
1

Computer Science

Hijack: Taking Control of COTS Systems
to Enforce Predictable Service

Guarantees

Richard West and Gabriel Parmer

Boston University
Boston, MA

{richwest,gabep1}@cs.bu.edu

Introduction

� Leverage commodity systems and generic hardware for
QoS-constrained applications

� Eliminate cost of proprietary systems & custom hardware
� Use a common code base for diverse application

requirements
� e.g., use existing device drivers

� BUT…mismatch exists between QoS requirements of
applications and the service provisions of commodity
OSes

Bridging the `Semantic Gap’

� There is a `semantic gap’ between the needs of applications
and services provided by the system

� Implementing functionality directly in application processes
� Pros: service/resource isolation (e.g., memory protection)
� Cons:

� Does not guarantee necessary responsiveness
� Must leverage system abstractions in complex ways
� Heavyweight scheduling, context-switching and IPC

overheads

Bridging the `Semantic Gap’ Cont.

� Other approaches:
� Special systems designed for extensibility

� e.g., SPIN, VINO, Exo-/µ-kernels (Aegis / L4), Palladium
� Do not leverage commodity OSes
� Do not explicitly consider QoS requirements

� e.g. bounded dispatch latencies and execution

� Virtual machines
� Have each VM provide system services for specific class of

applications
� BUT hosted VMs at mercy of unpredictable services of underlying

host kernel
� Here, we want to leverage underlying COTS system rather than

replace it where possible!

Extending Commodity Systems

� Desktop systems now support QoS-constrained applications
� e.g., Windows Media Player, RealNetworks Real Player

� Many such systems are monolithic and not easily extended
or only support limited extensibility
� e.g., kernel modules for device drivers in Linux
� No support for extensions to override system-wide

service policies

Objectives

� Aim to extend commodity systems to:
� better meet the service needs of individual applications
� provide first-class application-specific services

� Service extensions must be `QoS safe’:
� Need CPU-, memory- and I/O-space protection to ensure

� Service isolation
� Predictable and efficient service dispatching
� Bounded execution of services

2

First-class Services

� Where possible, have same capabilities as kernel services
but kernel can still revoke access rights
� Grant access rights to subset of I/O-, memory-space etc
� Dispatch latencies close to those of kernel-level interrupt

handlers
� Avoid potentially unbounded scheduling delays

� Bypass kernel scheduling policies
� Eliminate process context-switching

� Eliminate expensive TLB flushes/reloads

First-class Services cont.

� Process, Pi, may register a service that runs even when Pi is
not executing
� Like a fast signal handling mechanism

� Example usages:
� Asynchronous I/O
� Resource monitoring / management

� e.g., Pi wishes to adjust its CPU usage even when
not running perhaps because it wasn’t getting
enough CPU!

Contributions

� Comparison of kernel- and user-level extension technologies
� “User-level sandboxing” (ULS) versus our prior SafeX

work
� Show how to achieve low service dispatch latency for

app-specific services, while ensuring some degree of
CPU-, I/O and memory protection

� Hijack
� Next-generation ULS technique including interposition
� Ability to intercept system calls and h/w interrupts for

delivery to sandbox
� Can predictably and completely control “guest”

application execution

SafeX – Safe Kernel Extensions

� Extension architecture for general purpose systems

� Allows applications to customize system behavior
� Extensions run in context of a kernel “bottom half”

� Enables low-latency execution in response to events &
eliminates heavyweight process scheduling

SafeX Approach

� Supports compile- and run-time safety checks to:
� Guarantee QoS

� The QoS contract requirement
� Enforce timely & bounded execution of extensions

� The predictability requirement
� Guarantee an extension does not improve QoS for one

application at the cost of another
� The isolation requirement

� Guarantee internal state of the system is not jeopardized
� The integrity requirement

SafeX Features

� Extensions written in Popcorn & compiled into Typed
Assembly Language (TAL)
� TAL adds typing annotations / rules to assembly code

� Memory protection:
� Prevents forging (casting) pointers to arbitrary addresses
� Prevents de-allocation of memory until safe

� CPU protection:
� Requires resource reservation for extensions
� Aborts extensions exceeding reservations
� SafeX decrements a counter at each timer interrupt to

enforce extension time limits

3

Synchronization

� Extensions cannot mask interrupts
� Could violate CPU protection since expiration counter

cannot decrement
� Problems aborting an extension holding locks

� e.g., extension runs too long
� May leave resources inaccessible or in wrong state

� Extensions access shared resources via SafeX interfaces
that ensure mutual exclusion

SafeX Kernel Service Managers

� Encapsulations of resource management subsystems
� Have policies for providing service of a specific type

� e.g., a CPU service manager has policies for CPU
scheduling and synchronization

� Run as bottom-half handlers (in Linux)
� Invoked periodically or in response to events within

system
� Invoke monitor and handler extensions

� Can execute asynchronously to application processes
� Apps may influence resource allocations even when not

running

SafeX Kernel Service Managers (Cont.)

� Monitors & handlers operate on attribute classes
� name-value pairs (e.g. process priority – value)

� Service extensions with valid access rights can modify attributes

Attribute Classes

Handlers

Class 1

Class 2

Class k

Kernel Service Manager

get_attributes()

set_attributes()

Kernel
policy-specific

structures

Kernel timer queue of
bottom half (SM)

functions

Guard fn

MonitorsEvents out

Events in

Attribute Classes & Guards

� Attribute classes store name-value pairs for various app-
specific service attributes
� e.g., priority-value for CPU scheduling

� Access to these classes is granted to the extensions of
processes that acquire permission from the class creators

� Guard functions are generated by SafeX
� Responsible for mapping values in attribute classes to

kernel data structures
� Can enforce range and QoS guarantee checks

SafeX Interfaces

� SafeX provides get_/set_attribute () interfaces
� Extensions use these interfaces to update service

attributes
� Extensions are not allowed to directly access kernel data

structures

� Interfaces can only be used by extensions having necessary
capabilities
� Capabilities are type-safe (unforgeable) pointers

� Interfaces limit global affects of extensions
� Balance application control over resources with system

stability

User-Level Sandboxing (ULS)

� Provide “safe” environment for service extensions
� Separate kernel from app-specific code
� Use only page-level hardware protection

� Can use type-safe languages e.g., Cyclone for memory
safety of extensions, SFI etc., or require authorization by
trusted source

� Approach does not require (but may benefit from) special
hardware protection features
� Segmentation
� Tagged TLBs

4

Traditional View of Processes

. . .

Kernel Level

User Level

P1 P2 Pn

Process
address space

Kernel events

Sandbox Region Shared by
Processes

. . . Process-private
address space

Sandbox region
(shared virtual address space)

Kernel Level

User Level

P1 P2

Mapped data

Pn

Extension for PnExtension for P2

Kernel events make
sandbox region

user-level accessible

ULS Implementation

� Modify address spaces of all processes to contain one or
more shared pages of virtual addresses
� Shared pages used for sandbox

� Normally inaccessible at user-level
� Kernel upcalls toggle sandbox page protection bits &

perform TLB invalidate on corresponding page(s)

� Current x86 approach
� 2x4MB superpages (one data, one code)
� Modified libc to support mmap, brk, shmget etc
� ELF loader to map code & data into sandbox
� Supports sandboxed threads that can block on syscalls

Virtual-to-Physical Memory Mapping

Process 1 Process 2Physical Memory

Private
address
space

Mapped Data

Mapped Data

Extension
Stacks

Extension
Code

+
read-only data

Sandbox
public
area

Protected
area

Sandbox
public
area

Protected
area

4MB

4MB

ULS Implementation (2)

� Fast Upcalls
� Leverage SYSEXIT/SYSENTER on x86

� Support traditional IRET approach also

� Kernel Events
� Generic interface supports delivery of events to specific

extensions
� Each extension has its own stack & thread struct

� Extensions share credentials (including fds) with
creator

� Events can be queued ala POSIX.4 signals

Experimental Evaluation

� (a) Inter-Protection Domain Communication
� Look at overheads of IPC between thread pairs

� Exchange 4-byte messages
� Vary the working set of one thread to assess costs
� 1.4GHz P4, patched Linux 2.4.9 kernel

� (b) Adaptive CPU service management
� Aim: to meet the needs of CPU-bound RT tasks under

changing resource demands from a `disturbance’ process
� Compare ULS and SafeX to process-based approaches
� 550 Mhz Pentium III, 256MB RAM, patched 2.4.20 Linux

5

Data and Instruction TLB Misses

� Inter-protection domain communication costs

� Costs of 4-byte messages between two threads using pipes

� Vary working set of one process-private thread while other is in sandbox

0

20

40

60

80

100

120

140

0 20 40 60 80 100 120

D
a

ta
 T

L
B

 M
is

se
s

Referenced Data Pages

User
Sandbox

0

50

100

150

200

250

0 20 40 60 80 100 120 140 160 180 200

In
st

ru
c

tio
n

TL
B

 M
is

se
s

Referenced Instruction Pages

User
Sandbox

Pipe Latency

� Pipe latency remains lower for RPC with sandboxed thread
� Even when data TLB miss rates are similar

� NOTE: d-TLB sizes simulated by thread reading 4 bytes of data from addresses spaced
4160 bytes apart. i-TLB sizes simulated using relative jumps to instructions 4160 bytes
apart.

11

12

13

14

15

16

17

18

19

0 20 40 60 80 100 120P
ip

e
L

at
e

nc
y

(C
P

U
 C

yc
le

s
x1

0
00

)

Referenced Data Pages

User
Sandbox

11

12
13

14
15

16

17
18

19

20
21

22

0 20 40 60 80 100 120 140 160 180 200

P
ip

e
L

at
e

nc
y

(C
P

U
 C

yc
le

s
x1

0
00

)

Referenced Instruction Pages

User
Sandbox

System Service Extensions

� Can we implement system services in the sandbox?
� Here, we show performance of a CPU service manager

(CPU SM)

� Attempt to maintain CPU shares amongst real-time
processes on target in presence of background
disturbance

� Use a MMPP disturbance w/ avg inter-burst times of 10s
and avg burst lengths of 3 seconds

Kernel Service Management

� A service manager monitors CPU utilization and adapts
process timeslices
� Timeslices adjusted by PID function of target & actual

CPU usage
� Monitoring performed every 10mS

� Kernel monitoring functions invoked via timer queue

User-Level Management

� A periodic RT process acts as a CPU service manager
� Reads /proc/pid/stat
� Adapts service via kill() syscalls

� Using SIGSTOP & SIGCONT signals

Experimental Setup

� 3 CPU-bound processes, P1, P2 & P3
� P1 – target CPU = 40mS every period = 400mS
� P2 – target CPU = 100mS every 500mS
� P3 – target CPU = 60mS every 200mS

� An MMPP disturbance (CPU “hog”)
� 10 sec exponential inter-burst gap & 3 sec geometric

burst lengths

6

Experimental Setup cont.

� Each app process has initial RT priority =
80 x (target / period)
� target & period denote target CPU time in a given period

� User-level service manager & disturbance start at
RT priority = 96

� Kernel daemons run at RT priority = 97
� Utilization points recorded over 1 sec intervals

Monitors and Handlers

void monitor () {
actual_cpu = get_attribute (“actual_cpu”);
target_cpu = get_attribute (“target_cpu”);
raise_event (“Error”, target_cpu - actual_cpu);

}

void handler () {
e[n] = ev.value; // nth sampled error

/* Update timeslice adjustment by PID fn of error */
u[n] = (Kp+Kd+Ki).e[n] - Kd.e[n-1] + u[n-1];

set_attribute (“timeslice-adjustment”, u[n]);
}

Guard Functions

// Check the QoS safe updates to a process’ timeslice

guard (attribute, value):
if (attribute == “timeslice-adjustment”)
if (CPU utilization is QoS safe)

timeslice = max (0, target_cpu + value);
else block process;

• CPU utilization is deemed QoS safe if:
Avg utilization over 2*period <= target utilization

CPU SM: User-level Process

0

10

20

30

40

50

60

0 10 20 30 40 50 60 70 80 90 100

%
 o

f C
P

U

time (seconds)

P3
P2
P1

Disturbance

CPU SM: Sandbox Thread

0

10

20

30

40

50

60

0 10 20 30 40 50 60 70 80 90 100

%
 o

f C
P

U

time (seconds)

P3
P2
P1

Disturbance

CPU SM: Pure Upcall

0

10

20

30

40

50

60

0 10 20 30 40 50 60 70 80 90 100

%
 o

f C
P

U

time (seconds)

P3
P2
P1

Disturbance

7

CPU SM: Kernel

0

10

20

30

40

50

60

0 10 20 30 40 50 60 70 80 90 100

%
 o

f C
P

U

time (seconds)

P3
P2
P1

Disturbance

Deadline Violation Rates

kernel handler
pure upcall fn

sandbox thread
user process

0 10 20 30 40 50 60 70 80 90 100

time (seconds)

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

V
io

la
tio

n
R

at
e

SafeX Benchmarks

� User-level:
� Signal dispatch = 1.5µS
� Context-switch between SM and app process = 2.99µS
� Reading /proc/pid/stat = 53.87µS
� Monitors and handlers (for 3 processes) = 190µS

� Kernel-level:
� Executing monitors and handlers (for 3 processes) =

20µS

ULS Benchmarks

46000Signal delivery (different process)

6000Signal delivery (current process)

2500Raw upcall

8500TLB flush and reload
*includes call to OpenSandbox()

11000Upcall including TLB flush / reload

Cost in CPU CyclesOperation

Hijack: Predictable Control of COTS
Systems

� Provides mechanisms to redefine or hijack all COTS system
policies concerning
� Process execution
� System service requests (system calls)

� Methodologies:
� Create ULS-type memory region in address space of all

hijacked processes
� Interpose this layer on all hijacked process system calls
� Allow the control of process execution (register state) and

execution context (address space)

Hijack: Predictable Control of COTS
Systems (continued)

• Like VMM, but interposes on the system call layer instead of
the architectural
� Can interpose on architectural level too!
� Note: The Hijack approach was originally influenced by

User-mode Linux (UML) that uses ptrace to interpose on
syscalls

� Avoid changes to underlying host kernel

� Terminology:
� ULS-type region defining hijack policies: Executive
� Hijacked processes: Guests

8

Hijack: Predictable Control of COTS
Systems (continued)

� Use kernel loadable module to intercept syscalls & h/w
interrupts
� Intercepts trigger upcalls to executive (similar to ULS)

� Hijack is only a single kernel-thread to the host system with
highest priority
� Support multiple guest threads by multiplexing reg. state

� Can predictably & efficiently receive notification of host
system events
� e.g., SIGALRM signal generated by a timer interrupt in

host kernel, for delivery to sandbox scheduler

Hijack System Architecture

Kernel module
Host Kernel

. . .

Background
process

Guest Guest

Hardware (I/O devices)

Sandbox/
Executive

Interrupts

IDT

Syscall
interception

Schedule / dispatch

Hijack execution
environment

Unintercepted syscalls /
signals

System Call Interposition

Kernel module
Host Kernel

. . .

Executive

Guest Guest

executive state

(to be restored)

saved guest state

syscall

� Guest system calls are
vectored to the
executive

� Guest register state is
stored at executive-
defined location
� Can alter register

state
� Executive can make

normal system calls in
response to guest
service request

� OR define its own
policy for service

Control Flow from Executive to Guest

Kernel module
Host Kernel

. . .

Executive

Guest Guest

saved guest state

(to be restored)

saved
executive state

� Executive can resume
guest execution
� In any hijack

address space
� With executive-

defined register
state

� Executive controls
� Scheduling
� Entire execution

environment of
guest!

� Executive register
saved in module when
in guest

Hijack Virtual Address Space Layout

signal_handler

4KB guard page

executive stack

4KB guard page

sigaltstack

executive

read-only

0x3FC00000

read-writable

� Predictable host OS event
notification (signals)
� Must receive events promptly

when executing in both guest
and executive

� Event handlers in executive
BUT executive region
inaccessible while in guest

� Define trampoline code
(signal_handler) to receive signals
� Open executive region if

inaccessible
� Execute executive handler

Hijack System Performance

18661RPC between two tasks using UNIX
pipes

13476RPC between two guests (separate
page tables)

2563IPC from Executive to Guest

1925IPC from Guest to Executive

33613Interposition using POSIX ptrace

5094Interposition: RPC + System Call

4482RPC from Guest to Executive to
Guest

430System Call

Cost in CPU CyclesOperation

9

Nanosleep Predictability

1

10

100

1000

10000

100000

0 1 2 3 4

Number of Background CPU Bound Tasks

Ji
tt

er
 (

T
en

s
of

 M
ic

ro
se

co
nd

s)

Hijack

Linux Task

Hijack Extended

� nanosleep system call
� Typically has

minimum latency of
system clock tick

� Waking a sleeping
process involves
scheduling

� Unpredictable with
multiple tasks in run-
queue

� Perhaps appropriate for
nanosleep provider to
spin for sleep periods
less than a clock-tick
� Not a general

solution

QoS Expts: Packet Delivery

� Demonstrate the definition of complex policies within
executive
� QoS for different tasks in terms of I/O capabilities

� Up to 4 streams of data sent to tasks
� Small UDP packets
� 44000 packets/second per stream

� Tasks “process” data by computing statistics on dropped
packets and stream delivery jitter
� Tasks output stats every 30000 packets processed

� Tasks with QoS requirements (pseudo-proportional share):
� Task0: highest QoS
� Task1: intermediate QoS
� Task2/Task3: Best effort

QoS Expts: Packet Delivery (cont)

#
 o
f
p
k
ts

d
e
liv

e
re
d

Time (seconds)

Task 0 (hijack)
Task 1 (hijack)
Task 0 (extend)
Task 1 (extend)
Task 0 (normal)
Task 1 (normal)
Task 2 (normal)
Task 3 (normal)

Interposition Experiments

� Interposition
� Simple syscall tracing extensions based on ptrace
� Compare traditional ptrace implementation against:

� Upcall handler implementation in sandbox
� Kernel-scheduled thread in sandbox

� Experiments on a 1.4GHz Pentium 4 w/ patched Linux 2.4.9

� Ptraced thttpd web server under range of HTTP request loads

Interposition Agents: ptrace of
system calls

1000

1500

2000

2500

3000

3500

1500 2000 2500 3000 3500 4000 4500 5000

R
es

po
ns

es
 p

e
r

se
co

nd

Requests per second

Untraced Process
Sandbox upcall (no TLB flush)

Sandbox upcall
Sandbox thread (no TLB flush)

Sandbox thread
Process traced

1000

1500

2000

2500

3000

3500

1500 2000 2500 3000 3500 4000 4500 5000

R
es

po
ns

es
 p

e
r

se
co

nd

Requests per second

Conclusions

� SafeX and ULS both capable of supporting app-specific
service invocation without process scheduling / context-
switching overheads

� Avoid TLB flush/reload costs
� Lower-latency, more predictable service dispatching
� Both provide finer-grained service management than

process-based approaches
� No scheduling of processes for service management
� Not dependent on scheduling policies and timeslice

granularities

� Hijack is next step to full control of COTS system for
predictable (QoS-based) services

10

Future Work

� Real-time upcall mechanism for deferrable services
� Better interrupt accounting and “bottom half” scheduling
� Support for complex virtual services

� Use Hijack executive to control resource management amongst
multiple hosted virtual machines

� In earlier work we showed how to use ULS to support user-space
network protocol stacks, avoiding data-copying via host kernel
� Could extend to multiple coordinated services across network of

ULS/Hijack-controlled hosts

� Comparison with RTAI, RTLinux and similar approaches

Further Information

� www.cs.bu.edu/fac/richwest/sandboxing.html
� www.cs.bu.edu/fac/richwest/safex.html

� Richard West and Gabriel Parmer, “Application-Specific Service
Technologies for Commodity Operating Systems in Real-Time
Environments,” RTAS 2006
� Extended version to appear in ACM Transactions on Embedded

Computing Systems
� Richard West and Jason Gloudon, “`QoS Safe’ Kernel Extensions for

Real-Time Resource Management,” ECRTS 2002
� Xin Qi, Gabriel Parmer and Richard West, “An Efficient End-host

Architecture for Cluster Communication Services,” Cluster Computing
2004

� Gabriel Parmer and Richard West, “Hijack: Taking Control of COTS
Systems for Real-Time User-Level Services,” BU Technical Report
(under review)

� Yuting Zhang and Richard West, “Process-Aware Interrupt
Scheduling and Accounting,” BU Technical Report (under review)

