
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Example Fault Recovery
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Faulting Driver for Web Server

• httperf with web server in presence of 
Realtek NIC driver fault

 

• Requests / replies set at 120/s     
under normal operation 

– Single-threaded server

– Focus on one process

– Recovery time rather than 
throughput
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Performance Costs

• Core i5-2500K with 8GB RAM

Recovery
Phases

CPU Cycles

Local Recovery Remote Recovery

VM-Exit 885

Driver Switch 10503 N/A

IPI Round Trip N/A 4542

VM-Enter 663

Driver Re-initialization 1.45E+07

Network Re-
initialization

78351
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Inter-Sandbox Communication

• Via Communication VCPUs

– High rate VCPUs: 50/100ms

– Low rate VCPUs: 40/100ms
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The Quest Team

• Rich West
• Ye Li
• Eric Missimer
• Matt Danish
• Gary Wong
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Further Information

• Quest website
• http://www.cs.bu.edu/fac/richwest/quest.html

• Github public repo
• http://questos.github.com

http://www.cs.bu.edu/fac/richwest/quest.html
http://questos.github.com/
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Quest(-V) Summary

• About 11,000 lines of kernel code

• 175,000+ lines including lwIP, drivers, regression 
tests

• SMP, IA32, paging, VCPU scheduling, USB, PCI, 
networking, etc

• Quest-V requires BSP to send INIT-SIPI-SIPI to 
APs, as in SMP system

– BSP launches 1st (guest) sandbox

– APs “VM fork” their sandboxes from BSP copy 
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Final Remarks

• Quest-V multikernel 
– Leverages H/W virtualization for 

safety/isolation  
– Avoids VM-Exits for VCPU/thread 

scheduling
– Online fault recovery
– Shared memory communication channels
– Lightweight I/O virtualization
– Predictable VCPU scheduling framework
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Isolation

• 4 sandboxes: SB0,..., SB3

– SB1 sends msgs to SB0, SB2 & SB3 at 50ms intervals 
• SB0, SB2 & SB3 rx at 100, 800, 1000ms intervals, 

respectively

– SB0 handles ICMP requests
• sent remotely at 500ms intervals

– Observe failure + recovery in SB0

– Messaging threads on Main VCPUs: 20ms/100ms

– NIC driver I/O VCPU: 1ms/10ms
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Isolation
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Next Steps

• VCPU/thread migration
• API extensions
• Application development
• Hardware performance monitoring
• RT-USB sub-system

• Fault detection
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Real-Time Migration

• At t, guarantee VCPU, V
src

, moves from SB
src

→SB
dest

 

without violating:

(a) Remote VCPU requirements,∀V
dest

∈SB
dest

(b) Requirements of V
src

• Use migration VCPUs, V
migrate

 [C
mig

,T
mig

]

• Ensure:

• Ensure: C[memcpy of V
src

+thread(s)] <= C
mig

– while V
src

 is ineligible for execution

 

U dest+
C src

T src

≤(n+1)(n+1√2−1) ,∣V dest∣=n@t '<t



37/32

Real-Time Migration
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VCPU API

• Full thread support
– NB: Limit a VCPU to one address space
– Reduces migration costs

int VCPU_create(struct vcpu_param *param)

struct vcpu_param {

  int vcpuid;

  policy; // SCHED_SPORADIC, SCHED_PIBS

  int mask; // affinity mask

  int C; // budget

  int T; // period

}
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VCPU API

• int VCPU_destroy(int vcpuid, int force);

• int VCPU_setparam(int vcpuid, struct vcpu_param 
*param);

• int VCPU_getparam(struct vcpu_param *param);

• Int VCPU_bind_task(int vcpuid);

• Policy:

– Which sandboxes assigned which VCPUs?

• Utilization considerations

• Cache usage (perfmon)

• Have SBs announce their utilization (bidding)
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Real-Time Fault Recovery

• Real-time fault recovery

– Local & remote

– Requires SB with working scheduler for 
predictable recovery

– Remote recovery can avoid re-initialization 
of faulting service
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Real-Time Fault Recovery
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Applications

• RacerX
• TORCS
• Benchmarks

– Web server
– Netperf
– Canny
– Others?
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Performance Monitoring

• (LLC) Cache hits, misses, instrs retired, TSC,...
• Can predict s/w thread LLC occupancy in real-

time

– E' = E + (1-E/C)*M
l
 - E/C*M

o

– See West, Zaroo, Waldspurger & Zhang
• OSR, December 2010 
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Experiments

• Intel Core2 Extreme QX6700 @ 2.66GHz
• 4GB RAM 
• Gigabit Ethernet (Intel 8254x “e1000”)
• UHCI USB Host Controller

– 1GB USB memory stick
• Parallel ATA CDROM in PIO mode

• Measurements over 5sec windows using 
bandwidth-preserving logging thread 
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Experiments

• CPU-bound threads: increment a counter
• CD ROM/USB threads: read 64KB data from 

filesystem on corresponding device
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I/O Effects on VCPUs

VCPU V
C

V
T

threads

VCPU0 2 5 CPU-bound

VCPU1 2 8 Reading CD, 
CPU-bound

VCPU2 1 4 CPU-bound

VCPU3 1 10 Logging, CPU-
bound

IOVCPU 10% ATA
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I/O Effects on VCPUs
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PIBS vs SS IO VCPU 
Scheduling

VCPU V
C

V
T

threads

VCPU0 1 20 CPU-bound

VCPU1 1 30 CPU-bound

VCPU2 10 100 Network, CPU-
bound

VCPU3 20 100 Logging, CPU-
bound

IOVCPU 1% Network
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PIBS vs SS IO VCPU 
Scheduling

t=50 start ICMP ping flood. Here, we see comparison overheads of two
scheduling policies
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PIBS vs SS IO VCPU 
Scheduling

Network bandwidth of two scheduling policies
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IO VCPU Sharing

VCPU V
C

V
T

threads

VCPU0 30 100 USB, CPU-bound

VCPU1 10 110 CPU-bound

VCPU2 10 90 Network, CPU-bound

VCPU3 100 200 Logging, CPU-bound

IO VCPU 1% USB,Network

VCPU0 30 100 USB, CPU-bound

VCPU1 10 110 CPU-bound

VCPU2 10 90 Network, CPU-bound

VCPU3 100 200 Logging, CPU-bound

IO VCPU1 1% USB

IO VCPU2 1% Network
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IO VCPU Sharing
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Conclusions

• Temporal isolation on IO events and tasks
• PIBS + SS Main & IO VCPUs can guarantee 

utilization bounds
• Future investigation of higher-level policies 
• Future investigation of h/w performance 

counters for VCPU-to-PCPU scheduling
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Architecture Overview
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Example Fault Recovery
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