TEACHING STATEMENT

I have taught 40+ semester-long courses in Boston University’s Computer Science Department. Some courses require
additional lab time of 2-3 hours per week, although this time is often managed by teaching assistants rather than the
primary instructor.

Example courses I have taught include the following:

e BU CS552 - Operating Systems. This is predominantly an introductory course in OS concepts, including
process and thread management, scheduling, synchronization, memory management, filesystems and I/O device
management. I use the source code of my own operating system, called “Quest”, to demonstrate key concepts.
The course is heavily focused on programming projects. While some assignments optionally leverage my OS,
most involve development within the Linux kernel. Example Linux-based assignments include a UNIX-style
RAMDISK filesystem, and a streaming video server that requires users to develop their own kernel-level syn-
chronization primitives. Smaller projects include the development of new scheduling policies such as earliest
deadline first (EDF), fair queueing (FQ), or those based on my own research (e.g., Dynamic Window Con-
strained Scheduling, or Virtual CPU Scheduling). Other systems projects taught in CS552 require students to
use virtualization tools such as BOCHS, QEMU, VMware Workstation, or Oracle VirtualBox to develop stan-
dalone operating systems, targeted primarily at the x86 architecture. Here, students are expected to write or use
bootloaders such as GRUB to probe for the availability of physical memory and I/O devices, so that these can
be managed by their system.

e BU CS410 - Advanced Software Systems. This is a senior undergraduate course that focuses primarily on
(UNIX) systems programming. File I/O, libraries, linkers, loaders, system calls, processes, thread management,
sockets, IPC, signals, and shell programming are all covered in this class. As with CS552, the course is focused
on a “hands on” approach to learning. Example assignments include: (1) a recursive filesystem tree walking
algorithm to search for regular expression patterns in files, similar to how a recursive grep routine might work,
(2) development of shared and static libraries to implement binary utilities for examining various object files
(e.g., ELF and COFF), (3) an operating system shell environment, (4) the development of a portable thread
library, and (5) the implementation of a simple debugger using process tracing techniques.

e BU CS210 - Computer Systems. This second year undergraduate course covers the structure and organization
of computer systems, the design and implementation of abstractions that enable humans to use computers effi-
ciently, the basics of assembly programming, how to translate between assembly and machine language, how it
is possible to build a machine that executes instructions, and the various interfaces between processors, memory,
peripherals, and operating system software. Example projects include the development of an ALU, a simplified
MIPS-style processor (using Altera design tools), assembly programming assignments such as the Eight Queens
problem, and C-style malloc and free heap memory management routines.

e BU CS350 — Fundamentals of Computing Systems. This course is a required sophomore/junior-level under-
graduate Computer Science course. Topics covered in the course include performance analysis and evaluation,
scheduling, resource management, concurrency and synchronization. While this course has several program-
ming assignments, it is more mathematically focused than the above courses, covering topics in probability and
statistics, queueing theory, and scheduling algorithms and their analysis.

e BU CS212 - Physical Computing. This was a pilot undergraduate course, to introduce students to program-
ming. The course centers around the use of Arduinos and other types of embedded programming platforms,
such as the ARM-based Beagleboard. Using sensors and actuators, students tackle a series of programming
assignments that culminate in team projects using small mobile robots to solve problems such as finding paths
through mazes.

e BU CS553 — Advanced Operating Systems. This is a graduate-level course, taking the form of a seminar.
Students are required to present research papers, and develop independent study projects related to OSes.

e BU CS697 — Graduation Initiation Seminar. This is a half-time (post-)graduate-level course intended to help
PhD students avoid many of the pitfalls of academic life. The course provides guidance to students on topics
such as finding a research advisor, writing and reviewing papers, presenting research work, avoiding academic
misconduct, plagiarism and falsifying results. In the US, funding agencies such as the National Science Founda-
tion and National Institutes of Health now require students to take a course that focuses on “responsible conduct
inresearch” (RCR). I have successfully petitioned for CS697 to be an approved RCR course, specifically tailored
to computer science PhD students.



Teaching Philosophy

My teaching has focused on a “learning by doing” principle. Most of my courses involve a significant programming
component. Driven by my research interests in systems, I tend to focus my courses at the interface between hardware
and software. Low-level languages such as C/C++ form a natural match to many of the programming assignments in
systems research, as well as assembly programming.

In lectures, I tend to use a combination of electronic slides, board-written notes and interactive examples that I perform
live in the classroom. For example, I might walk through the source code to show how to boot a simple operating
system that displays available machine memory on the screen. This could be followed by using a virtual machine to
run the compiled code.

Courses I Would Like to Teach

I would like to teach courses that leverage my own operating system, called Quest. One of my goals is to perhaps
write a book on Real-Time Operating Systems Design and Implementation, or similar topic. Most operating system
books focus on general purpose OSes, largely structured around the UNIX model. With the advent of multicore
processors, embedded and real-time systems are now becoming far more advanced than those targeted at traditional
microcontrollers (many of which lack MMUs and MPUs). A course that covers embedded and real-time concepts,
with a focus on system design and theory would be very appealing. This could also involve a strong applied focus
using Raspberry Pis, the new Intel Galileo Arduinos, or similar platforms. For example, VIA has a pico-ITX single
board computer featuring a quad-core x86 with hardware virtualization. Intel has similarly followed with an x86 VT-x
Edison board for Arduino-compatible computing. These would make for an exciting platform to teach hardware-
software co-design, and embedded systems topics.

Courses covering multi- and many-core processing, and machine virtualization would also be of interest. Similarly,
student project courses would be a great way to excite future generations interested in programming and building
working systems for tomorrow’s world.

Further Information
Details about my teaching experiences can be found on my website:
e http://www.cs.bu.edu/fac/richwest/

In particular, my courses are listed here:

e http://www.cs.bu.edu/fac/richwest/courses.html



