
WHAT ARE THE RIGHT ROLES
FOR FORMAL METHODS IN
HIGH ASSURANCE CLOUD
COMPUTING?

Ken Birman, Cornell UniverstyDARPA MRC
May 2012

1

Isis2 System

 Elasticity (sudden scale changes)
 Potentially heavily loads
 High node failure rates
 Concurrent (multithreaded) apps

 Long scheduling delays, resource contention
 Bursts of message loss
 Need for very rapid response times
 Community skeptical of “assurance properties”

 C# library (but callable from any .NET language)
offering replication techniques for cloud computing
developers

 Based on a model that fuses virtual synchrony and
state machine replication models

 Research challenges center on creating protocols
that function well despite cloud “events”

2

Isis2 makes developer’s life easier

 Formal model permits us to
achieve correctness

 Isis2 is too complex to use
formal methods as a
development too, but does
facilitate debugging (model
checking)

 Think of Isis2 as a collection
of modules, each with
rigorously stated properties

 Isis2 implementation needs
to be fast, lean, easy to use

 Developer must see it as
easier to use Isis2 than to
build from scratch

 Seek great performance
under “cloudy conditions”

 Forced to anticipate many
styles of use

Benefits of Using Formal model Importance of Sound Engineering

3

Isis2 makes developer’s life easier

Group g = new Group(“myGroup”);
Dictionary<string,double> Values = new Dictionary<string,double>();
g.ViewHandlers += delegate(View v) {

Console.Title = “myGroup members: “+v.members;

};
g.Handlers[UPDATE] += delegate(string s, double v) {

Values[s] = v;
};
g.Handlers[LOOKUP] += delegate(string s) {

Reply(Values[s]);
};
g.Join();

g.Send(UPDATE, “Harry”, 20.75);

List<double> resultlist = new List<double>;
nr = g.Query(LOOKUP, ALL, “Harry”, EOL, resultlist);

 First sets up group

 Join makes this entity a member.
State transfer isn’t shown

 Then can multicast, query.
Runtime callbacks to the
“delegates” as events arrive

 Easy to request security
(g.SetSecure), persistence

 “Consistency” model dictates the
ordering aseen for event upcalls
and the assumptions user can
make

4

Isis2 makes developer’s life easier

Group g = new Group(“myGroup”);

Dictionary<string,double> Values = new Dictionary<string,double>();

g.ViewHandlers += delegate(View v) {
Console.Title = “myGroup members: “+v.members;

};

g.Handlers[UPDATE] += delegate(string s, double v) {

Values[s] = v;

};

g.Handlers[LOOKUP] += delegate(string s) {

Reply(Values[s]);

};

g.Join();

g.Send(UPDATE, “Harry”, 20.75);

List<double> resultlist = new List<double>;
nr = g.Query(LOOKUP, ALL, “Harry”, EOL, resultlist);

 First sets up group

 Join makes this entity a member.
State transfer isn’t shown

 Then can multicast, query.
Runtime callbacks to the
“delegates” as events arrive

 Easy to request security
(g.SetSecure), persistence

 “Consistency” model dictates the
ordering seen for event upcalls
and the assumptions user can
make

5

Isis2 makes developer’s life easier

Group g = new Group(“myGroup”);
Dictionary<string,double> Values = new Dictionary<string,double>();
g.ViewHandlers += delegate(View v) {

Console.Title = “myGroup members: “+v.members;

};
g.Handlers[UPDATE] += delegate(string s, double v) {

Values[s] = v;
};
g.Handlers[LOOKUP] += delegate(string s) {

Reply(Values[s]);
};
g.Join();

g.Send(UPDATE, “Harry”, 20.75);

List<double> resultlist = new List<double>;
nr = g.Query(LOOKUP, ALL, “Harry”, EOL, resultlist);

 First sets up group

 Join makes this entity a
member. State transfer isn’t
shown

 Then can multicast, query.
Runtime callbacks to the
“delegates” as events arrive

 Easy to request security
(g.SetSecure), persistence

 “Consistency” model dictates the
ordering seen for event upcalls
and the assumptions user can
make

6

Isis2 makes developer’s life easier

Group g = new Group(“myGroup”);
Dictionary<string,double> Values = new Dictionary<string,double>();
g.ViewHandlers += delegate(View v) {

Console.Title = “myGroup members: “+v.members;

};
g.Handlers[UPDATE] += delegate(string s, double v) {

Values[s] = v;
};
g.Handlers[LOOKUP] += delegate(string s) {

Reply(Values[s]);
};
g.Join();

g.Send(UPDATE, “Harry”, 20.75);

List<double> resultlist = new List<double>;
nr = g.Query(LOOKUP, ALL, “Harry”, EOL, resultlist);

 First sets up group

 Join makes this entity a member.
State transfer isn’t shown

 Then can multicast, query.
Runtime callbacks to the
“delegates” as events arrive

 Easy to request security
(g.SetSecure), persistence

 “Consistency” model dictates the
ordering seen for event upcalls
and the assumptions user can make

7

Isis2 makes developer’s life easier

Group g = new Group(“myGroup”);
Dictionary<string,double> Values = new Dictionary<string,double>();
g.ViewHandlers += delegate(View v) {

Console.Title = “myGroup members: “+v.members;

};
g.Handlers[UPDATE] += delegate(string s, double v) {

Values[s] = v;
};
g.Handlers[LOOKUP] += delegate(string s) {

Reply(Values[s]);
};
g.Join();

g.Send(UPDATE, “Harry”, 20.75);

List<double> resultlist = new List<double>;

nr = g.Query(LOOKUP, ALL, “Harry”, EOL, resultlist);

 First sets up group

 Join makes this entity a member.
State transfer isn’t shown

 Then can multicast, query.
Runtime callbacks to the
“delegates” as events arrive

 Easy to request security
(g.SetSecure), persistence

 “Consistency” model dictates the
ordering seen for event upcalls
and the assumptions user can make

8

Isis2 makes developer’s life easier

Group g = new Group(“myGroup”);

Dictionary<string,double> Values = new Dictionary<string,double>();
g.ViewHandlers += delegate(View v) {

Console.Title = “myGroup members: “+v.members;

};

g.Handlers[UPDATE] += delegate(string s, double v) {
Values[s] = v;

};

g.Handlers[LOOKUP] += delegate(string s) {
Reply(Values[s]);

};

g.SetSecure(myKey);

g.Join();

g.Send(UPDATE, “Harry”, 20.75);

List<double> resultlist = new List<double>;

nr = g.Query(ALL, LOOKUP, “Harry”, EOL, resultlist);

 First sets up group

 Join makes this entity a member.
State transfer isn’t shown

 Then can multicast, query. Runtime
callbacks to the “delegates” as
events arrive

 Easy to request security,
persistence, tunnelling on TCP...

 “Consistency” model dictates the
ordering seen for event upcalls
and the assumptions user can
make

9

Possible roles for formal methods

 Use theorem proving
tools to formalize the
execution model

 Work with CRASH tools
to derive versions of
protocols such as Paxos
that are optimized for
this model

 Use those proofs as the
basis for better
specifications

 Use the specifications to
help the developer use
the resulting replication
solutions correctly

 Prove to the owner of a
data center that when
deployed on 1000’s of
nodes, the technology
won’t disrupt other users

 Prove resilience to
failures/attacks

10

Consitency model: Virtual synchrony meets Paxos
(and they live happily ever after…)

11

 Virtual synchrony is a “consistency” model:
 Membership epochs: begin when a new configuration is installed and

reported by delivery of a new “view” and associated state

 Protocols run “during” a single epoch: rather than overcome failure, we
reconfigure when a failure occurs

p

q

r

s

t

Time: 0 10 20 30 40 50 60 70

p

q

r

s

t

Time: 0 10 20 30 40 50 60 70

Synchronous execution Virtually synchronous execution

Non-replicated reference execution
A=3 B=7 B = B-A A=A+1

How can we formalize such a model?
12

 We’ve done so in work with Dahlia Malkhi that
builds on work by Lamport, Malkhi and Zhou

 We arrive at a way to formalize the picture we just
saw and to reason about protocols that run in such
an environment

 This becomes the basis for using NuPRL as a formal
tool to solve our protocol challenges

Does our formal model actually help?
13

 Let’s consider a use case

 Take the replicated key/value code from 3 slides back

 Turn it into a “replicated MySQL database” using state
machine replication (Lamport’s model)

State Machine Replication
(SafeSend/Paxos)

Learner

MySQL replica MySQL replica MySQL replica

Steps
14

 Modify the “view handler” to bind to a replica
 A full-blown version would handle arbitrary membership

changes
 We’ll oversimplify and just do a database “import”

using the rank of the member to select the replica

 Modify the “update handler” to to a DB update
 Modify the “lookup handler” to do a query
 Change g.Send into g.SafeSend (a version of Paxos)

Start with our old code...

Group g = new Group(“myGroup”);
Dictionary<string,double> Values = new Dictionary<string,double>();
g.ViewHandlers += delegate(View v) {

Console.Title = “myGroup members: “+v.members;

};
g.Handlers[UPDATE] += delegate(string s, double v) {

Values[s] = v;
};
g.Handlers[LOOKUP] += delegate(string s) {

Reply(Values[s]);
};
g.Join();

g.Send(UPDATE, “Harry”, 20.75);

List<double> resultlist = new List<double>;
nr = g.Query(LOOKUP, ALL, “Harry”, EOL, resultlist);

15

How would we replicate mySQL?

Group g = new Group(“myGroup”);
g.ViewHandlers += delegate(View v) {

IMPORT “db-replica:”+v.GetMyRank();
};
g.Handlers[UPDATE] += delegate(string s, double v)
{

START TRANSACTION;
UPDATE salary = v WHERE SET name=s;
COMMIT;

};
...

g.SafeSend(UPDATE, “Harry”, “85,000”);

1. Modify the view handler to
bind to the appropriate
replicate (db-replica:0, ...)

2. Apply updates in the order
received

3. Use the Isis2 implementation
of Paxos: SafeSend

Paxos guarantees agreement on message set, the order
in which to perform actions and durability: if any

member learns an action, every member will learn it.

This code requires that mySQL is deterministic and
that the serialization order won’t be changed by
QUERY operations (read-only, but they might get

locks). As it happens, those assumptions are valid.

We build the group as the system runs. Each participant
just adds itself.

The leader monitors membership. This particular version
doesn’t handle failures but the “full” version is easy.

We can trust the membership. Even failure notifications
reflect a system-wide consensus.

16

Some puzzles
17

 How can we be sure that SafeSend is a correct
“virtually synchronous” implementation of Paxos?
 We worked with Dahlia Malkhi to develop a version of

Paxos optimized to exploit the virtual synchrony model.
Leslie Lamport was involved at the outset of this effort.

 Robbert later wrote this in 60 lines of Erlang. His code
can be analyzed using NuPRL (CRASH-funded)
 The protocol has optimizations relating to the virtual

synchrony model that yield speedups for us
More or less what we actually used in Isis2

Some puzzles
18

 How do we know we’re using SafeSend correctly?
 Raises an issue often overlooked with Paxos: the specification is

self-contained but overlooks composition of the protocol with
other components, like MySQL!

 Surprise! This particular code sample was incorrect
 It lacks recovery code needed if the replicated application is

external to the replicated service
 Learner must restart by checking for updates that MySQL lacks

(doing this(in the view handler) before going online.
 Requires either an update log or that operations be idempotent

 Paxos correctness proofs won’t help us find this bug

 Suggests that somehow the NuPRL proof was “incomplete”

The issues...
19

 Paxos didn’t “document” the obligations of the
learner, and those depend on where the state is

 With external services like MySQL Paxos requires
 Determinism (not as trivial as you might think)
 A way to sense which requests have completed
 Logic to resync a recovering replica
 This is because Paxos maintains its state in quorums spread

over the replicas, but MySQL needs each replica to be correct

The issues...
20

 Where’s the application state?

 In sample code v1, state was replicated in an in-
memory data structure: each replica had a copy

 In v2, the state is in an external service: the MySQL
replicas. The replicas are just stubs

 Yet the code looks “the same” to Isis2

Making intent explicit
21

 To help the system differentiate we’re adding a
new “annotation” feature to Isis2

 The developer indicates intent: this lets us distinguish the
in-memory case from the MySQL case

 Annotations on the view and update handlers could let
us warn if code is incorrect

 These annotations also select the fastest protocol that
has the needed durability, ordering

[FailureIndependent,HasLeader]
public class myGroup: Replicated { }

Annotation opportunities
22

 Annotate a whole class: can tell us whether the class
is self-contained or talks to external entities

 Annotate a view handler: lets us understand how the
class deals with a joining or recovering member

 Annotate an update handler: user can tell us about
patterns of updates, locking

 Annotate a query handler: lets us distinguish read-
only actions from those with side-effects

 ... then pull all of this together via reflection when a
multicast or query is issued to a group method

Update the monitoring and
alarms criteria for Mrs. Marsh

as follows…

Confirmed

Response delay seen
by end-user would
also include Internet

latencies
Local response

delay

flush

Send

Send

Send

Execution timeline for an
individual first-tier replica

Soft-state first-tier service

A B C D

 Tradeoffs arise: how durable must the Send operations be?
How ordered should they be?

23

But a more elaborate example reveals
that we’ll need to do much more

g.Send is an optimistic, early-deliverying virtually
synchronous multicast. Like the first phase of Paxos

Flush pauses until prior Sends have been acknowledged
and become “stable”. Like the second phase of Paxos.

g.Send + g.Flush  g.SafeSend

Observations
24

 The state being replicated here is an in-memory
representation of the monitoring criteria in use now
 Doesn’t preclude also maintaining a log for later audit
 Our focus is on the data the group replicas maintain, so

if we had a log, the question would be: where does it
live, how do we interact with it, how “synchronously”?

 This particular code has a “flush barrier” before
interacting with external clients: a chance to pause
to make sure prior optimistic actions have finished

Isis2: Send v.s. in-memory SafeSend
25

Send scales best, but SafeSend with
in-memory (rather than disk) logging and small

numbers of acceptors isn’t terrible.

Jitter: how “steady” are latencies?
26

The “spread” of latencies is much
better (tighter) with Send: the 2-phase

SafeSend protocol is sensitive to
scheduling delays

Flush delay as function of shard size
27

Flush is fairly fast if we only wait for
acks from 3-5 members, but is slow

if we wait for acks from all members.
After we saw this graph, we changed

Isis2 to let users set the threshold.

How do annotations help?
28

 Rather than asking the developer to hard-code
“SafeSend with 3 acceptors” (which involves subtle
reasoning), the developer might tell us:
 My application has durable state: [Durable/Ephemeral]
 Updates are done from a “leader”: [HasPrimary]
 Members have uncorrelated failure behavior

[FailureIndependent]
 [FlushesBeforeExternalActions], etc...

 From this we can warn on errors, and if none is
sensed, can pick the fastest applicable option.

Are we there yet?
29

 Do annotations tell the whole story?
 What about flow control... use of g.SetSecure if required...

fragmentation of massive messages... tunnelling over TCP if
IPMC isn’t available... stability at scale when under stress...
managing IPMC address space if IPMC is permitted?

 More annotations could help for some of these
 But other aspects point to a new insight

 There are many “perspectives” on what a system should do
 Our high assurance story up to now focuses purely on the

developer getting it right!

Who’s asking the question?
30

 A single system needs to tell multiple kinds of
assurance stories and not all in the same way

 Current High Assurance
Formalisms try to reduce
a complex story to a
single specification and a
single proof

 In fact we need to learn to think about high
assurance in terms of distinct perspectives

Telling so many stories takes a “community”
31

Isis2 user
object

Isis2 user
object

Isis2 user
object

Isis2 library

Group instances and multicast protocols
Flow Control

Membership Oracle

Large Group Layer TCP tunnels (overlay)Dr. Multicast Platform Security

Reliable Sending Fragmentation Group Security

Sense Runtime Environment
Self-stabilizing

Bootstrap ProtocolSocket Mgt/Send/Rcv

Send
CausalSend

OrderedSend
SafeSend
Query....

Message Library “Wrapped” locks Bounded Buffers

Oracle Membership

Group membership

Report suspected failures

Views

Other group
members

The SandBox is mostly composed of “convergent”
protocols that use probabilistic methods

SafeSend and Send are two of the protocol components hosted
over the sandbox. These share flow control, security, etc

 We structured Isis2 as a sandbox containing protocol objects

 The sandbox provides system-wide properties; protocols like SafeSend “refine” it with additional behaviors.

 Like aspect-oriented programming applied to high assurance

Drill down: Flow control

 Consider SafeSend (Paxos) within Isis2

 Basic protocol looks very elegant
 Not so different from Robbert’s 60 lines of Erlang

 But pragmatic details clutter this elegant solution
 E.g.: Need “permission to send” from flow-control module
 ... later tell flow-control that we’ve finished

 Flow control is needed to prevent overload
 Illustrates a sense in which Paxos is “underspecified”

SafeSend (Paxos)
Flow Control

32

Pictoral representation

 “Paxos” state depends on “flow control state”
 Modules are concurrent. “State” spans whole group

SafeSend (Paxos) Flow Control

SafeSend (Paxos)
Flow Control

SafeSend (Paxos)
Flow Control

SafeSend (Paxos)
Flow Control

SafeSend (Paxos)
Flow Control

This node

Other nodes

SafeSend (Paxos)
Flow Control

33

... flow control isn’t local

 One often thinks of flow control as if the task is a
local one: “don’t send if my backlog is large”

 But actual requirement turns out to be distributed
 “Don’t send if the system as a whole is congested”
 Permission to initiate a SafeSend obtains a “token”

representing a unit of backlog at this process
 Completed SafeSend must return the token

 Flow Control is a non-trivial distributed protocol!
 Our version uses a gossip mechanism

SafeSend (Paxos)
Flow Control

34

Other elements of the Sandbox

 Vigfusson’s “Dr. Multicast” algorithm for IPMC
address space management

 Fragmentation for large messages
 The platform level and per-group security key

management layer
 The TCP tunnelling logic
 ... and a few more

 Several use gossip-based algorithms

35

Lessons one learns... and challenges

 Formal models are powerful conceptual tools
 Impossible to build a system like Isis2 without them
 But we know more about using them for modules than

we do about composition of those modules

 The need seems to be for a form of aspect-oriented
high assurance “proof”
 Some way to prove things module by module
 But also to think about what happens when they interact

36

The challenge?

 Which road leads forward?
1. Extend our formal execution model to cover all

elements of the desired solution: a “formal system”
2. Develop new formal tools for dealing with

complexities of systems built as communities of models
3. Explore completely new kinds of formal models that

might let us step entirely out of the box

37

The challenge?

 Which road leads forward?
1. Extend our formal execution model to cover all

elements of the desired solution: a “formal system”
2. Develop new formal tools for dealing with

complexities of systems built as communities of models
3. Explore completely new kinds of formal models that

might let us step entirely out of the box

Doubtful:
 The resulting formal model would be unwieldy
 Theorem proving obligations rise more than linearly in model size

38

The challenge?

 Which road leads forward?
1. Extend our formal execution model to cover all

elements of the desired solution: a “formal system”
2. Develop new formal tools for dealing with

complexities of systems built as communities of models
3. Explore completely new kinds of formal models that

might let us step entirely out of the box
Our current focus:
 Need to abstract behaviors of these complex “modules”
 On the other hand, this is how one debugs platforms like Isis2

39

The challenge?

 Which road leads forward?
1. Extend our formal execution model to cover all

elements of the desired solution: a “formal system”
2. Develop new formal tools for dealing with

complexities of systems built as communities of models
3. Explore completely new kinds of formal models that

might let us step entirely out of the box
Intriguing future topic:
 All of this was predicated on a style of deterministic, agreement-based model
 Could self-stabilizing protocols be composed in ways that permit us to tackle

equally complex applications but in an inherently simpler manner?

40

Summary?

 The word on the street is that cloud
computing will rule but that the cloud
can’t do high assurance because assurance
“methodologies” oversimplify & are non-scalable

 At Cornell, my group just doesn’t accept either limitation
 Isis2 is our proof-by-demonstration that it can be done
 Approach revolves around use of formal models and (we

hope) elegant language embeddings but also demands
overcoming big software engineering challenges

 Genuinely significant formal advances will require an
enlarged perspective on the roles and scope of models

41

