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Isis2 System

 Elasticity (sudden scale changes)
 Potentially heavily loads
 High node failure rates
 Concurrent (multithreaded) apps

 Long scheduling delays, resource contention
 Bursts of message loss
 Need for very rapid response times
 Community skeptical of “assurance properties”

 C# library (but callable from any .NET language) 
offering replication techniques for cloud computing 
developers

 Based on a model that fuses virtual synchrony and 
state machine replication models

 Research challenges center on creating protocols 
that function well despite cloud “events”

2



Isis2 makes developer’s life easier

 Formal model permits us to 
achieve correctness

 Isis2 is too complex to use 
formal methods as a 
development too, but does 
facilitate debugging (model 
checking)

 Think of Isis2 as a collection 
of modules, each with 
rigorously stated properties

 Isis2 implementation needs 
to be fast, lean, easy to use

 Developer must see it as 
easier to use Isis2 than to 
build from scratch

 Seek great performance 
under “cloudy conditions”

 Forced to anticipate many 
styles of use

Benefits of Using Formal model Importance of Sound Engineering
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Isis2 makes developer’s life easier

Group g = new Group(“myGroup”);
Dictionary<string,double> Values = new Dictionary<string,double>();
g.ViewHandlers += delegate(View v) {

Console.Title = “myGroup members: “+v.members;

};
g.Handlers[UPDATE] += delegate(string s, double v) {

Values[s] = v;
};
g.Handlers[LOOKUP] += delegate(string s) {

Reply(Values[s]);
};
g.Join();

g.Send(UPDATE, “Harry”, 20.75);

List<double> resultlist = new List<double>;
nr = g.Query(LOOKUP, ALL, “Harry”, EOL, resultlist);

 First sets up group

 Join makes this entity a member.  
State transfer isn’t shown

 Then can multicast, query.  
Runtime callbacks to the 
“delegates” as events arrive

 Easy to request security 
(g.SetSecure), persistence

 “Consistency” model dictates the 
ordering aseen for event upcalls
and the assumptions user can 
make
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Isis2 makes developer’s life easier

Group g = new Group(“myGroup”);

Dictionary<string,double> Values = new Dictionary<string,double>();
g.ViewHandlers += delegate(View v) {

Console.Title = “myGroup members: “+v.members;

};

g.Handlers[UPDATE] += delegate(string s, double v) {
Values[s] = v;

};

g.Handlers[LOOKUP] += delegate(string s) {
Reply(Values[s]);

};

g.SetSecure(myKey);

g.Join();

g.Send(UPDATE, “Harry”, 20.75);

List<double> resultlist = new List<double>;

nr = g.Query(ALL, LOOKUP, “Harry”, EOL, resultlist);

 First sets up group

 Join makes this entity a member.  
State transfer isn’t shown

 Then can multicast, query.  Runtime 
callbacks to the “delegates” as 
events arrive

 Easy to request security, 
persistence, tunnelling on TCP...

 “Consistency” model dictates the 
ordering seen for event upcalls
and the assumptions user can 
make
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Possible roles for formal methods

 Use theorem proving 
tools to formalize the 
execution model

 Work with CRASH tools 
to derive versions of 
protocols such as Paxos 
that are optimized for 
this model

 Use those proofs as the 
basis for better 
specifications

 Use the specifications to 
help the developer use 
the resulting replication 
solutions correctly

 Prove to the owner of a 
data center that when 
deployed on 1000’s of 
nodes, the technology 
won’t disrupt other users

 Prove resilience to 
failures/attacks
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Consitency model: Virtual synchrony meets Paxos
(and they live happily ever after…)
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 Virtual synchrony is a “consistency” model: 
 Membership epochs: begin when a new configuration is installed and 

reported by delivery of  a new “view” and associated state

 Protocols run “during” a single epoch: rather than overcome failure, we 
reconfigure when a failure occurs

p

q

r

s

t

Time:      0                        10                      20                      30                       40                50                      60                       70 

p

q

r

s

t

Time:      0                        10                      20                      30                       40                50                      60                       70 

Synchronous execution Virtually synchronous execution

Non-replicated reference execution
A=3 B=7 B = B-A A=A+1



How can we formalize such a model?
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 We’ve done so in work with Dahlia Malkhi that 
builds on work by Lamport, Malkhi and Zhou

 We arrive at a way to formalize the picture we just 
saw and to reason about protocols that run in such 
an environment

 This becomes the basis for using NuPRL as a formal 
tool to solve our protocol challenges



Does our formal model actually help?
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 Let’s consider a use case

 Take the replicated key/value code from 3 slides back

 Turn it into a “replicated MySQL database” using state 
machine replication (Lamport’s model)

State Machine Replication 
(SafeSend/Paxos)

Learner

MySQL replica MySQL replica MySQL replica



Steps
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 Modify the “view handler” to bind to a replica
 A full-blown version would handle arbitrary membership 

changes
 We’ll oversimplify and just do a database “import” 

using the rank of the member to select the replica

 Modify the “update handler” to to a DB update
 Modify the “lookup handler” to do a query
 Change g.Send into g.SafeSend (a version of Paxos)



Start with our old code...

Group g = new Group(“myGroup”);
Dictionary<string,double> Values = new Dictionary<string,double>();
g.ViewHandlers += delegate(View v) {

Console.Title = “myGroup members: “+v.members;

};
g.Handlers[UPDATE] += delegate(string s, double v) {

Values[s] = v;
};
g.Handlers[LOOKUP] += delegate(string s) {

Reply(Values[s]);
};
g.Join();

g.Send(UPDATE, “Harry”, 20.75);

List<double> resultlist = new List<double>;
nr = g.Query(LOOKUP, ALL, “Harry”, EOL, resultlist);
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How would we replicate mySQL?

Group g = new Group(“myGroup”);
g.ViewHandlers += delegate(View v) {

IMPORT “db-replica:”+v.GetMyRank();
};
g.Handlers[UPDATE] += delegate(string s, double v) 
{

START TRANSACTION;
UPDATE salary = v WHERE SET name=s; 
COMMIT;

}; 
...

g.SafeSend(UPDATE, “Harry”, “85,000”);

1. Modify the view handler to 
bind to the appropriate 
replicate (db-replica:0, ...)

2. Apply updates in the order 
received

3. Use the Isis2 implementation 
of Paxos: SafeSend

Paxos guarantees agreement on message set, the order 
in which to perform actions and durability: if any 

member learns an action, every member will learn it.

This code requires that mySQL is deterministic and 
that the serialization order won’t be changed by 
QUERY operations (read-only, but they might get 

locks).  As it happens, those assumptions are valid.

We build the group as the system runs.  Each participant 
just adds itself.  

The leader monitors membership.  This particular version 
doesn’t handle failures but the “full” version is easy.  

We can trust the membership.  Even failure notifications 
reflect a system-wide consensus.
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Some puzzles
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 How can we be sure that SafeSend is a correct 
“virtually synchronous” implementation of Paxos?
 We worked with Dahlia Malkhi to develop a version of 

Paxos optimized to exploit the virtual synchrony model.  
Leslie Lamport was involved at the outset of this effort.

 Robbert later wrote this in 60 lines of Erlang.  His  code 
can be analyzed using NuPRL (CRASH-funded)
 The protocol has optimizations relating to the virtual 

synchrony model that yield speedups for us
More or less what we actually used in Isis2



Some puzzles
18

 How do we know we’re using SafeSend correctly?
 Raises an issue often overlooked with Paxos: the specification is 

self-contained but overlooks composition of the protocol with 
other components, like MySQL!

 Surprise! This particular code sample was incorrect
 It lacks recovery code needed if the replicated application is 

external to the replicated service
 Learner must restart by checking for updates that MySQL lacks 

(doing this(in the view handler) before going online.  
 Requires either an update log or that operations be idempotent

 Paxos correctness proofs won’t help us find this bug

 Suggests that somehow the NuPRL proof was “incomplete”



The issues...
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 Paxos didn’t “document” the obligations of the 
learner, and those depend on where the state is

 With external services like MySQL Paxos requires 
 Determinism (not as trivial as you might think)
 A way to sense which requests have completed
 Logic to resync a recovering replica 
 This is because Paxos maintains its state in quorums spread 

over the replicas, but MySQL needs each replica to be correct



The issues...
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 Where’s the application state?

 In sample code v1, state was replicated in an in-
memory data structure: each replica had a copy

 In v2, the state is in an external service: the MySQL 
replicas.  The replicas are just stubs

 Yet the code looks “the same” to Isis2



Making intent explicit
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 To help the system differentiate we’re adding a 
new “annotation” feature to Isis2

 The developer indicates intent: this lets us distinguish the 
in-memory case from the MySQL case 

 Annotations on the view and update handlers could let 
us warn if code is incorrect

 These annotations also select the fastest protocol that 
has the needed durability, ordering

[FailureIndependent,HasLeader]
public class myGroup: Replicated { .... }



Annotation opportunities
22

 Annotate a whole class: can tell us whether the class 
is self-contained or talks to external entities

 Annotate a view handler: lets us understand how the 
class deals with a joining or recovering member

 Annotate an update handler: user can tell us about 
patterns of updates, locking

 Annotate a query handler: lets us distinguish read-
only actions from those with side-effects

 ... then pull all of this together via reflection when a 
multicast or query is issued to a group method



Update the monitoring and 
alarms criteria for Mrs. Marsh 

as follows…

Confirmed

Response delay seen 
by end-user would 
also include Internet 

latencies
Local response

delay

flush

Send

Send

Send

Execution timeline for an 
individual  first-tier replica

Soft-state first-tier service

A              B              C              D

 Tradeoffs arise: how durable must the Send operations be?  
How ordered should they be?
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But a more elaborate example reveals 
that we’ll need to do much more

g.Send is an optimistic, early-deliverying virtually 
synchronous multicast.  Like the first phase of Paxos

Flush pauses until prior Sends have been acknowledged 
and become “stable”.  Like the second phase of Paxos.

g.Send + g.Flush  g.SafeSend



Observations
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 The state being replicated here is an in-memory 
representation of the monitoring criteria in use now
 Doesn’t preclude also maintaining a log for later audit
 Our focus is on the data the group replicas maintain, so 

if we had a log, the question would be: where does it 
live, how do we interact with it, how “synchronously”?

 This particular code has a “flush barrier” before 
interacting with external clients: a chance to pause 
to make sure prior optimistic actions have finished



Isis2: Send v.s. in-memory SafeSend
25

Send scales best, but SafeSend with 
in-memory (rather than disk) logging and small 

numbers of acceptors isn’t terrible.  



Jitter: how “steady” are latencies?
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The “spread” of latencies is much
better (tighter) with Send: the 2-phase

SafeSend protocol is sensitive to 
scheduling delays



Flush delay as function of shard size
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Flush is fairly fast if we only wait for
acks from 3-5 members, but is slow

if we wait for acks from all members.
After we saw this graph, we changed

Isis2 to let users set the threshold.  



How do annotations help?
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 Rather than asking the developer to hard-code 
“SafeSend with 3 acceptors” (which involves subtle 
reasoning), the developer might tell us:
 My application has durable state: [Durable/Ephemeral]
 Updates are done from a “leader”: [HasPrimary]
 Members have uncorrelated failure behavior 

[FailureIndependent]
 [FlushesBeforeExternalActions], etc...

 From this we can warn on errors, and if none is 
sensed, can pick the fastest applicable option.



Are we there yet?
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 Do annotations tell the whole story?
 What about flow control... use of g.SetSecure if required... 

fragmentation of massive messages... tunnelling over TCP if 
IPMC isn’t available... stability at scale when under stress... 
managing IPMC address space if IPMC is permitted?

 More annotations could help for some of these
 But other aspects point to a new insight

 There are many “perspectives” on what a system should do
 Our high assurance story up to now focuses purely on the 

developer getting it right!



Who’s asking the question?
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 A single system needs to tell multiple kinds of 
assurance stories and not all in the same way

 Current High Assurance
Formalisms try to reduce
a complex story to a
single specification and a
single proof

 In fact we need to learn to think about high 
assurance in terms of distinct perspectives 



Telling so many stories takes a “community”
31

Isis2 user 
object

Isis2 user 
object

Isis2 user 
object

Isis2 library

Group instances and multicast protocols
Flow Control

Membership Oracle

Large Group Layer TCP tunnels (overlay)Dr. Multicast Platform Security

Reliable Sending Fragmentation Group Security

Sense Runtime Environment
Self-stabilizing

Bootstrap ProtocolSocket Mgt/Send/Rcv

Send
CausalSend

OrderedSend
SafeSend
Query....

Message Library “Wrapped” locks Bounded Buffers

Oracle Membership

Group membership

Report suspected failures

Views

Other group
members

The SandBox is mostly composed of “convergent” 
protocols that use probabilistic methods

SafeSend and Send are two of the protocol components hosted 
over the sandbox.  These share flow control, security, etc

 We structured Isis2 as a sandbox containing protocol objects

 The sandbox provides system-wide properties;  protocols like SafeSend “refine” it with additional behaviors.  

 Like aspect-oriented programming applied to high assurance



Drill down: Flow control

 Consider SafeSend (Paxos) within Isis2

 Basic protocol looks very elegant
 Not so different from Robbert’s 60 lines of Erlang

 But pragmatic details clutter this elegant solution
 E.g.:  Need “permission to send” from flow-control module
 ... later tell flow-control that we’ve finished

 Flow control is needed to prevent overload
 Illustrates a sense in which Paxos is “underspecified”

SafeSend (Paxos)
Flow Control
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Pictoral representation

 “Paxos” state depends on “flow control state”
 Modules are concurrent.  “State” spans whole group

SafeSend (Paxos) Flow Control

SafeSend (Paxos)
Flow Control

SafeSend (Paxos)
Flow Control

SafeSend (Paxos)
Flow Control

SafeSend (Paxos)
Flow Control

This node

Other nodes

SafeSend (Paxos)
Flow Control

33



... flow control isn’t local

 One often thinks of flow control as if the task is a 
local one: “don’t send if my backlog is large”

 But actual requirement turns out to be distributed
 “Don’t send if the system as a whole is congested”
 Permission to initiate a SafeSend obtains a “token” 

representing a unit of backlog at this process
 Completed SafeSend must return the token

 Flow Control is a non-trivial distributed protocol!
 Our version uses a gossip mechanism

SafeSend (Paxos)
Flow Control
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Other elements of the Sandbox

 Vigfusson’s “Dr. Multicast” algorithm for IPMC 
address space management

 Fragmentation for large messages
 The platform level and per-group security key 

management layer
 The TCP tunnelling logic
 ... and a few more

 Several use gossip-based algorithms
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Lessons one learns... and challenges

 Formal models are powerful conceptual tools
 Impossible to build a system like Isis2 without them
 But we know more about using them for modules than 

we do about composition of those modules

 The need seems to be for a form of aspect-oriented 
high assurance “proof”
 Some way to prove things module by module
 But also to think about what happens when they interact
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The challenge?

 Which road leads forward?
1. Extend our formal execution model to cover all 

elements of the desired solution: a “formal system”
2. Develop new formal tools for dealing with 

complexities of systems built as communities of models
3. Explore completely new kinds of formal models that 

might let us step entirely out of the box
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The challenge?

 Which road leads forward?
1. Extend our formal execution model to cover all 

elements of the desired solution: a “formal system”
2. Develop new formal tools for dealing with 

complexities of systems built as communities of models
3. Explore completely new kinds of formal models that 

might let us step entirely out of the box

Doubtful:
 The resulting formal model would be unwieldy
 Theorem proving obligations rise more than linearly in model size
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The challenge?

 Which road leads forward?
1. Extend our formal execution model to cover all 

elements of the desired solution: a “formal system”
2. Develop new formal tools for dealing with 

complexities of systems built as communities of models
3. Explore completely new kinds of formal models that 

might let us step entirely out of the box
Our current focus:
 Need to abstract behaviors of these complex “modules”
 On the other hand, this is how one debugs platforms like Isis2
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The challenge?

 Which road leads forward?
1. Extend our formal execution model to cover all 

elements of the desired solution: a “formal system”
2. Develop new formal tools for dealing with 

complexities of systems built as communities of models
3. Explore completely new kinds of formal models that 

might let us step entirely out of the box
Intriguing future topic:
 All of this was predicated on a style of deterministic, agreement-based model
 Could self-stabilizing protocols be composed in ways that permit us to tackle

equally complex applications but in an inherently simpler manner?   
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Summary?

 The word on the street is that cloud 
computing will rule but that the cloud 
can’t do high assurance because assurance
“methodologies” oversimplify & are non-scalable

 At Cornell, my group just doesn’t accept either limitation
 Isis2 is our proof-by-demonstration that it can be done
 Approach revolves around use of formal models and (we 

hope) elegant language embeddings but also demands 
overcoming big software engineering challenges

 Genuinely significant formal advances will require an 
enlarged perspective on the roles and scope of models
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