

Computer Science 111
Introduction to Computer Science I

Boston University, Spring 2025

Unit 1: Functional Programming in Python

Course Overview ... 2
Python Basics ... pre-lecture: 12 / in-lecture: 24
Strings and Lists ... 27 / 32
Intro. to Functions ... 36 / 39
Making Decisions: Conditional Execution .. 43 / 49
Variable Scope; Functions Calling Functions ... 55 / 61
A First Look at Recursion ... 66 / 72
More Recursion ... 75
Recursive Design ... 79 / 82
More Recursive Design ... 86
List Comprehensions (and the range function) .. 92 / 95
Lists of Lists; ASCII Codes and the Caesar Cipher ... 100 / 106
Algorithm Design ... 113

Unit 2: Looking "Under the Hood"
Binary Numbers .. 120 / 128
Binary Arithmetic Revisited ... 135
Gates and Circuits .. 146 / 150
Minterm Expansion ... 157 / 160
Circuits for Arithmetic; Modular Design (see below)

Unit 3: Imperative Programming in Python
Definite Loops; Cumulative Computations; Circuits for Arithmetic 168 / 176
Definite Loops (cont.) .. 184
Indefinite Loops (plus User Input) .. 190 / 195
Program Design with Loops .. 203
Nested Loops ... 210 / 213
References and Mutable Data .. 224 / 232
2-D Lists; References Revisited ... 243 / 247

Unit 4: Object-Oriented Programming in Python
Using Objects; Working with Text Files .. 255 / 262
Classes and Methods ... 270 / 281
More Object-Oriented Programming; Comparing and Printing Objects 292 / 296
Dictionaries and Markov Models ... 303
Board Objects for Connect Four .. 314
Inheritance ... 320
AI for Connect Four ... 325

Unit 5: Topics from CS Theory
Finite-State Machines .. 340
Algorithm Efficiency and Problem Hardness ... 353

The slides in this book are based in part on notes from
the CS-for-All curriculum developed at Harvey Mudd College.

Introduction to Computer Science I

Course Overview

Computer Science 111
Boston University

Welcome to CS 111!

Computer science is not so much the science of computers
as it is the science of solving problems using computers.

Eric Roberts

• This course covers:

• the process of developing algorithms to solve problems

• the process of developing computer programs
to express those algorithms

• other topics from computer science and its applications

CAS CS 111 Boston University, Spring 2025 2

Computer Science and Programming

• There are many different fields within CS, including:

• software systems

• computer architecture

• networking

• programming languages, compilers, etc.

• theory

• AI

• Experts in many of these fields don’t do much programming!

• However, learning to program will help you to develop
ways of thinking and solving problems used in all fields of CS.

A Breadth-Based Introduction

• Five major units:

• weeks 0-4: computational problem solving
and "functional" programming

• weeks 4-6: a look "under the hood"
(digital logic, circuits, etc.)

• weeks 6-8: imperative programming

• weeks 8-11: object-oriented programming

• weeks 12-end: topics from CS theory

• In addition, short articles on other CS-related topics.

• Main goals:

• to develop your computational problem-solving skills
• including, but not limited to, coding skills

• to give you a sense of the richness of computer science

CAS CS 111 Boston University, Spring 2025 3

A Rigorous Introduction

• Intended for:
• CS, math, and physical science concentrators
• others who want a rigorous introduction
• no programming background required,

but can benefit people with prior background

• Allow for 10-15 hours of work per week
• start work early!

• Other alternatives include:
• CS 101: overview of CS
• CS 103: the Internet
• CS 108: programming with applications for non-majors
• DS 100: programming, data modeling and visualization
• for more info:

http://www.bu.edu/cs/courses/divisional-study-courses

Course Materials

• Required: The CS 111 Coursepack

• use it during pre-lecture and lecture – need to fill in the blanks!

• PDF version is available on Blackboard

• recommended: get it printed

• one option: FedEx Office (Cummington & Comm Ave)

• to order, email usa5012@fedex.com

• Required in-class software: Top Hat Pro platform

• used for pre-lecture quizzes and in-lecture exercises

• also used periodically for location-based attendance

• create your account and purchase a subscription ASAP

• Optional textbook: CS for All
by Alvarado, Dodds, Kuenning, and Libeskind-Hadas

CAS CS 111 Boston University, Spring 2025 4

Traditional Lecture Classes

• The instructor summarizes what you need to know.

• Readings are assigned, but may not actually be done!

• Dates back to before the printing press.

• Many technological developments since then!

Limitations of the Traditional Approach

• You get little or no immediate feedback.

• Research shows that little is learned from passive listening.

• need to actively engage with the material

• Homework provides active engagement, but in-class
engagement provides added benefits.

CAS CS 111 Boston University, Spring 2025 5

Lectures in this Class

• Based on an approach called peer instruction.

• developed by Eric Mazur at Harvard

• Basic process:

1. Question posed (possibly after a short intro)

2. Solo vote on Top Hat (no discussion yet)

3. Small-group discussions (in teams of 3)
• explain your thinking to each other
• come to a consensus

4. Group vote on Top Hat
• each person in the group should enter the same answer

5. Class-wide discussion

Benefits of Peer Instruction

• It promotes active engagement.

• You get immediate feedback about your understanding.

• I get immediate feedback about your understanding!

• It promotes increased learning.

• explaining concepts to others benefits you!

Crouch, C., Mazur, E.
Peer Instruction: Ten years of
experience and results.

traditional instruction

peer Instruction

CAS CS 111 Boston University, Spring 2025 6

Preparing for Lecture

• Short video(s) and/or readings

• fill in the blanks as you watch the videos!

• Short online reading quiz on Top Hat

• complete by 10 a.m. of the day of lecture
(unless noted otherwise)

• won't typically be graded for correctness

• your work should show that you've prepared for lecture

• no late submissions accepted

• Preparing for lecture is essential!

• gets you ready for the lecture questions and discussions

• we won't cover everything in lecture

Course Website
www.cs.bu.edu/courses/cs111

• not the same as the Blackboard site for the course

• use Blackboard to access info. on:

• the pre-lecture videos/readings

• the pre-lecture quizzes

• list of pages covered in lecture

posted by 36 hours
before lecture

CAS CS 111 Boston University, Spring 2025 7

Labs

• Will help you prepare for and get started on the assignments

• Will also reinforce essential skills

• ASAP: Complete Lab 0 (on the course website)

• short tasks to prepare you for the semester

Assignments

• Weekly problem sets

• most have two parts:
• part I due by 11:59 p.m. on Thursday
• part II due by 11:59 p.m. on Sunday

• Final project (worth 1.5 times an ordinary assignment)

• Can submit up to 24 hours late with a 10% penalty.

• No submissions accepted after 24 hours.

CAS CS 111 Boston University, Spring 2025 8

Collaboration

• Two types of homework problems:

• individual-only: must complete on your own

• pair-optional: can complete alone or with one other student

• For both types of problems:

• may discuss the main ideas with others

• may not view another student/pair's work

• may not show your work to another student/pair

• don't give a student unmonitored access to your laptop

• don't consult solutions in books or online

• don't use tools that automate coding/problem-solving

• don't post your work where others can view it

• Students who engage in misconduct can face serious
repercussions (see the syllabus).

Grading

1. Weekly problem sets + final project (25%)

2. Exams

• two midterms (30%) – Wed nights 6:30-7:45; no makeups!

• final exam (35%)

• can replace lowest problem set and lowest midterm

• wait until you hear its dates/times from me;
initial info posted by Registrar will likely be incorrect;
make sure you're available for the entire exam period!

3. Participation (10%)

To pass the course, you must have
a passing PS average

and a passing exam average.

CAS CS 111 Boston University, Spring 2025 9

Participation

• Full credit if you:

• earn 85% of points for pre-lecture and in-lecture questions

• make 85% of the lecture-attendance votes

• attend 85% of the labs

• If you end up with x% for a given component where x < 85,
you will get x/85 of the possible points.

• This policy is designed to allow for occasional absences
for special circumstances.

• If you need to miss a lecture:

• watch its recording ASAP (available on Blackboard)

• keep up with the pre-lecture tasks and the assignments

• do not email your instructor!

Course Staff

• Instructors: David Sullivan (A1 lecture)
Tiago Januario (B1 lecture)

• Teaching Assistants (TAs)
plus Undergrad Course Assistants (CAs)

• see the course website for names and photos:
http://www.cs.bu.edu/courses/cs111/staff.shtml

• Office-hour calendar:
http://www.cs.bu.edu/courses/cs111/office_hours.shtml

• For questions: post on Piazza or cs111-staff@cs.bu.edu

CAS CS 111 Boston University, Spring 2025 10

Algorithms

• In order to solve a problem using a computer,
you need to come up with one or more algorithms.

• An algorithm is a step-by-step description of how to
accomplish a task.

• An algorithm must be:

• precise: specified in a clear and unambiguous way

• effective: capable of being carried out

Programming

• Programming involves expressing an algorithm in a form that
a computer can interpret.

• We will use the Python programming language.

• one of many possible languages

• widely used

• relatively simple to learn

• The key concepts of the course transcend this language.

• You can use any version of Python 3

• not Python 2

• see Lab 0 for details

CAS CS 111 Boston University, Spring 2025 11

Pre-Lecture
Getting Started With Python

Computer Science 111
Boston University

Interacting with Python

• We're using Python 3 (not 2).

• see Lab 0 for how to install and configure Spyder

• Two windows in Spyder: the editor and the IPython console

The prompt shows that
the interpreter is waiting
for you to enter
something.

CAS CS 111 Boston University, Spring 2025 12

Arithmetic in Python

• Numeric operators include:

+ addition

- subtraction

* multiplication

/ division

** exponentiation

% modulus: gives the remainder of a division

• Examples:
>>> 6 * 7
42
>>> 2 ** 4
16
>>> 17 % 2
1
>>> 17 % 3

Arithmetic in Python (cont.)

• The operators follow the standard order of operations.

• example: multiplication before addition

• You can use parentheses to force a different order.

• Examples:
>>> 2 + 3 * 5

>>> (2 + 3) * 5

CAS CS 111 Boston University, Spring 2025 13

Data Types

• Different kinds of values are stored and manipulated differently.

• Python data types include:

• integers

• example: 451

• floating-point numbers
• numbers that include a decimal
• example: 3.1416

Data Types and Operators

• There are really two sets of numeric operators:

• one for integers (ints)

• one for floating-point numbers (floats)

• In most cases, the following rules apply:

• if at least one of the operands is a float, the result is a float

• if both of the operands are ints, the result is an int

• One exception: division!

• Examples:

CAS CS 111 Boston University, Spring 2025 14

Two Types of Division

• The / operator always produces a float result.

• examples:

>>> 5 / 3
1.6666666666666667

>>> 6 / 3

Two Types of Division (cont.)

• There is a separate // operator for integer division.

>>> 6 // 3
2

• Integer division discards any fractional part of the result:

>>> 11 // 5
2

>>> 5 // 3

• Note that it does not round!

CAS CS 111 Boston University, Spring 2025 15

Another Data Type

• A string is a sequence of characters/symbols

• surrounded by single or double quotes

• examples: "hello" 'Picobot'

CAS CS 111 Boston University, Spring 2025 16

Pre-Lecture
Program Building Blocks:

Variables, Expressions, Statements

Computer Science 111
Boston University

Variables

• Variables allow us to store a value for later use:

>>> temp = 77

>>> (temp - 32) * 5 / 9
25.0

CAS CS 111 Boston University, Spring 2025 17

Expressions

• Expressions produce a value.

• We evaluate them to obtain their value.

• They include:

• literals ("hard-coded" values):

3.1416

'Picobot'

• variables
temp

• combinations of literals, variables, and operators:

(temp - 32) * 5 / 9

Evaluating Expressions with Variables

• When an expression includes variables, they are first
replaced with their current value.

• Example:

(temp - 32) * 5 / 9
(77 - 32) * 5 / 9

45 * 5 / 9
225 / 9

25.0

CAS CS 111 Boston University, Spring 2025 18

Statements

• A statement is a command that carries out an action.

• A program is a sequence of statements.

quarters = 2
dimes = 3
nickels = 1
pennies = 4
cents = quarters*25 + dimes*10 + nickels*5 + pennies
print('you have', cents, 'cents')

Assignment Statements

• Assignment statements store a value in a variable.
temp = 20

• General syntax:

variable = expression

• Steps:

1) evaluate the expression on the right-hand side of the =

2) assign the resulting value to the variable on the
left-hand side of the =

• Examples:

int quarters = 10

quarters_val = 25 * quarters

int 25 * 10

int 250

= is known as the
assignment operator

CAS CS 111 Boston University, Spring 2025 19

Assignment Statements (cont.)

• We can change the value of a variable by assigning it
a new value.

• Example:

num1 = 100
num2 = 120 num1 100 num2 120

num1 = 50 num1 num2 120

num1 = num2 * 2 num1 num2 120

num2 = 60 num1 num2

Assignment Statements (cont.)

• An assignment statement does not create a permanent
relationship between variables.

• You can only change the value of a variable
by assigning it a new value!

CAS CS 111 Boston University, Spring 2025 20

Assignment Statements (cont.)

• A variable can appear on both sides of the assignment
operator!

• Example:

sum = 13
val = 30 sum 13 val 30

sum = sum + val sum val 30

13 + 30

43

val = val * 2 sum val

Creating a Reusable Program

• Put the statements in a text file.

a program to compute the value of some coins

quarters = 2 # number of quarters
dimes = 3
nickels = 1
pennies = 4

cents = quarters*25 + dimes*10 + nickels*5 + pennies
print('you have', cents, 'cents')

• Program file names should have the extension .py

• example: coins.py

CAS CS 111 Boston University, Spring 2025 21

Print Statements

• print statements display one or more values on the screen

• Basic syntax:

print(expr)
or

print(expr1, expr2, … exprn)

where each expr is an expression

• Steps taken when executed:

1) the individual expression(s) are evaluated

2) the resulting values are displayed on the same line,
separated by spaces

• To print a blank line, omit the expressions:

print()

Print Statements (cont.)

• Examples:

• first example:

print('the results are:', 15 + 5, 15 – 5)

'the results are:' 20 10

output: the results are: 20 10

(note that the quotes around the string literal are not printed)

• second example:

cents = 89
print('you have', cents, 'cents')

output: _________________________

CAS CS 111 Boston University, Spring 2025 22

Variables and Data Types

• The type function gives us the type of an expression:

>>> type('hello')
<class 'str'>

>>> type(5 / 2)
<class 'float'>

• Variables in Python do not have a fixed type.

• examples:

>>> temp = 25.0
>>> type(temp)
<class 'float'>

>>> temp = 77
>>> type(temp)

CAS CS 111 Boston University, Spring 2025 23

Python Basics

Computer Science 111
Boston University

What is the output of the following program?

x = 15
name = 'Picobot'
x = x // 2
print('name', x, type(x))

CAS CS 111 Boston University, Spring 2025 24

What about this program?

x = 15
name = 'Picobot'
x = 7.5
print(name, 'x', type(x))

What are the values of the variables
after the following code runs?

x y z
x = 5 5
y = 6 5 6
x = y + 3
z = x + y
x = x + 2

Complete this table
to keep track of
the values of
the variables!

CAS CS 111 Boston University, Spring 2025 25

What are the values of the variables
after the following code runs?

x y z
x = 5
y = x ** 2
z = x % 3
x + 2

On paper,
make a table
for the values
of your variables!

CAS CS 111 Boston University, Spring 2025 26

Pre-Lecture
Strings

Computer Science 111
Boston University

Strings: Numbering the Characters

• The position of a character within a string is known as its index.

• There are two ways of numbering characters in Python:

• from left to right, starting from 0

0 1 2 3 4

'Perry'
• from right to left, starting from -1

-5 -4 -3 -2 -1

'Perry'
• 'P' has an index of 0 or -5

• 'y' has an index of ____________

CAS CS 111 Boston University, Spring 2025 27

String Operations

• Indexing: string [index]

>>> name = 'Picobot'
>>> name[1]
'i'
>>> name[-3]

• Slicing (extracting a substring): string [start :end]

>>> name[0:2]
'Pi'
>>> name[1:-1]

>>> name[1:]
'icobot'
>>> name[:4]

up to but
not including
this index

from
this index

String Operations (cont.)

• Concatenation: string1 + string2

>>> word = 'program'
>>> plural = word + 's'
>>> plural
'programs'

• Duplication: string * num_copies

>>> 'ho!' * 3
'ho!ho!ho!'

• Determining the length: len(string)

>>> name = 'Perry'
>>> len(name)
5
>>> len('') # an empty string – no characters!
0

CAS CS 111 Boston University, Spring 2025 28

Skip-Slicing

• Slices can have a third number: string [start :end :stride_length]

s = 'boston university terriers'

>>> s[0:8:2]
'bso ' # note the space at the end!

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Skip-Slicing (cont.)

• Slices can have a third number: string [start :end :stride_length]

s = 'boston university terriers'

>>> s[5:0:-1]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

CAS CS 111 Boston University, Spring 2025 29

Pre-Lecture
Lists

Computer Science 111
Boston University

Lists
• Recall: A string is a sequence of characters.

'hello'

• A list is a sequence of arbitrary values (the list's elements).
[2, 4, 6, 8]

['CS', 'math', 'english', 'psych']

• A list can include values of different types:
['Star Wars', 1977, 'PG', [35.9, 460.9]]

CAS CS 111 Boston University, Spring 2025 30

List Ops == String Ops (more or less)

>>> majors = ['CS', 'math', 'english', 'psych']

>>> majors[2]

'english'

>>> majors[1:3]

>>> len(majors)

>>> majors + ['physics']

['CS', 'math', 'english', 'psych', 'physics']

>>> majors[::-2]

Note the difference!
• For a string, both slicing and indexing produce a string:

>>> s = 'Terriers'

>>> s[1:2]
'e'

>>> s[1]
'e'

• For a list:

• slicing produces a list

• indexing produces a single element – may or may not be a list
>>> info = ['Star Wars', 1977, 'PG', [35.9, 460.9]]

>>> info[1:2] >>> info[2:]
[1977] ___________________

>>> info[1] >>> info[-1][-1]
1977 460.9

>>> info[-1] >>> info[0][-4]
___________________ ___________________

CAS CS 111 Boston University, Spring 2025 31

Strings and Lists

Computer Science 111
Boston University

What is the value of s after the following code runs?

s = 'abc'

s = ('d' * 3) + s

s = s[2:-2]

CAS CS 111 Boston University, Spring 2025 32

Fill in the blank to make the code print 'compute!'

subject = 'computer science!'
verb = _______________
print(verb)

Skip-Slicing

• Slices can have a third number: string [start :end :stride_length]

s = 'boston university terriers'

>>> s[0:8:2]
'bso ' # note the space at the end!

>>> s[5:0:-1]
'notso'

>>> s[: :] # what numbers do we need?
'viti'

>>> s[12:21:8] + s[21::3] # what do we get?

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

CAS CS 111 Boston University, Spring 2025 33

What is the output of the following program?

mylist = [1, 2, [3, 4, 5]]
print(mylist[1], mylist[1:2])

Note the difference!
• For a string, both slicing and indexing produce a string:

>>> s = 'Terriers'

>>> s[1:2]
'e'

>>> s[1]
'e'

• For a list:

• slicing produces a list

• indexing produces a single element – may or may not be a list
>>> info = ['Star Wars', 1977, 'PG', [35.9, 460.9]]

>>> info[1:2] >>> __________________
[1977] 35.9

>>> info[1]
1977

>>> info[-1]
[35.9, 460.9]

CAS CS 111 Boston University, Spring 2025 34

How could you fill in the blank
to produce [105, 111]?

intro_cs = [101, 103, 105, 108, 109, 111]

dgs_courses = _______________________

A. intro_cs[2:3] + intro_cs[-1:]

B. intro_cs[-4] + intro_cs[5]

C. intro_cs[-4] + intro_cs[-1:]

D. more than one of the above

E. none of the above

Extra practice from the textbook authors!

What is len(pi)

What slice of pi is [3,4,5]

What are pi[0]*(pi[1] + pi[2]) and pi[0]*(pi[1:2] + pi[2:3]) ?

What slice of pi is [3,1,4]

What is len(L)

What is len(L[1])

What is pi[2:4]

What is L[0]

What is L[0:1]

What is L[0][1]

What slice of M is 'try'? is 'shoe'?

These two are different, too…

Extra!	

Part	2Part	1

These two are
different!

pi = [3,1,4,1,5,9]
L = ['pi', "isn't", [4,2]]
M = 'You need parentheses for chemistry !'

0 4 8 12 16 20 24 28 32

What is M[::5]

What is M[9:15]

CAS CS 111 Boston University, Spring 2025 35

Pre-Lecture
Introduction to Functions

Computer Science 111
Boston University

Defining a Function

def triple(x):

return 3*x

x is the input or parameterthe function's name

this line specifies what
the function outputs (or returns)
– in this case, 3 times the inputmust indent

CAS CS 111 Boston University, Spring 2025 36

Multiple Lines, Multiple Parameters
def circle_area(diam):

""" Computes the area of a circle
with a diameter diam.

"""
radius = diam / 2
area = 3.14159 * (radius**2)
return area

def rect_perim(l, w):

""" Computes the perimeter of a rectangle

with length l and width w.
"""
return 2*l + 2*w

What is the output of this code?

x y a b
def calculate(x, y): 3 2

a = y (complete the rest on the next slide)

b = x + 1
return a + b + 3

print(calculate(3, 2))

The values in the function call are
assigned to the parameters.

In this case, it's as if we had written:
x = 3
y = 2

CAS CS 111 Boston University, Spring 2025 37

What is the output of this code? (cont.)

x y a b
def calculate(x, y):

a = y
b = x + 1
return a + b + 3

print(calculate(3, 2))

The output/return value:
• is sent back to where the function call

was made
• replaces the function call

The program picks up where it left off
when the function call was made.

CAS CS 111 Boston University, Spring 2025 38

Intro. to Functions

Computer Science 111
Boston University

Functions With String Inputs
def undo(s):

""" Adds the prefix "un" to the input s. """

return 'un' + s

def redo(s):

""" Adds the prefix "re" to the input s. """

return 're' + s

• Examples:
>>> undo('plugged')

>>> undo('zipped')

>>> redo('submit')

>>> redo(undo('zipped'))

CAS CS 111 Boston University, Spring 2025 39

What is the output of this program?

def mystery1(t):
return t[::-1]

def mystery2(t):
return t[0] + t[-1]

s = 'terriers'
mystery1(s)
print(mystery2(s))

A. ts

B. st

C. sreirret
ts

D. sreirret
st

What is the output of this code?

x y a b
def calculate(x, y):

a = y
b = x + 1
return a * b - 3

print(calculate(4, 1))

CAS CS 111 Boston University, Spring 2025 40

Practice Writing a Function
• Write a function avg_first_last(values) that:

• takes a list values that has at least one element

• returns the average of the first and last elements

• examples:
>>> avg_first_last([2, 6, 3])
2.5 # average of 2 and 3 is 2.5
>>> avg_first_last([7, 3, 1, 2, 4, 9])
8.0 # average of 7 and 9 is 8.0

def avg_first_last(values):

first = _____________

last = _____________

return _______________

Returning vs. Printing
• Our previous function returns the result:

def avg_first_last(values):
...
return ____________

• Would it be equivalent to print the result?

def avg_first_last(values):
...
print(_____________)

• If the function prints instead of returning,
you can't do something like this:

avg = avg_first_last([5, 7, 9, 10, 12])
print('The result is', avg)

CAS CS 111 Boston University, Spring 2025 41

More Practice
• Write a function middle_elem(values) that:

• takes a list values that has at least one element

• returns the element in the middle of the list

• when there are two middle elements,
return the one closer to the end

• examples:
>>> middle_elem([2, 6, 3])
6
>>> middle_elem([7, 3, 1, 2, 4, 9])
2

def middle_elem(values):

middle_index = _____________

return _______________

CAS CS 111 Boston University, Spring 2025 42

Pre-Lecture
Making Decisions:

Conditional Execution

Computer Science 111
Boston University

Conditional Execution

• Conditional execution allows your code to decide whether
to do something, based on some condition.

• example:

def abs_value(x):
""" returns the absolute value of input x """
if x < 0:

x = -1 * x
return x

• examples of calling this function from the Shell:
>>> abs_value(-5)
5

>>> abs_value(10)

CAS CS 111 Boston University, Spring 2025 43

Simple Decisions: if Statements

• Syntax:

if condition:
true block

where:

• condition is an expression
that is true or false

• true block is one or more
indented statements

• Example:

def abs_value(x):
if x < 0:

x = -1 * x # true block
return x

Two-Way Decisions: if-else Statements

• Syntax:

if condition:
true block

else:

false block

• Example:

def pass_fail(avg):
if avg >= 60:

grade = 'pass' # true block
else:

grade = 'fail' # false block
return grade

CAS CS 111 Boston University, Spring 2025 44

Expressing Simple Conditions

• Python provides a set of relational operators
for making comparisons:

operator name examples

< less than val < 10

price < 10.99

> greater than num > 60

state > 'Ohio'

<= less than or equal to average <= 85.8

>= greater than or equal to name >= 'Jones'

== equal to total == 10

letter == 'P'

!= not equal to age != my_age

(don't confuse with =)

Boolean Values and Expressions

• A condition has one of two values: True or False.

>>> 10 < 20
True
>>> "Jones" == "Baker"
False

• True and False are not strings.

• they are literals from the bool data type

>>> type(True)
<class 'bool'>

>>> type(30 > 6)

• An expression that evaluates to True or False is known as
a boolean expression.

CAS CS 111 Boston University, Spring 2025 45

Forming More Complex Conditions

• Python provides logical operators for combining/modifying
boolean expressions:

name example and meaning
and age >= 18 and age <= 35

True if both conditions are True, and False otherwise

or age < 3 or age > 65

True if one or both of the conditions are True;
False if both conditions are False

not not (grade > 80)

True if the condition is False, and False if it is True

A Word About Blocks

• A block can contain multiple statements.

def welcome(class):
if class == 'frosh':

print('Welcome to BU!')
print('Have a great four years!')

else:
print('Welcome back!')
print('Have a great semester!')
print('Be nice to the frosh students.')

• A new block begins whenever we increase the amount
of indenting.

• A block ends when we either:

• reach a line with less indenting than the start of the block

• reach the end of the program

CAS CS 111 Boston University, Spring 2025 46

Multi-Way Decisions

• The following function doesn't work.

avg grade

def letter_grade(avg):
if avg >= 90:

grade = 'A'
if avg >= 80:

grade = 'B'
if avg >= 70:

grade = 'C'
if avg >= 60:

grade = 'D'
else:

grade = 'F'
return grade

• example:
>>> letter_grade(95)

Multi-Way Decisions (cont.)

• Here's a fixed version:

avg grade

def letter_grade(avg):
if avg >= 90:

grade = 'A'
elif avg >= 80:

grade = 'B'
elif avg >= 70:

grade = 'C'
elif avg >= 60:

grade = 'D'
else:

grade = 'F'
return grade

• example:
>>> letter_grade(95)

CAS CS 111 Boston University, Spring 2025 47

Multi-Way Decisions: if-elif-else Statements

• Syntax:

if condition1:
true block for condition1

elif condition2:
true block for condition2

elif condition3:
true block for condition3

…
else:

false block

• The conditions are evaluated in order. The true block of the
first true condition is executed.

• If none of the conditions are true, the false block is executed.

Flowchart for an if-elif-else Statement

false block

false

true
condition1 true block 1

false

true
condition2 true block 2

...

false

next statement

CAS CS 111 Boston University, Spring 2025 48

Making Decisions:
Conditional Execution

Computer Science 111
Boston University

Making Decisions

• One-way: deciding whether or not to do something

if x < 0:
print('x is negative')
x = -1 * x

• Two-way: choosing among two options

if x < 0:
print('x is negative')
x = -1 * x

else:
print('x is non-negative')

CAS CS 111 Boston University, Spring 2025 49

Recall: A Word About Blocks

• A block can contain multiple statements.

def welcome(class):
if class == 'frosh':

print('Welcome to BU!')
print('Have a great four years!')

else:
print('Welcome back!')
print('Have a great semester!')
print('Be nice to the frosh students.')

• A new block begins whenever we increase the amount
of indenting.

• A block ends when we either:

• reach a line with less indenting than the start of the block

• reach the end of the program

Nesting

• We can "nest" one conditional statement in the true block
or false block of another conditional statement.

def welcome(class):
if class == 'frosh':

print('Welcome to BU!')
print('Have a great four years!')

else:
print('Welcome back!')
if class == 'senior':

print('Have a great last year!')
else:

print('Have a great semester!')

print('Be nice to the frosh students.')

CAS CS 111 Boston University, Spring 2025 50

What is the output of this program?

x = 5
if x < 15:

if x > 8:
print('one')

else:
print('two')

else:
if x > 2:

print('three')

What does this print? (note the changes!)

x = 5
if x < 15:

if x > 8:
print('one')

else:
print('two')

if x > 2:
print('three')

CAS CS 111 Boston University, Spring 2025 51

What does this print? (note the new changes!)

x = 5
if x < 15:

if x > 8:
print('one')

else:
print('two')

if x > 2:
print('three')

How many lines does this print?

x = 5
if x == 8:

print('how')
elif x > 1:

print('now')
elif x < 20:

print('wow')
print('cow')

CAS CS 111 Boston University, Spring 2025 52

How many lines does this print?

x = 5
if x == 8:

print('how')
if x > 1:

print('now')
if x < 20:

print('wow')
print('cow')

What is the output of this code?

def mystery(a, b):
if a == 0 or a == 1:

return b
return a * b

print(mystery(0, 5))

CAS CS 111 Boston University, Spring 2025 53

Common Mistake When Using and / or

def mystery(a, b):
if a == 0 or 1: # this is problematic

return b
return a * b

print(mystery(0, 5))

• When using and / or, both sides of the operator should be a
boolean expression that could stand on its own.

boolean boolean boolean integer
a == 0 or a == 1 a == 0 or 1

(do this) (don't do this)

• Unfortunately, Python doesn't complain about code like the
problematic code above.

• but it won't typically work the way you want it to!

Avoid Overly Complicated Code

• The following also involves decisions based on a person's age:

age = ... # let the user enter his/her age
if age < 13:

print('You are a child.')
elif age >= 13 and age < 20:

print('You are a teenager.')
elif age >= 20 and age < 30:

print('You are in your twenties.')
elif age >= 30 and age < 40:

print('You are in your thirties.')
else:

print('You are really old.')

• How could it be simplified?

CAS CS 111 Boston University, Spring 2025 54

Pre-Lecture
Variable Scope

Computer Science 111
Boston University

Local Variables
def mystery(x, y):

b = x - y # b is a local var of mystery
return 2*b # we can access b here

c = 7
mystery(5, 2)
print(b + c) # we can't access b here

• When we assign a value to a variable inside a function,
we create a local variable.

• it "belongs" to that function

• it can't be accessed outside of that function

• The parameters of a function are also limited to that function.

• example: the parameters x and y above

CAS CS 111 Boston University, Spring 2025 55

Global Variables
def mystery(x, y):

b = x - y
return 2*b + c # works, but not recommended

c = 7 # c is a global variable
mystery(5, 2)
print(b + c) # we can access c here

• When we assign a value to a variable outside of a function,
we create a global variable.

• it belongs to the global scope

• A global variable can be used anywhere in your program.

• in code that is outside of any function

• in code inside a function (but this is not recommended!)

Different Variables With the Same Name!
def mystery(x, y):

b = x - y # this b is local
return 2*b # we access the local b here

b = 1 # this b is global
c = 7
mystery(5, 2)
print(b + c) # we access the global b here

• The program above has two different variables called b.

• one local variable

• one global variable

• When this happens, the local variable has priority inside
the function to which it belongs.

CAS CS 111 Boston University, Spring 2025 56

Python Tutor

• Python Tutor allows us to trace through a program's execution.

• use the Forward button

• The red arrow shows the next line to execute.

• The pale arrow shows the line that was just executed.

Frames for Variables

• Variables are stored in blocks of memory known as frames.

• stored in a region of memory known as the stack

• Global variables are stored in the global frame.

• Each function call gets a frame for its local variables.

• goes away when the function returns

CAS CS 111 Boston University, Spring 2025 57

Frames for Variables (cont.)

• Where is the error is this program?

Frames for Variables (cont.)

• What is the output of this fixed version of the program?

CAS CS 111 Boston University, Spring 2025 58

Pre-Lecture
Functions Calling Functions

Computer Science 111
Boston University

Finding the Distance Between Two Points

diagram from:
math.about.com

CAS CS 111 Boston University, Spring 2025 59

A Program for Computing Distance

import math

def square_diff(val1, val2):
""" returns the square of val1 – val2 """
d = val1 - val2
return d ** 2

def distance(x1, y1, x2, y2):
""" returns the distance between two points

in a plane with coordinates (x1, y1)
and (x2, y2)

"""
d = square_diff(x2, x1) + square_diff(y2, y1)
dist = math.sqrt(d)
return dist

dist = distance(2, 3, 5, 7)
print('distance between (2, 3) and (5, 7) is', dist)

Tracing the Program in Python Tutor
• stack frames during the

1st call to square_diff:

• fill in the stack frame
for the 2nd call:

CAS CS 111 Boston University, Spring 2025 60

Variable Scope
Functions Calling Functions

Computer Science 111
Boston University

What is the output of this code?

def mystery2(a, b):
x = a + b
return x + 1

x = 8
mystery2(3, 2)
print(x)

CAS CS 111 Boston University, Spring 2025 61

What is the output of this code? (version 2)

def mystery2(a, b):
x = a + b
return x + 1

x = 8
mystery2(3, 2)
print(x)

A Note About Globals
• It's not a good idea to access a global variable inside a function.

• for example, you shouldn't do this:

def average3(a, b):
total = a + b + c # accessing a global c
return total/3

c = 8
print(average3(5, 7))

• Instead, you should pass it in as a parameter/input:

def average3(a, b, c):
total = a + b + c # accessing input c
return total/3

c = 8
print(average3(5, 7, c))

CAS CS 111 Boston University, Spring 2025 62

Recall: Frames and the Stack
• Variables are stored in

blocks of memory known
as frames.

• Each function call gets a
frame for its local variables.

• goes away when
the function returns

• Global variables are stored
in the global frame.

• The stack is the region of the
computer's memory in which
the frames are stored.

• thus, they are also known as stack frames

What is the output of this code?

def quadruple(y):
y = 4 * y
return y

y = 8
quadruple(y)

print(y)

CAS CS 111 Boston University, Spring 2025 63

How could we change this to see the return value?

def quadruple(y):
y = 4 * y
return y

y = 8
quadruple(y)

print(y)

What is the output of this program?

def demo(x):
return x + f(x)

def f(x):
return 11*g(x) + g(x//2)

def g(x):
return -1 * x

print(demo(-4))

demo

x = -4

return -4 + f(-4)

f

g

x = -4

return 11*g(-4) + g(-4//2)

x = -4

return -1 * x

frame for 1st call

g
x =

return -1 * x

frame for 2nd call

CAS CS 111 Boston University, Spring 2025 64

Tracing Function Calls

def foo(x, y):
y = y + 1
x = x + y
print(x, y)
return x

x = 2
y = 0

y = foo(y, x)
print(x, y)

foo(x, x)
print(x, y)

print(foo(x, y))
print(x, y)

foo
x | y

global
x | y

output

Full Trace of First Example

def quadruple(y): # 3. local y = 8
y = 4 * y # 4. local y = 4 * 8 = 32
return y # 5. return local y's value

32
y = 8 # 1. global y = 8
quadruple(y) # 2. pass in global y's value

6. return value is thrown away!
print(y) # 7. print global y's value,

which is unchanged!

You can't change
the value of a variable
by passing it
into a function!

CAS CS 111 Boston University, Spring 2025 65

Pre-Lecture
A First Look at Recursion

Computer Science 111
Boston University

Functions Calling Themselves: Recursion!

def fac(n):
if n <= 1:

return 1
else:

return n * fac(n - 1)

• Recursion solves a problem by reducing it
to a simpler or smaller problem of the same kind.

• the function calls itself to solve the smaller problem!

• We take advantage of recursive substructure.

• the fact that we can define the problem in terms of itself

n! = n * (n-1)!

CAS CS 111 Boston University, Spring 2025 66

Functions Calling Themselves: Recursion! (cont.)

def fac(n):
if n <= 1:

return 1
else:

return n * fac(n - 1)

• One recursive call leads to another...
fac(5) = 5 * fac(4)

= 5 * 4 * fac(3)
= ...

• We eventually reach a problem that is small enough
to be solved directly – a base case.

• stops the recursion

• make sure that you always include one!

base case

recursive case

Alternative Version of fac(n)

def fac(n):
if n <= 1:

return 1

else:
rest = fac(n – 1)
return n * rest

• Many people find this easier to read/write/understand.

• Storing the result of the recursive call will occasionally
make the problem easier to solve.

• It also makes your recursive functions easier to trace and debug.

• We highly recommend that you take this approach!

CAS CS 111 Boston University, Spring 2025 67

Tracing Recursion in Python Tutor

fac(5) n:
rest:

return value:

fac(4) n:
rest:

return value:

fac(3) n:
rest:

return value:

fac(2) n:
rest:

return value:

fac(1) n:
rest:

return value:

Fill in the stack frames!

CAS CS 111 Boston University, Spring 2025 68

Pre-Lecture
Using Recursion, Part I

Computer Science 111
Boston University

Recursively Processing a List or String

• Sequences are recursive!

• a string is a character followed by a string...

• a list is an element followed by a list...

• Let s be the sequence (string or list) that we're processing.

• Do one step!

• use s[0] to access the initial element

• do something with it

• Delegate the rest!

• use s[1:] to get the rest of the sequence.

• make a recursive call to process it!

CAS CS 111 Boston University, Spring 2025 69

Recursively Finding the Length of a String

def mylen(s):
""" returns the number of characters in s

input s: an arbitrary string
"""
if s == '': # base case

else:

• Ask yourself:

When can I determine the length of s without
looking at a smaller string?

How could I use the length of anything smaller
than s to determine the length of s?

(base case)

(recursive
substructure)

mylen('wow')
s = 'wow'
len_rest = mylen('ow')
return

How recursion works...

mylen('ow')
s =
len_rest =
return 4 different

stack frames,
each with its own
s and len_rest

The final result
gets built up
on the way back
from the base case!

CAS CS 111 Boston University, Spring 2025 70

Recursively Raising a Number to a Power

def power(b, p):
""" returns b raised to the p power

inputs: b is a number (int or float)
p is a non-negative integer

"""
if p == 0: # base case

else:

• Ask yourself:

When can I determine bp without determining
a smaller power?

How could I use anything smaller than bp

to determine bp?

(base case)

(recursive
substructure)

power(3, 3)
b = 3, p = 3
pow_rest = power(3, 2)
return

How recursion works...

power(3, 2)
b = 3, p = 2
pow_rest =
return 4 different

stack frames,
each with its own
b, p and pow_rest

The final result
gets built up
on the way back
from the base case!

CAS CS 111 Boston University, Spring 2025 71

A First Look at Recursion

Computer Science 111
Boston University

Recall: Functions Calling Themselves: Recursion!

def fac(n):
if n <= 1:

return 1
else:

fac_rest = fac(n - 1)
return n * fac_rest

• One recursive call leads to another...

• We eventually reach a problem that is small enough
to be solved directly – a base case.

• stops the recursion

• make sure that you always include one!

base case

recursive case

CAS CS 111 Boston University, Spring 2025 72

def fac(n):
if n <= 1:

return 1
else:

fac_rest = fac(n-1)
return n * fac_rest

You handle the base case
– the easiest case!

Recursion does
almost all of the

rest of the problem!

You specify
one step

at the end.

Let Recursion Do the Work For You!

How many times will mylen() be called?

def mylen(s):
if s == '': # base case

return 0
else: # recursive case

len_rest = mylen(s[1:])
return len_rest + 1

print(mylen('step'))

CAS CS 111 Boston University, Spring 2025 73

mylen('tep')
s = 'tep'
len_rest = mylen('ep')

def mylen(s):

if s == '':

return 0

else:

len_rest = mylen(s[1:])

return len_rest + 1

mylen('ep')
s = 'ep'
len_rest = mylen('p') Fill in the rest

of the stack frames!

mylen('step')
s = 'step'
len_rest = mylen('tep')

What is the output of this program?

def foo(x, y):
if x <= y:

return y
else:

return x + foo(x-2,y+1)

print(foo(9, 2))

foo(9, 2) x:
y:

foo() x:
y:

x:
y:

x:
y:

x:
y:

Fill in the stack frames!
(use as many as you need)

CAS CS 111 Boston University, Spring 2025 74

More Recursion!

Computer Science 111
Boston University

Designing a Recursive Function

1. Start by programming the base case(s).

• What instance(s) of this problem can I solve directly
(without looking at anything smaller)?

2. Find the recursive substructure.

• How could I use the solution to any smaller version
of the problem to solve the overall problem?

3. Solve the smaller problem using a recursive call!

• store its result in a variable

4. Do your one step.

• build your solution from the result of the recursive call

• use concrete cases to figure out what you need to do

CAS CS 111 Boston University, Spring 2025 75

A Recursive Function for Counting Vowels

def num_vowels(s):
""" returns the number of vowels in s

input s: a string of lowercase letters
"""
We'll design this together!

• Examples of how it should work:

>>> num_vowels('compute')
3
>>> num_vowels('now')
1

• The in operator will be helpful:

>>> 'fun' in 'function'
True
>>> 'i' in 'team'
False

Design Questions for num_vowels()

When can I determine the # of vowels in s without
looking at a smaller string?

How could I use the solution to anything smaller
than s to determine the solution to s?

aliens rejoice

(base case)

(recursive
substructure)

total # of vowels
=

total # of vowels
=

CAS CS 111 Boston University, Spring 2025 76

How Many Lines of This Function Have a Bug?

def num_vowels(s):
if s == '':

return 0
else:

num_rest = num_vowels(s[0:])
if s[0] in 'aeiou':

return 1
else:

return 0

After you make your group vote,
fix the function!

What value is eventually assigned to num_rest?
(i.e., what does the recursive call return?)

def num_vowels(s):
if s == '':

return 0
else:

num_rest = num_vowels(________________)
...

num_vowels('aha')

num_vowels('aha')
s = 'aha'
num_rest = ??

CAS CS 111 Boston University, Spring 2025 77

num_vowels('aha')
s = 'aha'
num_rest = num_vowels('ha')

How recursion works...

num_vowels()
s =
num_rest =

Debugging Technique: Adding Temporary prints
def num_vowels(s):

print('beginning call for', s)
if s == '':

print('base case returns 0')
return 0

else:
num_rest = num_vowels(s[1:])
if s[0] in 'aeiou':

print('call for', s, 'returns', 1 + num_rest)
return 1 + num_rest

else:
print('call for', s, 'returns', 0 + num_rest)
return 0 + num_rest

CAS CS 111 Boston University, Spring 2025 78

Pre-Lecture
Using Recursion, Part II

Computer Science 111
Boston University

Recursively Finding the Largest Element in a List

• mymax(values)

• input: a non-empty list

• returns: the largest element in the list

• examples:

>>> mymax([5, 8, 10, 2])
10

>>> mymax([30, 2, 18])
30

CAS CS 111 Boston University, Spring 2025 79

Design Questions for mymax()

When can I determine the largest element in a list
without needing to look at a smaller list?

How could I use the largest element in a smaller list
to determine the largest element in the entire list?

list1 = [30, 2, 18] list2 = [5, 12, 25, 2]

1. compare the first element to largest element in the rest of the list
2. return the larger of the two

Let the recursive call handle the rest of the list!

(base case)

(recursive
case)

largest element = 18

mymax(list1) _______

largest element = 10

mymax(list2) _______

Recursively Finding the Largest Element in a List

def mymax(values):
""" returns the largest element in a list

input: values is a *non-empty* list
"""
if # base case

else: # recursive case

CAS CS 111 Boston University, Spring 2025 80

Tracing Recursion in Python Tutor

mymax([10, 12, 5, 8])
values: [10, 12, 5, 8]

max_in_rest:
return value:

mymax([12, 5, 8])
values: [12, 5, 8]

max_in_rest:
return value:

mymax()
values:

max_in_rest:
return value:

mymax()
values:

max_in_rest:
return value:

Fill in the stack frames!

CAS CS 111 Boston University, Spring 2025 81

Practicing Recursive Design

Computer Science 111
Boston University

Recall: Recursively Finding
the Largest Element in a List

• mymax(vals)

• input: a non-empty list

• returns: the largest element in the list

• examples:

>>> mymax([5, 8, 10, 2])
result: 10

>>> mymax([30, 2, 18])
result: 30

CAS CS 111 Boston University, Spring 2025 82

How many times will max_rest be returned?
def mymax(vals):

if len(vals) == 1: # base case
return vals[0]

else: # recursive case
max_rest = mymax(vals[1:])
if vals[0] > max_rest:

return vals[0]
else:

return max_rest # how many times?

print(mymax([5, 30, 10, 8]))

mymax([5, 30, 10, 8])
vals = [5, 30, 10, 8]
max_rest = mymax(__________)

How recursion works...

mymax()
vals =
max_rest = mymax(__________)

CAS CS 111 Boston University, Spring 2025 83

Recall: Designing a Recursive Function

1. Start by programming the base case(s).

• What instance(s) of this problem can I solve directly
(without looking at anything smaller)?

2. Find the recursive substructure.

• How could I use the solution to any smaller version
of the problem to solve the overall problem?

3. Solve the smaller problem using a recursive call!

• store its result in a variable

4. Do your one step.

• build your solution on the result of the recursive call

• use concrete cases to figure out what you need to do

Recursively Replacing Characters in a String

• replace(s, old, new)

• inputs: a string s
two characters, old and new

• returns: a version of s in which all occurrences of old
are replaced by new

• examples:

>>> replace('boston', 'o', 'e')
result: 'besten'

>>> replace('banana', 'a', 'o')
result: 'bonono'

>>> replace('mama', 'm', 'd')

result: ____________

'boston'

'besten'

old new

CAS CS 111 Boston University, Spring 2025 84

Design Questions for replace()

When can I determine the "replaced" version of s
without looking at a smaller string?

How could I use the "replaced" version of a
smaller string to get the "replaced" version of s?

s1 = 'always' s2 = 'recurse!'

(base case)

(recursive
case)

replace(s2, 'e', 'i')

=

replace(s1, 'a', 'o')

=

Complete This Function Together!

def replace(s, old, new):
if s == '':

return _____
else:

recursive call handles rest of string
repl_rest = replace(______, old, new)

do your one step!
if ________________:

return ________________
else:

return ________________

Use our concrete cases!
replace('always', 'a', 'o') replace('recurse!', 'e', 'i')

return 'o' + soln to rest of string return 'r' + soln to rest of string

CAS CS 111 Boston University, Spring 2025 85

More Recursive Design!

Computer Science 111
Boston University

Removing Vowels From a String

• remove_vowels(s) - removes the vowels from the string s,
returning its "vowel-less" version!

>>> remove_vowels('recursive')
'rcrsv'

>>> remove_vowels('vowel')
'vwl'

• Can we take the usual approach to recursive string processing?

• base case: empty string

• delegate s[1:] to the recursive call

• we're responsible for handling s[0]

CAS CS 111 Boston University, Spring 2025 86

How should we fill in the blanks?

def remove_vowels(s):
if s == '': # base case

return __________
else: # recursive case

rem_rest = __________________

do our one step!
...

Consider this original call…

def remove_vowels(s):
if s == '':

return ________
else:

rem_rest = ______________________

do our one step!
...

remove_vowels('recurse')

CAS CS 111 Boston University, Spring 2025 87

What value is eventually assigned to rem_rest?
(i.e., what does the recursive call return?)

def remove_vowels(s):
if s == '':

return ________
else:

rem_rest = ______________________

do our one step!
...

remove_vowels('recurse')

remove_vowels('recurse')
s = 'recurse'
rem_rest = ??

What should happen after the recursive call?

def remove_vowels(s):
if s == '':

return ''
else:

rem_rest = remove_vowels(s[1:])

do our one step!

• In our one step, we take care of s[0].

• we build the solution to the larger problem on the
solution to the smaller problem (in this case, rem_rest)

• does what we do depend on the value of s[0]?

CAS CS 111 Boston University, Spring 2025 88

Consider Concrete Cases

remove_vowels('after') # s[0] is a vowel

• what is its solution?

• what is the next smaller subproblem?

• what is the solution to that subproblem?

• how can we use the solution to the subproblem?
What is our one step?

remove_vowels('recurse') # s[0] is not a vowel

• what is its solution? '

• what is the next smaller subproblem?

• what is the solution to that subproblem?

• how can we use the solution to the subproblem?
What is our one step?

remove_vowels()

def remove_vowels(s):
""" returns the "vowel-less" version of s

input s: an arbitrary string
"""
if s == '':

return ''
else:

rem_rest = remove_vowels(s[1:])

do our one step!
if s[0] in 'aeiou':

return ________________
else:

return ________________

CAS CS 111 Boston University, Spring 2025 89

More Recursive Design! rem_all()

• rem_all(elem, values)

• inputs: an arbitrary value (elem) and a list (values)

• returns: a version of values in which all occurrences
of elem in values (if any) are removed

>>> rem_all(10, [3, 5, 10, 7, 10])
[3, 5, 7]

More Recursive Design! rem_all()

• Can we take the usual approach to processing a list recursively?

• base case: empty list

• delegate values[1:] to the recursive call

• we're responsible for handling values[0]

• What are the possible cases for our part (values[0])?

• does what we do with our part depend on its value?

CAS CS 111 Boston University, Spring 2025 90

Consider Concrete Cases

rem_all(10, [3, 5, 10, 7, 10]) # first value is not a match

• what is its solution?

• what is the next smaller subproblem?

• what is the solution to that subproblem?

• how can we use the solution to the subproblem...?
What is our one step?

rem_all(10, [10, 3, 5, 10, 7]) # first value is a match

• what is its solution?

• what is the next smaller subproblem?

• what is the solution to that subproblem?

• how can we use the solution to the subproblem...?
What is our one step?

rem_all()

def rem_all(elem, values):
""" removes all occurrences of elem from values
"""
if values == []:

return _______
else:

rem_rest = rem_all(______, ________)

if ________________:
return ________________

else:
return ________________

CAS CS 111 Boston University, Spring 2025 91

Pre-Lecture
List Comprehensions

Computer Science 111
Boston University

Generating a Range of Integers

• range(low, high): allows us to work with the range
of integers from low to high-1

• to see the result produced by range()
use the list() function

• if you omit low, the range will start at 0

• Examples:
>>> list(range(3, 10))
[3, 4, 5, 6, 7, 8, 9]

>>> list(range(20, 30))
[20, 21, 22, 23, 24, 25, 26, 27, 28, 29]

>>> list(range(8))

CAS CS 111 Boston University, Spring 2025 92

List Comprehensions

>>> [3*x for x in [0,1,2,3,4,5]]

[0, 3, 6, 9, 12, 15]

this "runner" variable can have any name...

x takes on each value

and 3*x is output for each one

[expression for variable in sequence]

Examples of LCs

[1, 2, 3, 4]
>>> [111*n for n in range(1, 5)]
[111, 222, 333, 444]

>>> [s[0] for s in ['python', 'is', 'fun!']]

CAS CS 111 Boston University, Spring 2025 93

• Syntax:

[expression for variable in sequence]

or

[expression for variable in sequence if boolean]

• Examples:
[0, 1, 2, 3, 4, 5]

>>> [2*x for x in range(6) if x % 2 == 0]
[0, 4, 8]

>>> [y for y in ['how', 'now', 'brown'] if len(y) == 3]

List Comprehensions (LCs)

CAS CS 111 Boston University, Spring 2025 94

List Comprehensions

Computer Science 111
Boston University

Another Useful Built-In Function

• sum(list): computes & returns the sum of a list of numbers
>>> sum([4, 10, 2])

16

CAS CS 111 Boston University, Spring 2025 95

Recall: List Comprehensions

>>> [3*x for x in [0,1,2,3,4,5]]

[0, 3, 6, 9, 12, 15]

this "runner" variable can have any name...

x takes on each value

and 3*x is output for each one

[expression for variable in sequence]

More Examples

>>> [n - 2 for n in range(10, 15)]

>>> [s[-1]*2 for s in ['go', 'terriers!']]

>>> [z for z in range(6)]

>>> [z for z in range(6) if z % 2 == 1]

>>> [z % 4 == 0 for z in [4, 5, 6, 7, 8]]

>>> [1 for x in [4, 5, 6, 7, 8] if x % 4 == 0]

>>> sum([1 for x in [4, 5, 6, 7, 8] if x % 4 == 0])

CAS CS 111 Boston University, Spring 2025 96

What is the output of this code?

lc = [x for x in range(5) if x**2 > 4]

print(lc)

LC Puzzles! – Fill in the blanks

>>> [__________ for x in range(4)]

[0, 14, 28, 42]

>>> [_________ for s in ['boston', 'university', 'cs']]
['bos', 'uni', 'cs']

>>> [__________ for c in 'compsci']

['cc', 'oo', 'mm', 'pp', 'ss', 'cc', 'ii']

>>> [__________ for x in range(20, 30) if ____________]
[20, 22, 24, 26, 28]

>>> [__________ for w in ['I', 'like', 'ice', 'cream']]
[1, 4, 3, 5]

CAS CS 111 Boston University, Spring 2025 97

LCs vs. Raw Recursion

raw recursion
def mylen(seq):

if seq == '' or seq == []:
return 0

else:
len_rest = mylen(seq[1:])
return 1 + len_rest

using an LC
def mylen(seq):

lc = [1 for x in seq]
return sum(lc)

here's a one-liner!
def mylen(seq):

return sum([1 for x in seq])

LCs vs. Raw Recursion (cont.)

raw recursion
def num_vowels(s):

if s == '':
return 0

else:
num_in_rest = num_vowels(s[1:])
if s[0] in 'aeiou':

return 1 + num_in_rest
else:

return 0 + num_in_rest

using an LC
def num_vowels(s):

lc = [1 for c in s if c in 'aeiou']
return sum(lc)

here's a one-liner!
def num_vowels(s):

return sum([1 for c in s if c in 'aeiou'])

CAS CS 111 Boston University, Spring 2025 98

What list comprehension(s) would work here?

def num_odds(values):
""" returns the number of odd #s in a list

input: a list of 0 or more integers
"""
lc = ____________________________________
return sum(lc)

Fill in the Blanks

def avg_len(wordlist):
""" returns the average length of the strings

in wordlist as a float
input: a list of 1 or more strings

"""
lc = [_________ for ____ in __________]

return ________ / _________

>>> avg_len(['commonwealth', 'avenue'])
9.0

>>> avg_len(['keep','calm','and','code','on'])
3.4

12 6

4 4 3 4 2

CAS CS 111 Boston University, Spring 2025 99

Pre-Lecture
max(), min(), and Lists of Lists

Computer Science 111
Boston University

max() and min()

• max(values): returns the largest value in a list of values
>>> max([4, 10, 2])

10

>>> max(['all', 'students', 'love', 'recursion'])

'students'

• min(values): returns the smallest value in a list of values
>>> min([4, 10, 2])

2

>>> min(['all', 'students', 'love', 'recursion'])

CAS CS 111 Boston University, Spring 2025 100

Lists of Lists

• Recall that the elements of a list can themselves be lists:

[[124, 'Jaws'], [150, 'Lincoln'], [115, 'E.T.']]

• When you apply max()/min() to a list of lists, the comparisons
are based on the first element of each sublist:

>>> max([[124, 'Jaws'], [150, 'Lincoln'], [115, 'E.T.']])

[150, 'Lincoln']

>>> min([[124, 'Jaws'], [150, 'Lincoln'], [115, 'E.T.']])

Problem Solving Using LCs and Lists of Lists

• Sample problem: finding the shortest word in a list of words.

words = ['always', 'come', 'to', 'class']

1. Use a list comprehension to build a list of lists:

scored_words = [[len(w), w] for w in words]

for the above words, we get:

2. Use min/max to find the correct sublist:

min_pair = min(scored_words)

for the above words, we get:

3. Use indexing to extract the desired value from the sublist:

min_pair[1]

CAS CS 111 Boston University, Spring 2025 101

Problem Solving Using LCs and Lists of Lists (cont.)

• Here's a function that works for an arbitrary list of words:

def shortest_word(words):
""" returns the shortest word from the input

list of words
"""
scored_words = [[len(w), w] for w in words]

min_pair = min(scored_words)

return min_pair[1]

CAS CS 111 Boston University, Spring 2025 102

Pre-Lecture
ASCII Codes

and the Caesar Cipher

Computer Science 111
Boston University

ASCII
American Standard Code for Information Interchange

• Strings are sequences of characters. 'hello'

• Individual characters are actually stored as integers.

• ASCII specifies the mapping between characters and integers.

character ASCII value

'A' 65

'B' 66

'C' 67

...

'a' 97

'b' 98

'c' 99

...

CAS CS 111 Boston University, Spring 2025 103

Converting Between Characters and Numbers

chr(n)

ord(c)

input: an integer ASCII value

input: a one-character string, c

abcdefghijklmnopqrstuvwxyz

ABCDEFGHIJKLMNOPQRSTUVWXYZ
ASCII

values

returns: the one-character string for that
ASCII value

returns: an integer, the ASCII value of c
Conversion

functions

97 122

65 90

99 101 103 105 107 109 111 113 115 117 119

67 69 71 73 75 77 79 81 83 8785

>>> ord('e') >>> chr(101)
101 'e'

>>> ord('G') >>> chr(71)
71 'G'

Examples

Encryption

'my password is foobar'  'pb sdvvzrug lv irredu'

encrypted messageoriginal message

CAS CS 111 Boston University, Spring 2025 104

Caesar Cipher Encryption

• Each letter is shifted/"rotated" forward by some number of places.

• Example: a shift of 3
'a'  'd' 'A'  'D'
'b'  'B' 
'c'  'C' 
etc.

'my password is foobar'  'pb sdvvzrug lv irredu'

• Non-alphabetic characters are left alone.

• We "wrap around" as needed.
'x'  'a' 'X'  'A'
'y'  'Y' 
etc.

abcdefghijklmnopqrstuvwxyz

encrypted messageoriginal message

Implementing a Shift in Python

• ord() and addition gives the ASCII code of the shifted letter:

>>> ord('b')
98

>>> ord('b') + 3 # in general, ord(c) + shift
101

• chr() turns it back into a letter:

>>> chr(ord('b') + 3)

'e'

abcdefghijklmnopqrstuvwxyz

ABCDEFGHIJKLMNOPQRSTUVWXYZ
ASCII

values

97 122

65 90

99 101 103 105 107 109 111 113 115 117 119

67 69 71 73 75 77 79 81 83 8785

CAS CS 111 Boston University, Spring 2025 105

max(), min(), and Lists of Lists;
ASCII Codes and the Caesar Cipher

Computer Science 111
Boston University

Finding a Maximum Stock Price

>>> max([578.7, 596.0, 586.9])
'jun' 'jul' 'aug'

result: 596.0

• To determine the month in which the max occurred,
use a list of lists!

>>> max([[578.7,'jun'], [596.0,'jul'], [586.9,'aug']])

result:

>>> max([['jun',578.7], ['jul',596.0], ['aug',586.9]])

result:

CAS CS 111 Boston University, Spring 2025 106

Finding the Best Scrabble Word

• Assume we have:

• a list of possible Scrabble words
words = ['aliens', 'zap', 'hazy', 'code']

• a scrabble_score() function like the one from PS 2

• To find the best word:

• form a list of lists using a list comprehension
scored_words = [[scrabble_score(w), w] for w in words]

for the above words, we get the following:

• use max() to get the best [score, word] sublist:
bestpair = max(scored_words)

for the above words, we get the following:

• use indexing to extract the word: bestpair[1]

best_word()

def best_word(words):
""" returns the word from the input list of words

with the best Scrabble score
"""
scored_words = [[scrabble_score(w), w] for w in words]
bestpair = max(scored_words)
return bestpair[1]

CAS CS 111 Boston University, Spring 2025 107

How Would Your Complete This Function?

def longest_word(words):
""" returns the string that is the longest

word from the input list of words
"""
scored_words = ___________________________

bestpair = max(scored_words)

return ________________

Recall: Caesar Cipher Encryption

• Each letter is shifted/"rotated" forward by some number of places.

• Example: a shift of 3
'a'  'd'

abcdefghijklmnopqrstuvwxyz

CAS CS 111 Boston University, Spring 2025 108

Caesar Cipher in PS 3

• You will write an encipher function:
>>> encipher('hello!', 1)
result: 'ifmmp!'

>>> encipher('hello!', 2)
result: 'jgnnq!'

>>> encipher('hello!', 4)
result: 'lipps!'

• "Wrap around" as needed.

• upper-case letters wrap to upper; lower-case to lower
>>> encipher('XYZ xyz', 3)
result: 'ABC abc'

What Should This Code Output?

secret = encipher('Caesar? Wow!', 5)

print(secret)

CAS CS 111 Boston University, Spring 2025 109

Caesar Cipher with a Shift/Rotation of 13

• 'a'  'n' 'n'  'a'
'b'  'o' 'o'  'b'
'c'  'p' 'p'  'c'
etc.

• Using chr() and ord():

>>> chr(ord('a') + 13)
result: 'n'

>>> chr(ord('P') + 13 - 26) # wrap around!!
result: 'C'

• Can use the following to determine if c is lower-case:
if 'a' <= c <= 'z':

• Can use the following to determine if c is upper-case:
if 'A' <= c <= 'Z':

Caesar Cipher with a Shift/Rotation of 13
def rot13(c):

""" rotate c forward by 13 characters,
wrapping as needed; only letters change

"""
if 'a' <= c <= 'z': # lower-case

new_ord = ord(c) + 13
if new_ord > ord('z'):

new_ord = ______________
elif 'A' <= c <= 'Z': # upper-case

new_ord = ord(c) + 13
if __________________:

else: # non-alpha

return _______________

CAS CS 111 Boston University, Spring 2025 110

Deciphering an Enciphered Text

• You will write a function for this as well.

• decipher only takes a string.

• no shift/rotation amount is given!

• How can it determine the correct "deciphering"?

>>> decipher('Bzdrzq bhogdq? H oqdedq Bzdrzq rzkzc.')
result: 'Caesar cipher? I prefer Caesar salad.'

>>> decipher('gv vw dtwvg')
???

>>> decipher('Bomebcsyx sc pexnkwoxdkv')
result: 'Recursion is fundamental'

gv vw dtwvg
hw wx euxwh
ix xy fvyxi
jy yz gwzyj
kz za hxazk
la ab iybal
mb bc jzcbm
nc cd kadcn
od de lbedo
pe ef mcfep
qf fg ndgfq
rg gh oehgr
sh hi pfihs
ti ij qgjit
uj jk rhkju
vk kl silkv
wl lm tjmlw
xm mn uknmx
yn no vlony
zo op wmpoz
ap pq xnqpa
bq qr yorqb
cr rs zpsrc
ds st aqtsd
et tu brute
fu uv csvuf

All	possible	
decipherings

[0, 'gv vw dtwvg'],
[2, 'hw wx euxwh'],
[2, 'ix xy fvyxi'],
[0, 'jy yz gwzyj'],
[2, 'kz za hxazk'],
[4, 'la ab iybal'],
[0, 'mb bc jzcbm'],
[1, 'nc cd kadcn'],
[4, 'od de lbedo'],
[3, 'pe ef mcfep'],
[0, 'qf fg ndgfq'],
[2, 'rg gh oehgr'],
[2, 'sh hi pfihs'],
[3, 'ti ij qgjit'],
[2, 'uj jk rhkju'],
[1, 'vk kl silkv'],
[0, 'wl lm tjmlw'],
[1, 'xm mn uknmx'],
[2, 'yn no vlony'],
[3, 'zo op wmpoz'],
[2, 'ap pq xnqpa'],
[1, 'bq qr yorqb'],
[0, 'cr rs zpsrc'],
[1, 'ds st aqtsd'],
[4, 'et tu brute'],
[3, 'fu uv csvuf']

Score	
them	
all

decipher('gv vw dtwvg')

CAS CS 111 Boston University, Spring 2025 111

gv vw dtwvg
hw wx euxwh
ix xy fvyxi
jy yz gwzyj
kz za hxazk
la ab iybal
mb bc jzcbm
nc cd kadcn
od de lbedo
pe ef mcfep
qf fg ndgfq
rg gh oehgr
sh hi pfihs
ti ij qgjit
uj jk rhkju
vk kl silkv
wl lm tjmlw
xm mn uknmx
yn no vlony
zo op wmpoz
ap pq xnqpa
bq qr yorqb
cr rs zpsrc
ds st aqtsd
et tu brute
fu uv csvuf

All	possible	
decipherings

[0, 'gv vw dtwvg'],
[2, 'hw wx euxwh'],
[2, 'ix xy fvyxi'],
[0, 'jy yz gwzyj'],
[2, 'kz za hxazk'],
[4, 'la ab iybal'],
[0, 'mb bc jzcbm'],
[1, 'nc cd kadcn'],
[4, 'od de lbedo'],
[3, 'pe ef mcfep'],
[0, 'qf fg ndgfq'],
[2, 'rg gh oehgr'],
[2, 'sh hi pfihs'],
[3, 'ti ij qgjit'],
[2, 'uj jk rhkju'],
[1, 'vk kl silkv'],
[0, 'wl lm tjmlw'],
[1, 'xm mn uknmx'],
[2, 'yn no vlony'],
[3, 'zo op wmpoz'],
[2, 'ap pq xnqpa'],
[1, 'bq qr yorqb'],
[0, 'cr rs zpsrc'],
[1, 'ds st aqtsd'],
[4, 'et tu brute'],
[3, 'fu uv csvuf']

Score	
them	
all

max!

decipher('gv vw dtwvg')

[6.9e-05, 'gv vw dtwvg'],
[3.6e-05, 'hw wx euxwh'],
[1.4e-07, 'ix xy fvyxi'],
[8.8e-11, 'jy yz gwzyj'],
[7.2e-10, 'kz za hxazk'],
[0.01503, 'la ab iybal'],
[3.7e-08, 'mb bc jzcbm'],
[0.00524, 'nc cd kadcn'],
[0.29041, 'od de lbedo'],
[0.00874, 'pe ef mcfep'],
[7.3e-07, 'qf fg ndgfq'],
[0.06410, 'rg gh oehgr'],
[0.11955, 'sh hi pfihs'],
[3.1e-06, 'ti ij qgjit'],
[1.1e-08, 'uj jk rhkju'],
[2.6e-05, 'vk kl silkv'],
[0.00012, 'wl lm tjmlw'],
[3.1e-06, 'xm mn uknmx'],
[0.02011, 'yn no vlony'],
[1.5e-06, 'zo op wmpoz'],
[1.9e-07, 'ap pq xnqpa'],
[5.7e-08, 'bq qr yorqb'],
[0.00024, 'cr rs zpsrc'],
[0.02060, 'ds st aqtsd'],
[0.45555, 'et tu brute'],
[0.00011, 'fu uv csvuf']

gv vw dtwvg
hw wx euxwh
ix xy fvyxi
jy yz gwzyj
kz za hxazk
la ab iybal
mb bc jzcbm
nc cd kadcn
od de lbedo
pe ef mcfep
qf fg ndgfq
rg gh oehgr
sh hi pfihs
ti ij qgjit
uj jk rhkju
vk kl silkv
wl lm tjmlw
xm mn uknmx
yn no vlony
zo op wmpoz
ap pq xnqpa
bq qr yorqb
cr rs zpsrc
ds st aqtsd
et tu brute
fu uv csvuf

All	possible	
decipherings

max!

S
c
o
r
e
s

decipher('gv vw dtwvg')

CAS CS 111 Boston University, Spring 2025 112

Algorithm Design

Computer Science 111
Boston University

Helper Functions

• When designing a function, it often helps to write a
separate helper function for a portion of the overall task.

• We've seen this before:

• scrabble_score() called letter_score()

def letter_score(letter):
if letter in 'aeilnorstu':

return 1
...

def scrabble_score(word):
if ...

...
else:

score_rest = scrabble_score(...)
return letter_score(...) + ...

• other places as well!

CAS CS 111 Boston University, Spring 2025 113

In PS 3: Jotto Score

• jscore(s1, s2)

• returns the number of characters
in s1 that are shared by s2

• the positions and the order of
the characters do not matter

• repeated letters are counted
multiple times

• Examples:

• jscore('diner', 'syrup')  1

• jscore('always', 'bananas')  3

• jscore('always', 'walking')  3

What will this call return?

jscore('recursion', 'explorations')

CAS CS 111 Boston University, Spring 2025 114

Jotto Score: Consider Concrete Cases

jscore('always', 'walking')

• what is its solution?

• what is the next smaller subproblem?

• will jscore('lways', 'alking') work?

• will jscore('lways', 'walking') work?

• what should we do instead?

Removing the First Occurrence
of an Element from a List

• rem_first(elem, values)

• inputs: an arbitrary value (elem) and a list (values)

• returns: a version of values in which only the first
occurrence of elem in values (if any) is removed

>>> rem_first(10, [3, 5, 10, 7, 10])
[3, 5, 7, 10]

• We'll write this function together in lecture.

• On the problem set, you will:

• adapt it to work with strings

• use it as a helper function for jscore()

CAS CS 111 Boston University, Spring 2025 115

Look Familiar?

• rem_all(elem, values)

• inputs: an arbitrary value (elem) and a list (values)

• returns: a version of values in which all occurrences
of elem in values (if any) are removed

>>> rem_all(10, [3, 5, 10, 7, 10])
[3, 5, 7]

• rem_first(elem, values)

• inputs: an arbitrary value (elem) and a list (values)

• returns: a version of values in which only the first
occurrence of elem in values (if any) is removed

>>> rem_first(10, [3, 5, 10, 7, 10])
[3, 5, 7, 10]

We can adapt rem_all() to get rem_first()…

def rem_all(elem, values):
""" removes all occurrences of elem from

values
"""
if values == []:

return []
else:

rem_rest = rem_all(elem, values[1:])

if values[0] == elem:
return rem_rest

else:
return [values[0]] + rem_rest

CAS CS 111 Boston University, Spring 2025 116

Consider Concrete Cases!

rem_first(10, [3, 5, 10, 7, 10])

• what is its solution?

• what is the next smaller subproblem?

• what is the solution to that subproblem?

• how can we use the solution to the subproblem...?
What is our one step?

rem_first(10, [10, 3, 5, 10, 7])

• what is its solution?

• what is the next smaller subproblem?

• what is the solution to that subproblem?

• how can we use the solution to the subproblem...?
What is our one step?

Use the concrete cases to fill in the blanks…

def rem_first(elem, values):
""" removes the first occurrence of elem from

values
"""
if values == []:

return []
else:

rem_rest = rem_first(elem, values[1:])

if values[0] == elem:

return _____________________
else:

return _____________________

CAS CS 111 Boston University, Spring 2025 117

A Recursive Palindrome Checker

• A palindrome is a string that reads the same forward and
backward.

• examples: "radar", "mom", "abcddcba"

• Let's write a function that determines if a string is a palindrome:
>>> is_pal('radar')
True

>>> is_pal('abccda')
False

• We need more than one base case. What are they?

• How should we reduce the problem in the recursive call?

Consider Concrete Cases!

is_pal('radar')

• what is its solution?

• what is the next smaller subproblem?

• what is the solution to that subproblem?

• how can we use the solution to the subproblem...?
What is our one step?

is_pal('modem')

• what is its solution?

• what is the next smaller subproblem?

• what is the solution to that subproblem?

• how can we use the solution to the subproblem...?
What is our one step?

CAS CS 111 Boston University, Spring 2025 118

A Recursive Palindrome Checker

def is_pal(s):
""" returns True if s is a palindrome

and False otherwise.
input s: a string containing only letters

(no spaces, punctuation, etc.)
"""

if len(s) <= 1: # empty string or one letter

return ____________

elif __________________:

return __________

else: # recursive case

is_pal_rest = ____________________

do our one step!

CAS CS 111 Boston University, Spring 2025 119

Pre-Lecture
Binary Numbers

Computer Science 111
Boston University

Bits and Bytes

• Everything stored in a computer is essentially a binary number.

0110110010100111

• Each digit in a binary number is one bit.

• a single 0 or 1

• based on two voltages: "low" = 0, "high" = 1

• One byte is 8 bits.

• example: 01101100

CAS CS 111 Boston University, Spring 2025 120

Bits of Data

• A given set of bits can have more than one meaning.

binary decimal integer character

01100001 97 'a'

01000110 70 'F'

Representing Integers in Decimal

• In base 10 (decimal), each column represents a power of 10.

176

1 hundred + 7 tens + 6 ones

1*102 + 7*101 + 6*100

CAS CS 111 Boston University, Spring 2025 121

Representing Integers in Binary

• In base 2 (binary), each column represents a power of 2.

10110000

1*27 + 0*26 + 1*25 + 1*24 + 0*23 + 0*22 + 0*21 + 0*20

128 + 0 + 32 + 16 + 0 + 0 + 0 + 0

also 176!

What Does the Rightmost Bit Tell Us?

• If the rightmost bit is 0, the number is ___________.

• If the rightmost bit is 1, the number is ___________.

10110000

CAS CS 111 Boston University, Spring 2025 122

• Number the bits from right to left

• example:

• For each bit that is 1, add 2n, where n = the bit number

• example:

decimal value = 26 + 24 + 23 + 22 + 20

10111010
b0b1b2b3b4b5b6b7

10111010
b0b1b2b3b4b5b6b7

Binary to Decimal (On Paper)

Decimal to Binary (On Paper)

• Go in the reverse direction: determine which powers of 2
need to be added together to produce the decimal number.

• Start with the largest power of 2 less than or equal to the
number, and work down from there.

• example: what is 53 in binary?

• 32 is the largest power of 2 <= 53: 53 = 32 + 21

• now, break the 21 into powers of 2: 53 = 32 + 16 + 5

• now, break the 5 into powers of 2: 53 = 32 + 16 + 4 + 1

• 1 is a power of 2 (20), so we’re done: 53 = 32 + 16 + 4 + 1

= 25 + 24 + 22 + 20

= 110101

CAS CS 111 Boston University, Spring 2025 123

Pre-Lecture
Binary Arithmetic

Computer Science 111
Boston University

Binary Addition Fundamentals

• 0 + 0 = 0

• 0 + 1 = 1

• 1 + 0 = 1

• 1 + 1 = 10

• 1 + 1 + 1 = 11

CAS CS 111 Boston University, Spring 2025 124

Adding Decimal Numbers

12537

9272+

21809

11

Adding Binary Numbers

01110

11100+

CAS CS 111 Boston University, Spring 2025 125

Hint:
Do you remember

this algorithm?
It's the same!

101101

1110*

000000

1011010

10110100

101101000+

1001110110

529
42

1058

*

2116

22218

+

Multiplying Binary Numbers

Shifting Bits to the Left

• A left-shift:

• moves every bit of a binary number to the left

• adds a 0 in the right-most place

• For example:, recall that 10110102 = 9010

• a left-shift by 1 gives 101101002 = 18010

• Left-shifting by 1 doubles the value of a number.

• In Python, we can apply the left-shift operator (<<) to any integer:

>>> print(75 << 1)

base 2 base 10

CAS CS 111 Boston University, Spring 2025 126

Shifting Bits to the Right

• A right-shift:

• moves every bit of a binary number to the right

• the rightmost bit is lost!

• For example:, recall that 10110102 = 9010

• a right-shift by 1 gives 1011012 = 4510

• Right-shifting by 1 halves the value of a number
(using integer division).

• In Python, we can apply the right-shift operator (>>) to any integer:

>>> print(15 >> 1)

CAS CS 111 Boston University, Spring 2025 127

Binary Numbers

Computer Science 111
Boston University

• Number the bits from right to left

• example:

• For each bit that is 1, add 2n, where n = the bit number

• example:

decimal value = 26 + 24 + 23 + 22 + 20

64 + 16 + 8 + 4 + 1 = 93

• another example: what is the integer represented by
1001011?

0 1 0 1 1 1 0 1
b7 b6 b5 b4 b3 b2 b1 b0

0 1 0 1 1 1 0 1
b7 b6 b5 b4 b3 b2 b1 b0

Recall: Binary to Decimal (On Paper)

CAS CS 111 Boston University, Spring 2025 128

Recall: Decimal to Binary (On Paper)

• Go in the reverse direction: determine which powers of 2
need to be added together to produce the decimal number.

• Start with the largest power of 2 less than or equal to the
number, and work down from there.

• example: what is 53 in binary?

• 32 is the largest power of 2 <= 53: 53 = 32 + 21

• now, break the 21 into powers of 2: 53 = 32 + 16 + 5

• now, break the 5 into powers of 2: 53 = 32 + 16 + 4 + 1

• 1 is a power of 2 (20), so we’re done: 53 = 32 + 16 + 4 + 1

= 25 + 24 + 22 + 20

= 110101

Which of these is a correct partial
binary representation of the decimal integer 90?

A. 101xxx1

B. 111xxx1

C. 101xxx0

D. 111xxx0

E. none of these

90 (decimal)  ____ (binary)

an x denotes a "hidden" bit
that we aren't revealing

Hint: You shouldn't need
to perform the full conversion
(i.e., you shouldn't need to
determine the hidden bits)!

CAS CS 111 Boston University, Spring 2025 129

Recall: Shifting Bits to the Left

• A left-shift:

• moves every bit of a binary number to the left

• adds a 0 in the right-most place

• For example:, recall that 10110102 = 9010

• a left-shift by 1 gives 101101002 = 18010

• Left-shifting by 1 doubles the value of a number.

• In Python, we can apply the left-shift operator (<<) to any integer:

>>> print(75 << 1)
150

>>> print(5 << 2)

base 2 base 10

Recall: Shifting Bits to the Right

• A right-shift:

• moves every bit of a binary number to the right

• the rightmost bit is lost!

• For example:, recall that 10110102 = 9010

• a right-shift by 1 gives 1011012 = 4510

• Right-shifting by 1 halves the value of a number
(using integer division).

• In Python, we can apply the right-shift operator (>>) to any integer:

>>> print(15 >> 1)
7

>>> print(120 >> 2)

CAS CS 111 Boston University, Spring 2025 130

Recall: Decimal to Binary (On Paper)

90 = 64 + 26
= 64 + 16 + 10
= 64 + 16 + 8 + 2
= 26 + 24 + 23 + 21

= 1011010

• This is a left-to-right conversion.

• we begin by determining the leftmost digit

• The first step is tricky to perform computationally,
because we need to determine the largest power.

Decimal to Binary: Right-to-Left

• We can use a right-to-left approach instead.

• For example: let's convert 139 to binary:

139 = ???????1

The rightmost bit
must be 1. Why?

If the remaining bits
were on their own
(without the rightmost bit),
what number would they
represent?

CAS CS 111 Boston University, Spring 2025 131

Decimal to Binary: Right-to-Left (cont.)

139 = ? ? ? ? ? ? ? 1

139 >> 1  69 = ? ? ? ? ? ?

69 >> 1  34 = ? ? ? ? ?

34 >> 1  17 = ? ? ? ?

17 >> 1  8 = ? ? ?

8 >> 1  4 = ? ?

4 >> 1  2 = ?

2 >> 1  1 =

139 =

dec_to_bin() Function

• dec_to_bin(n)

• takes an integer n

• should return a string representation of n's binary value

>>> dec_to_bin(139)

'10001011'

>>> dec_to_bin(13)

'1101'

CAS CS 111 Boston University, Spring 2025 132

How dec_to_bin() Should Work...

dec_to_bin(13)
n = 13
bin_rest = dec_to_bin(6)

dec_to_bin()
n =
bin_rest =

dec_to_bin()
n =

dec_to_bin(6)
n = 6
bin_rest =

Binary to Decimal: Right-to-Left

• Here again, we can use a right-to-left approach.

• For example:

'1101' = ?

• Devise an algorithm together!

What should we do
with the rightmost bit?

If we knew the
decimal value
of these bits,
how could we use it?

CAS CS 111 Boston University, Spring 2025 133

bin_to_dec() Function

• bin_to_dec(b)

• takes a string b that represents a binary number

• should return an integer representation of b's decimal value

>>> bin_to_dec('10001011')

139

>>> dec_to_bin('1101')

13

How bin_to_dec() Should Work...

bin_to_dec('1101')
b = '1101'
dec_rest = bin_to_dec('110')

bin_to_dec()
b =
dec_rest =

bin_to_dec()
b =

bin_to_dec('110')
b = '110'
dec_rest =

CAS CS 111 Boston University, Spring 2025 134

Binary Arithmetic Revisited

Computer Science 111
Boston University

Recall: Binary Addition Fundamentals

• 0 + 0 = 0

• 0 + 1 = 1

• 1 + 0 = 1

• 1 + 1 = 10

• 1 + 1 + 1 = 11

CAS CS 111 Boston University, Spring 2025 135

Recall: Adding Binary Numbers

01110

11100+

1101010

11 1

Add these two binary numbers
WITHOUT converting to decimal!

Hint: 529
742

1271

1

Do you remember
this algorithm?
It's the same!

+

101101

1110+

CAS CS 111 Boston University, Spring 2025 136

Recall: It's All Bits!

• Another example: text

'terriers'

0111010001100101011100100111001001101001011001010111001001110011

8 ASCII characters, 8 bits each  64 bits

• All types of data are represented in binary.

• images, sounds, movies, floating-point numbers, etc...

• All computation involves manipulating bits!

It's All Bits! (cont.)

• Example: to add 42 + 9, the computer does bitwise addition:

• In PS 4, you'll write a Python function for this.

add_bitwise('101010', '001001')

101010
001001+

110011

1

CAS CS 111 Boston University, Spring 2025 137

PS 4: add_bitwise

• add_bitwise(b1, b2)

b1 and b2 are strings representing binary #s

• It should look something like this:

• Let's trace through a concrete case:
add_bitwise('100', '010')

def add_bitwise(b1, b2):
if ... # base case #1

elif ... # base case #2

else: # recursive case
sum_rest = add_bitwise(b1[:-1], b2[:-1])
if ...

rest of recursive case

101010
001001+

110011

1

How recursion works: add_bitwise(b1, b2)

• Recall: we get a separate stack frame for each call.

add_bitwise('100', '010')
b1: '100' b2: '010'
sum_rest = add_bitwise('10', '01')

add_bitwise('10', '01')
b1: '10' b2: '01'
sum_rest = add_bitwise('1', '0')

add_bitwise('1', '0')
b1: '1' b2: '0'
sum_rest = add_bitwise('', '')

add_bitwise('', '')
b1: '' b2: ''
base case: return ''

CAS CS 111 Boston University, Spring 2025 138

How recursion works: add_bitwise(b1, b2)

• Each return value is sent back to the previous call.

add_bitwise('100', '010')
b1: '100' b2: '010'
sum_rest = add_bitwise('10', '01')

add_bitwise('10', '01')
b1: '10' b2: '01'
sum_rest = add_bitwise('1', '0')

add_bitwise('1', '0')
b1: '1' b2: '0'
sum_rest = add_bitwise('', '')

add_bitwise('', '')
b1: '' b2: ''
base case: return ''

How recursion works: add_bitwise(b1, b2)

• Each return value is sent back to the previous call.

add_bitwise('100', '010')
b1: '100' b2: '010'
sum_rest = add_bitwise('10', '01')

add_bitwise('10', '01')
b1: '10' b2: '01'
sum_rest = add_bitwise('1', '0')

add_bitwise('1', '0')
b1: '1' b2: '0'
sum_rest = ''
if ...

return

• It replaces the
recursive call.

• We use it to build
the next return value,
and thus gradually
build solutions to
larger problems.

CAS CS 111 Boston University, Spring 2025 139

How recursion works: add_bitwise(b1, b2)

• Each return value is sent back to the previous call.

add_bitwise('100', '010')
b1: '100' b2: '010'
sum_rest = add_bitwise('10', '01')

add_bitwise('10', '01')
b1: '10' b2: '01'
sum_rest = '1'
if ...

return

• It replaces the
recursive call.

• We use it to build
the next return value,
and thus gradually
build solutions to
larger problems.

How recursion works: add_bitwise(b1, b2)

• Each return value is sent back to the previous call.

add_bitwise('100', '010')
b1: '100' b2: '010'
sum_rest = '11'
if ...

return

• It replaces the
recursive call.

• We use it to build
the next return value,
and thus gradually
build solutions to
larger problems.

CAS CS 111 Boston University, Spring 2025 140

The Tricky Part of add_bitwise(b1, b2)

• We again end up with a series of recursive calls:

add_bitwise('101', '011')
b1: '101' b2: '011'
sum_rest = add_bitwise('10', '01')

add_bitwise('10', '01')
b1: '10' b2: '01'
sum_rest = add_bitwise('1', '0')

add_bitwise('1', '0')
b1: '1' b2: '0'
sum_rest = add_bitwise('', '')

add_bitwise('', '')
b1: '' b2: ''
base case: return ''

changing the
rightmost bits to 1

The Tricky Part of add_bitwise(b1, b2)

• We again build our solution on our way back from the base case:

add_bitwise('101', '011')
b1: '101' b2: '011'
sum_rest = add_bitwise('10', '01')

add_bitwise('10', '01')
b1: '10' b2: '01'
sum_rest = add_bitwise('1', '0')

add_bitwise('1', '0')
b1: '1' b2: '0'
sum_rest = add_bitwise('', '')

add_bitwise('', '')
b1: '' b2: ''
base case: return ''

CAS CS 111 Boston University, Spring 2025 141

The Tricky Part of add_bitwise(b1, b2)

• What do we need to do differently here?

add_bitwise('101', '011')
b1: '101' b2: '011'
sum_rest = '11' # same as before
if ...

???

• We need to carry!

• We need to add 11 + 1 to get 100.

• how can we do this addition?

101
011+

110

1000

1

+ 1

It's All Bits! (cont.)

• Example: to add 42 + 9, the computer does bitwise addition:

• In PS 4, you'll write a Python function for this.

add_bitwise('101010', '001001')

• In PS 5, you'll design a circuit for it!

• more on this next time

• You'll also design a circuit for binary multiplication!

101010
001001+

110011

1

CAS CS 111 Boston University, Spring 2025 142

Recall: Multiplying Binary Numbers

101101

1110*

000000

1011010

10110100

101101000+

1001110110

Multiply these binary numbers
WITHOUT converting to decimal!

Hint:
Do you remember

this algorithm?
It's the same!

1101

11

529
42

1058

*

2116

22218

+

*

CAS CS 111 Boston University, Spring 2025 143

Recall: Finding the Largest Element in a List

def mymax(values):
""" returns the largest element in a list

input: values is a *non-empty* list
"""
if len(values) == 1: # base case

return values[0]
else: # recursive case

max_in_rest = mymax(values[1:])
if values[0] > max_in_rest:

return values[0]
else:

return max_in_rest

What's Wrong (If Anything) With This
Alternative?

def mymax(values):
""" returns the largest element in a list

input: values is a *non-empty* list
"""
if len(values) == 1: # base case

return values[0]
else: # recursive case

max_in_rest = mymax(values[1:])
if values[0] > mymax(values[1:]):

return values[0]
else:

return mymax(values[1:])

CAS CS 111 Boston University, Spring 2025 144

mymax([0,1,2,3])

How recursion
works...

mymax([1,2,3]) mymax([1,2,3])

mymax([2,3]) mymax([2,3]) mymax([2,3]) mymax([2,3])

mymax([3]) mymax([3]) mymax([3]) mymax([3]) mymax([3]) mymax([3]) mymax([3])mymax([3])

number of calls for a list of length 4 = 15

number of calls for a list of length n = 2n – 1  gets big fast!!!
exponential growth

def mymax(values):
if len(values) == 1:

return values[0]
else:

if values[0] > mymax(values[1:]):
return values[0]

else:
return mymax(values[1:])

CAS CS 111 Boston University, Spring 2025 145

Pre-Lecture
Gates and Circuits

Computer Science 111
Boston University

Bits as Boolean Values

• When designing a circuit, we think of bits as boolean values:

• 1 = True

• 0 = False

• In Python, we've used logic operators (and, or, not)
to build up boolean expressions.

• In circuits, there are corresponding logic gates.

CAS CS 111 Boston University, Spring 2025 146

AND's
function:

AND

x y

0 0
0 1
1 0
1 1

inputs output

x

y

AND Gate

AND outputs 1 only
if all inputs are 1

output

inputs

x AND y

OR's
function:

OR

x y

0 0
0 1
1 0
1 1

inputs output

x

y

OR Gate

OR

OR outputs 1 if
any input is 1

output

inputs

x OR y

CAS CS 111 Boston University, Spring 2025 147

NOT's
function:

input output

input output

NOT Gate

NOTx

x

0
1

NOT x

NOT reverses
its input

From Gates to Circuits

• We combine logic gates to form larger circuits.

• Example: what is the output when x = 0 and y = 1?

0 1

1 0

0

10

CAS CS 111 Boston University, Spring 2025 148

• A circuit is a boolean function – a function of bits!

• takes one or more bits as inputs

• produces the appropriate bit(s) as output

A Truth Table for a Circuit

inputs output

x y

0 0 1

0 1 0

1 0 0

1 1 1

CAS CS 111 Boston University, Spring 2025 149

Gates and Circuits

Computer Science 111
Boston University

How Computation Works

• In a computer, each bit is represented as a voltage.

• 1 is +5 volts, 0 is 0 volts

• Computation is the deliberate combination of those voltages!

42
101010

9
001001

ADDER
circuit 1

1
0
0
1
1

51

(3) read output
voltages

(1) set input voltages

(2) perform computation

CAS CS 111 Boston University, Spring 2025 150

00 00
00 01
00 10
00 11
01 00
01 01
01 10
01 11
10 00
10 01
10 10
10 11
11 00
11 01
11 10
11 11

000
001
010
011
001
010
011
100
010
011

101

100

100

011

101
110

A B

binary inputs A and B output, A+B

bitwise
addition
function

All Computation Involves Functions of Bits!

Recall: Bits as Boolean Values

• When designing a circuit, we think of bits as boolean values:

• 1 = True

• 0 = False

• In Python, we've used logic operators (and, or, not)
to build up boolean expressions.

• In circuits, there are corresponding logic gates.

CAS CS 111 Boston University, Spring 2025 151

AND's
function:

AND

inputs output

AND Gate (with four inputs)

w
z
y
x

x y

0 0
0 0

1 1
1 1

AND(x,y,z,w)

0
0

0
1

z

0
0

1
1

w

0
1

0
1

…12 more rows not shown… 0

fifteen 0s

one 1

AND outputs 1 only
if all inputs are 1

inputs
output

OR's
function:

inputs output

OR Gate (with four inputs)

w
z
y
x

x y

0 0
0 0

1 1
1 1

OR(x,y,z,w)

0
1

1
1

z

0
0

1
1

w

0
1

0
1

…12 more rows not shown… 1

one 0

fifteen 1s

OR

OR outputs 1 if
any input is 1

inputs
output

CAS CS 111 Boston University, Spring 2025 152

NOT's
function:

input output

input output

NOT Gate

NOT

"NOT bubble"
(optional)

x

x

0
1

NOT(x)

1
0

NOT reverses
its input

Circuit Building Blocks: Logic Gates

• They each define a boolean function – a function of bits!

• take one or more bits as inputs

• produce the appropriate bit as output

• the function can be defined by means of a truth table

AND outputs 1 only
if ALL inputs are 1

OR outputs 1 if
ANY input is 1

NOT reverses
its input

AND OR NOT

CAS CS 111 Boston University, Spring 2025 153

From Gates to Circuits (Second Example)

• We combine logic gates to form larger circuits.

• Example: what is the output when x = 0 and y = 0?

00

inputs
x y output

0 0

0 1

1 0

1 1

Which column correctly completes the truth table?

CAS CS 111 Boston University, Spring 2025 154

We need only these three building blocks
to compute anything at all!

AND

OR

NOT

Claim

Extra Practice: Recursive Bitwise AND

• To take the bitwise AND of two binary numbers, we:

• line them up

• AND together each pair of bits:

• If one number has more bits, those bits are effectively
ANDed with 0s:

111010
101011

101010

10101001
11011

00001001

CAS CS 111 Boston University, Spring 2025 155

Extra Practice: Recursive Bitwise AND

• Write a recursive function bitwise_and(b1, b2)

• examples:
>>> bitwise_and('110', '010')
'010'

>>> bitwise_and('1001', '1100')
'1000'

>>> bitwise_and('1011001', '1100')
'0001000'

>>> bitwise_and('1101', '')
'0000'

• You will need more than one base case.

• You need to process the bitstrings from right to left. Why?

Extra Practice: Recursive Bitwise AND

def bitwise_and(b1, b2):

""" computes bitwise AND of bitstrings b1 and b2

"""

if ______________________:

return ______________________

elif ________________________:

return ______________________

other elif if needed

else:

and_rest = ______________________________

do your one step below!

CAS CS 111 Boston University, Spring 2025 156

Pre-Lecture
Minterm Expansion

Computer Science 111
Boston University

x OR y

• Recall:

• In boolean notation:

• x AND y is written as multiplication: xy

• x OR y is written as addition: x + y

• NOT x is written using a bar: x

• Example:

(x AND y) OR (x AND (NOT y))  ___________

Boolean Notation

x y

0 0
0 1
1 0
1 1

x AND y

0
0
0
1

inputs output

x y

0 0
0 1
1 0
1 1

0
1
1
1

inputs output input output

x

0
1

1
0

NOT x

*
*
*
*

=
=
=
=

+
+
+
+

=
=
=
=

CAS CS 111 Boston University, Spring 2025 157

• This truth table/circuit can be summarized by the expression:

xy + xy

Boolean Expressions for Truth Tables

inputs output

x y

0 0 1

0 1 0

1 0 0

1 1 1

inputs output

x y xy + xy

0 0 1 1*1 + 0*0 = 1

0 1 0 1*0 + 0*1 = 0

1 0 0 0*1 + 1*0 = 0

1 1 1 0*0 + 1*1 = 1

• This truth table/circuit can be summarized by the expression:

xy + xy

• This expression is the minterm expansion of this truth table.

• one minterm for each row that has an output of 1

• combined using OR

Boolean Expressions for Truth Tables

inputs output

x y

0 0 1

0 1 0

1 0 0

1 1 1

CAS CS 111 Boston University, Spring 2025 158

1. If you don't have it, create the truth table.

2. Delete the rows with an output of 0.

3. Create a minterm for each remaining row
(the ones with an output of 1):

• AND the input variables together

• if a variable has a 0 in that row,
negate it

• example: minterm for the 2nd row
xyz

4. OR the minterms together.

Building a Minterm Expansion for a Boolean Function

inputs output
x y z

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

minterm expansion =

xyz + xyz + xyz + xyz

Minterm Expansion  Circuit

Z

minterm
A

minterm
B

minterm
C

minterm
D

minterm
D

minterm
C

minterm
B

minterm
A

CAS CS 111 Boston University, Spring 2025 159

Minterm Expansion

Computer Science 111
Boston University

We need only these three building blocks
to compute anything at all!

AND

OR

NOT

Claim

CAS CS 111 Boston University, Spring 2025 160

Specify a truth table defining
any function you want.

x y
0 0
0 1
1 0
1 1

fn(x,y)
0
1
1
0

input output

For each input row whose
output needs to be 1, build
an AND circuit that outputs 1
only for that specific input!

OR them all together .

NOT AND

NOT AND

OR

x y

x y

Constructive Proof!

1 2

3

Specify a truth table defining
any function you want.

x y
0 0
0 1
1 0
1 1

fn(x,y)
0
1
1
0

input output

For each input row whose
output needs to be 1, build
an AND circuit that outputs 1
only for that specific input!

OR them all together .

NOT AND

NOT AND

OR

x y

x y

Constructive Proof!

1 2

3

CAS CS 111 Boston University, Spring 2025 161

Specify a truth table defining
any function you want.

x y
0 0
0 1
1 0
1 1

fn(x,y)
0
1
1
0

input output

For each input row whose
output needs to be 1, build
an AND circuit that outputs 1
only for that specific input!

OR them all together .

NOT AND

NOT AND

OR

How did we handle the rows outputting zero?

x y

x y

Constructive Proof!

1 2

3

• The top AND gate implements which row of the truth table?

• The bottom AND gate implements which row?

inputs output

x y

0 0 1

0 1 0

1 0 0

1 1 1

Revisiting Our Earlier Circuit...

CAS CS 111 Boston University, Spring 2025 162

• This truth table/circuit can be summarized by the expression:

xy + xy

• This expression is the minterm expansion of this truth table.

• one minterm for each row that has an output of 1

• combined using OR

Recall: Boolean Expressions for Truth Tables

inputs output

x y

0 0 1

0 1 0

1 0 0

1 1 1

ex: greater_than_4(x, y, z)
 1 if the 3-digit binary number xyz > 4
 0 otherwise

for example:
• greater_than_4(1, 1, 0)  1 (True)

Why?

• greater_than_4(0, 1, 1)  0 (False)
because 0112 = 310, and 3 is not > 4

+ +

Building a Minterm Expansion for a Boolean Function

CAS CS 111 Boston University, Spring 2025 163

ex: greater_than_4(x, y, z)
 1 if the 3-digit binary number xyz > 4
 0 otherwise

1. If you don't have it, create the truth table.

2. Delete the rows with an output of 0.

3. Create a minterm for each remaining row
(the ones with an output of 1):

• AND the input variables together

• if a variable has a 0 in that row,
negate it

4. OR the minterms together.

Building a Minterm Expansion for a Boolean Function

inputs output
x y z

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

dec

0:

1:

2:

3:

4:

5:

6:

7:

CAS CS 111 Boston University, Spring 2025 164

minterm expansion =

xyz + xyz + xyz

Minterm Expansion  Circuit

Z

minterm
A

minterm
B

minterm
C

minterm
C

minterm
C

minterm
B

minterm
A

Adding "Rails" for the NOT of Each Input

Here's a circuit that
we looked at earlier.

It tests whether
x == y.

Here's an alternative
version that adds
"rails" for Not X
and Not Y.

In some cases
(but not this one!),
doing so can reduce
the number of
NOT gates.

CAS CS 111 Boston University, Spring 2025 165

y z

0 0

0 1

1 0

1 1

input

0 0

0 1

1 0

1 1

x

row 0 0

output

Which AND gate corresponds to row 3 of the table?

row 1 0

row 2 0

row 3 0

row 4 1

row 5 1

row 6 1

row 7 1

A

B

C

D
• Complete the rest of

the truth table.

• What is its minterm expansion as a formula/expression?

• If the inputs represent a three-bit integer, what property of
integers does the circuit compute?

What is the minterm expansion of this truth table?

A. yz + xz + xy

B. xyz + xyz + xyz + xyz

C. xyz + xyz + xyz + xyz

D. xyz + xyz + xyz + xyz

E. none of the above

inputs output
x y z

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 0

CAS CS 111 Boston University, Spring 2025 166

Add the wires needed to build
a circuit for the truth table at left…

A

B

C

D

Extra Practice: DIY!

y z

0 0

0 1

1 0

1 1

input

0 0

0 1

1 0

1 1

x

0

0

0

0

1

1

1

1

output

0

0

0

1

0

1

1

1

• What is the minterm expansion formula?

• What is the circuit testing for (i.e., when does it output a 1)?

CAS CS 111 Boston University, Spring 2025 167

Pre-Lecture
Definite Loops in Python

Computer Science 111
Boston University

for Loops

• A for statement is one way to create a loop in Python.

• allows us to repeat one or more statements.

• Example:

for i in [1, 2, 3]:
print('Warning')
print(i)

will output:
Warning

1
Warning
2
Warning
3

the body of the loop

CAS CS 111 Boston University, Spring 2025 168

for Loops (cont.)

• General syntax:

for variable in sequence:
body of the loop

for i in [1, 2, 3]:
print('Warning')
print(i)

execute statement
after the loop

yes

no

does the

more values?

assign the next value in
the sequence to variable

execute the statements
in the body

sequence have

Executing Our Earlier Example
(with one extra statement)

for i in [1, 2, 3]:
print('Warning')
print(i)

print('That's all.')

print('That's all.')

yes

no

does

more values?

assign the next value in
the sequence to i

print('Warning')
print(i)

[1, 2, 3] have

more? i output/action

CAS CS 111 Boston University, Spring 2025 169

Simple Repetition Loops

• To repeat a loop's body N times:

for i in range(N): # [0, 1, 2, ..., N – 1]
body of the loop

• Example:

for i in range(3): # [0, 1, 2]
print('I'm feeling loopy!')

outputs:

I'm feeling loopy!
I'm feeling loopy!
I'm feeling loopy!

continued on next slide

Simple Repetition Loops (cont.)

• To repeat a loop's body N times:

for i in range(N): # [0, 1, 2, ..., N – 1]
body of the loop

• Example:

for i in range(5):
print('I'm feeling loopy!')

outputs:

CAS CS 111 Boston University, Spring 2025 170

for Loops Are Definite Loops

• Definite loop = a loop in which the number of repetitions
is fixed before the loop even begins.

• In a for loop, # of repetitions = len(sequence)

for variable in sequence:
body of the loop

CAS CS 111 Boston University, Spring 2025 171

Pre-Lecture
Cumulative Computations;

Element-Based vs. Index-Based Loops

Computer Science 111
Boston University

Python Shortcuts

• Consider this code:

age = 13

age = age + 1

13 + 1
14

• Instead of writing

age = age + 1

we can just write

age += 1

CAS CS 111 Boston University, Spring 2025 172

Python Shortcuts (cont.)

shortcut equivalent to

var += expr var = var + (expr)

var -= expr var = var – (expr)

var *= expr var = var * (expr)

var /= expr var = var / (expr)

var //= expr var = var // (expr)

var %= expr var = var % (expr)

var **= expr var = var ** (expr)

where var is a variable
expr is an expression

• Important: the = must come after the other operator.

+= is correct

=+ is not!

Using a Loop to Sum a List of Numbers

def sum(vals):
result = 0
for x in vals:

result += x
return result

print(sum([10, 20, 30, 40, 50]))

x result

CAS CS 111 Boston University, Spring 2025 173

Cumulative Computations (cont.)

def sum(vals):
result = 0 # the accumulator variable
for x in vals:

result += x # gradually accumulates the sum
return result

print(sum([10, 20, 30, 40, 50]))

Element-Based for Loop

def sum(vals):
result = 0
for x in vals:

result += x
return result

vals = [3, 15, 17, 7]

x

CAS CS 111 Boston University, Spring 2025 174

Index-Based for Loop

def sum(vals):
result = 0
for i in range(len(vals)):

result += vals[i]
return result

i

0 1 2 3

vals[3]vals[2]vals[1]vals[0]

vals = [3, 15, 17, 7]

Tracing an Index-Based Cumulative Sum

def sum(vals):
result = 0
for i in range(len(vals)): 

result += vals[i]
return result

print(sum([10, 20, 30, 40, 50]))

i vals[i] result

CAS CS 111 Boston University, Spring 2025 175

Circuits for Arithmetic;
Modular Design ;

A First Look at Loops

Computer Science 111
Boston University

2-Bit Binary Addition

• The truth table is at right.

• 4 bits of input

• 3 bits of output

• In theory, we could use the
minterm-expansion approach to
create 3 circuits.

• one for each output bit

• It ends up being overly complicated.

• more gates than are really needed

• Instead, we'll take advantage of two things:

• our elementary-school bitwise-addition algorithm

• modular design!

CAS CS 111 Boston University, Spring 2025 176

A Full Adder

• Recall our bitwise algorithm:

• A full adder adds only one column.

• It takes 3 bits of input:
• x and y – one bit from each number being added
• cin – the carry bit into the current column

• It produces 2 bits of output:
• s – the bit from the sum that goes at the bottom of the column
• cout – the carry bit out of the current column

• it becomes the cin of the next column!

101101
001110+

111011

11

inputs outputs

c
out

s

0 0 0

c
in

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0 0

0 1

0 1

1 0

0 1

1 0

1 0

1 1

x y

0

Create a separate minterm expansion/circuit for each output bit!

inputs outputs

c
out

s

0 0 0

c
in

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0 0

0 1

0 1

1 0

0 1

1 0

1 0

1 1

x y
x y c

in

Full Adder3 input bits

s output bit

c
out

output bit

2 output bits

"Rails" of each
bit and its inverse

How many AND gates will you need in all?

subcircuit
for s

subcircuit
for c

out

CAS CS 111 Boston University, Spring 2025 177

Modular Design

• Once we have a full adder, we can treat it as an abstraction –
a "black box" with 3 inputs and two outputs.

• Here's another way to draw it:

FA

x y cin

cout s

FA
x y cin

cout s

Modular Design (cont.)

• To add 2-bit numbers, combine two full adders!

• Produces what is known as a 2-bit ripple-carry adder.

• To add larger numbers, combine even more FAs!

• More efficient than an adder built using minterm expansion.

• 16-bit minterm-based adder: need several billion gates

• 16-bit ripple-carry adder: only need hundreds of gates

FA
x y cin

cout s

FA
x y cin

cout s

x0 y0 0

s0

x1 y1

s2 s1

x1x0
y1y0

s2s1s0

+

CAS CS 111 Boston University, Spring 2025 178

2-Bit Ripple-Carry Adder

• Schematic:

• Here's an example computation:

FA
x y cin

cout s

FA
x y cin

cout s

x0 y0 0

s0

x1 y1

s2 s1

x1x0
y1y0

s2s1s0

+

10
11+FA

x y cin

cout s

FA
x y cin

cout s

0 1 0

s0

1 1

s2 s1

8 input bits

1 0 1 0 0 5 output bits

0 1 1 1
1 1 0 1+

More Modular Design!

• Once you build a 4-bit ripple-carry adder, you can treat it
as a "black box".

• Use these boxes to build other circuits!

CAS CS 111 Boston University, Spring 2025 179

• How could you use a 4-bit ripple-carry adder here?

• What other smaller circuit might we want to build first
so that we can use it as part of the 4 x 2 multiplier?

Also in PS 5: Building a 4x2 Multiplier

1 1 0 1 first factor (4 bits)

x 1 0 second factor (2 bits)

0 0 0 0 2 partial products

1 1 0 1

1 1 0 1 0 final answer

Two Key Components of a Computer

CPU RAM
random access memory

• lots of room for storage

• no computation
happens here

central processing unit

• all computation
happens here

• adders, multipliers, etc.

• small number of registers
for storing values

• Program instructions are stored with the data in RAM.

• Instructions and data are transferred back and forth between
RAM and the CPU.

program + data

CAS CS 111 Boston University, Spring 2025 180

von Neumann Architecture

• John von Neumann was the one who
proposed storing programs in memory.

http://www-03.ibm.com/ibm/history/exhibits/markI/markI_reference.html

The Mark I: Howard Aiken, Grace Hopper, et al.; Harvard, the 1940s/50s

Early Computers

• In the first computers,
programs were stored
separately from the data.

CAS CS 111 Boston University, Spring 2025 181

http://www-03.ibm.com/ibm/history/exhibits/markI/markI_reference.html

Early Computers (cont.)

an external
program tape
for the Mark I

Recall: Executing a for Loop

for variable in sequence:
body of the loop

execute statement
after the loop

yes

no

does the

more values?

assign the next value in
the sequence to variable

execute the statements
in the body

sequence have

for i in [1, 2, 3]:
print('Warning')
print(i)

CAS CS 111 Boston University, Spring 2025 182

Another Example

• What would this code output?

for val in [2, 4, 6, 8, 10]:
print(val * 10)

print(val)

• Use a table to help you:

more? val output/action

CAS CS 111 Boston University, Spring 2025 183

Definite Loops in Python (cont.)

Computer Science 111
Boston University

Recall: Simple Repetition Loops

• To repeat a loop's body N times:

for i in range(N): # [0, 1, 2, ..., N – 1]
body of the loop

• What would this loop do?

for i in range(8):
print('I'm feeling loopy!')

CAS CS 111 Boston University, Spring 2025 184

Simple Repetition Loops (cont.)

• Another example:

for i in range(7):
print(i * 5)

how many repetitions?

output?

To print the warning 20 times,
how could you fill in the blank?

for i in __________________:
print('Warning!')

A. range(20)

B. [1] * 20

C. 'abcdefghijklmnopqrst'

D. either A or B would work, but not C

E. A, B or C would work

CAS CS 111 Boston University, Spring 2025 185

def sum(vals):

result = 0

for ______________________________:

result += ____________________

return result

first blank second blank

A. x in vals x

B. x in vals vals[x]

C. i in range(len(vals)) vals[i]

D. either A or B would work, but not C

E. either A or C would work, but not B

To add the numbers in the list vals,
how could you fill in the blanks?

Option A Produces an Element-Based for Loop

def sum(vals):
result = 0
for x in vals:

result += x
return result

vals = [3, 15, 17, 7]

x

CAS CS 111 Boston University, Spring 2025 186

Option C Produces an Index-Based for Loop

def sum(vals):
result = 0
for i in range(len(vals)):

result += vals[i]
return result

i

0 1 2 3

vals[3]vals[2]vals[1]vals[0]

vals = [3, 15, 17, 7]

Both Versions Perform a Cumulative Computation

def sum(vals):
result = 0 # the accumulator variable
for x in vals:

result += x # gradually accumulates the sum
return result

print(sum([10, 20, 30, 40, 50]))

CAS CS 111 Boston University, Spring 2025 187

What is the output of this program?

def mystery(vals):
result = 0
for i in range(len(vals)):

if vals[i] == vals[i-1]:
result += 1

return result

print(mystery([5, 7, 7, 2, 6, 6, 5]))

i vals[i] vals[i-1] result

Follow-Up Questions

def mystery(vals):
result = 0
for i in range(len(vals)):

if vals[i] == vals[i-1]:
result += 1

return result

print(mystery([5, 7, 7, 2, 6, 6, 5]))

• Element-based or index-based loop?

• What does this program do in general?

• Could we easily do this with the other type of loop?

CAS CS 111 Boston University, Spring 2025 188

def sum(vals):
result = 0
for x in vals:

result += x
return result

element-based loop

vals = [3, 15, 17, 7]

x

i

0 1 2 3

vals[3]vals[2]vals[1]vals[0]

vals = [3, 15, 17, 7]

def sum(vals):
result = 0
for i in range(len(vals)):

result += vals[i]
return result

index-based loop

Simpler More Flexible

More on Cumulative Computations

• Here's a loop-based factorial in Python:

def fac(n):
result = 1
for x in range(___________): # fill in the blank

result *= x
return result

• Is this loop element-based or index-based?

CAS CS 111 Boston University, Spring 2025 189

Pre-Lecture
Indefinite Loops

Computer Science 111
Boston University

Staying on the Same Line When Printing

• By default, print puts an invisible newline character
at the end of whatever it prints.

• causes separate prints to print on different lines

• Example:

for i in range(7):

print(i * 5)

0
5
10
15
20
25
30

CAS CS 111 Boston University, Spring 2025 190

Staying on the Same Line When Printing (cont.)

• To get separate prints to print on the same line,
we can replace the newline with something else.

• Examples:

for i in range(7):
print(i * 5, end=' ')

0 5 10 15 20 25 30

for i in range(7):
print(i * 5, end=',')

for Loops Are Definite Loops

• Definite loop = a loop in which the number of repetitions
is fixed before the loop even begins.

• In a for loop, # of repetitions = len(sequence)

for variable in sequence:
body of the loop

CAS CS 111 Boston University, Spring 2025 191

Indefinite Loops

• Use an indefinite loop when the # of repetitions you need is:

• not as obvious

• impossible to determine before the loop begins

• Sample problem: print_multiples(n, bound)

• should print all multiples of n that are less than bound

• output for print_multiples(9, 100):

9 18 27 36 45 54 63 72 81 90 99

Indefinite Loop for Printing Multiples

• Pseudocode:

def print_multiples(n, bound):
mult = n
repeat as long as mult < bound:

print mult followed by a space
mult = mult + n

print a newline (go to the next line)

• Python:

def print_multiples(n, bound):
mult = n
while mult < bound:

print(mult, end=" ")
mult = mult + n

print()

no value is being returned
function returns at the end of its block

CAS CS 111 Boston University, Spring 2025 192

Tracing a while Loop

• Let's trace the loop for print_multiples(15, 70):

mult = n
while mult < bound:

print(mult, end=' ')
mult = mult + n

print()

mult < bound output thus far mult

15

15 < 70 (True) 15 30

30 < 70 (True) 15 30 45

45 < 70 (True) 15 30 45 60

n bound

complete the rest of the table!

while Loops

next statement

true

false
condition

body of the loop

loop test
False

True

while loop test:
body of the loop

Steps:

1. evaluate the loop test
(a boolean expression)

2. if it's True, execute the
statements in the body,
and go back to step 1

3. if it's False, skip the
statements in the body
and go to the statement
after the loop

CAS CS 111 Boston University, Spring 2025 193

Important!

• Recall the loop in print_multiples:

mult = n
while mult < bound:

print(mult, end=' ')
mult = mult + n

• In general, a while loop's test includes a key "loop variable".

• We need to update that loop variable in the body of the loop.

• Failing to update it can produce an infinite loop!

CAS CS 111 Boston University, Spring 2025 194

Indefinite Loops

Computer Science 111
Boston University

Cumulative Computations with Strings

• Recall our recursive remove_vowels function:
def remove_vowels(s):

if s == '':
return ''

else:
removed_rest = remove_vowels(s[1:])
if s[0] in 'aeiou':

return removed_rest
else:

return s[0] + removed_rest

• Examples:
>>> remove_vowels('recurse')
'rcrs'
>>> remove_vowels('vowels')
'vwls'

CAS CS 111 Boston University, Spring 2025 195

Cumulative Computations with Strings (cont.)

• Here's one loop-based version:

def remove_vowels(s):
result = '' # the accumulator
for c in s:

if c not in 'aeiou':
result += c # accumulates the result

return result

• Let's trace through remove_vowels('vowels'):

s = 'vowels'

c result

Recall: Indefinite Loops

• Use an indefinite loop when the # of repetitions you need is:

• not as obvious

• impossible to determine before the loop begins

• In Python, we usually use a while loop for this.

CAS CS 111 Boston University, Spring 2025 196

Recall: while Loops

while loop test:
body of the loop

Steps:

1. evaluate the loop test
(a boolean expression)

2. if it's True, execute the
statements in the body,
and go back to step 1

3. if it's False, skip the
statements in the body
and go to the statement
after the loop

next statement

true

false
condition

body of the loop

loop test
False

True

Factorial Using a while Loop

• We don't need an indefinite loop, but we can still use while!

def fac(n):
result = 1
while n > 0:

result *= n
____________ # what do we need here?

return result

• Let's trace fac(4):

n n > 0 result

CAS CS 111 Boston University, Spring 2025 197

Factorial Three Ways!

def fac(n):
if n == 0:

return 1
else:

rest = fac(n-1)
return n * rest

def fac(n):
result = 1
for x in range(1, n+1):

result *= x
return result

recursion for loop

def fac(n):
result = 1
while n > 0:

result *= n
n = n - 1

return result

while loop

Extreme Looping!

• What does this code do?

print('It keeps')

while True:
print('going and')

print('Phew! Done!')

CAS CS 111 Boston University, Spring 2025 198

Choosing a Random Number

• Python's random module allows us to produce random numbers.

• to use it, we need to import it:

import random

• random.choice(vals)

• takes a sequence vals

• randomly chooses one value from vals and returns it

• examples from the Shell:
>>> import random
>>> random.choice(range(7)) # random number from 0-6
5
>>> random.choice(range(7))
2
>>> random.choice(range(7))
4

Breaking Out of An Infinite Loop

import random

while True:
print('Help!')
if random.choice(range(10000)) == 111:

break
print('Let me out!')

print('At last!')

• Thus, the final two lines that are printed are:

A break statement causes
a loop to end early.

• jumps to the line that
comes after the loop

CAS CS 111 Boston University, Spring 2025 199

Counting the Number of Repetitions

import random

count = 0
while True:

count += 1
print('Help!')
if random.choice(range(10000)) == 111:

break
print('Let me out!')

print('At last! It took', count, 'tries to escape!')

User Input

• Getting a string value from the user:

variable = input(prompt) where prompt is a string

• Getting an integer value:

variable = int(input(prompt))

• Getting a floating-point value:

variable = float(input(prompt))

• Getting an arbitrary non-string value (e.g., a list):

variable = eval(input(prompt))

• eval treats a string as an expression to be evaluated

• Examples:
name = input('What is your name? ')
count = int(input('possible points: '))
scores = eval(input('list of scores: '))

CAS CS 111 Boston University, Spring 2025 200

Using a while True Loop to Get User Input

import math

while True:
val = int(input('Enter a positive number: '))
if val > 0:

break
else:

print(val, 'is not positive. Try again!')

result = math.sqrt(val)
print('result =', result)

a = 40
while a > 2:

a = a // 2
print(a - 1)

How many values does this loop print?

a > 2 a prints

CAS CS 111 Boston University, Spring 2025 201

def mystery(n):
while n != 1:

if n % 2 != 0:
return False

n = n // 2
return True

For what inputs does this function return True?

Try tracing these two cases:

mystery(12) mystery(8)
n n

12 8

CAS CS 111 Boston University, Spring 2025 202

Program Design with Loops

Computer Science 111
Boston University

for while

definite
loop

indefinite
loop

For a known number
of repetitions

For an unknown
number of repetitions

Recall: Two Types of Loops

CAS CS 111 Boston University, Spring 2025 203

Recall: Two Types of for Loops

def sum(vals):
result = 0
for x in vals:

result += x
return result

element-based loop

vals = [3, 15, 17, 7]

x

i

0 1 2 3

vals[3]vals[2]vals[1]vals[0]

vals = [3, 15, 17, 7]

def sum(vals):
result = 0
for i in range(len(vals)):

result += vals[i]
return result

index-based loop

L = [45, 80, 10, 30, 27, 50, 5, 15]

Finding the Smallest Value in a List

• What strategy should we use?

• What type of loop: for or while?

• What if we needed to write a loop-based version of min()?

vals =

CAS CS 111 Boston University, Spring 2025 204

def minval(vals):
m = __________
for x in vals:

if x < m:
m = x

return m

L = [45, 80, 10, 30, 27, 50, 5, 15]

How should we fill in the blank to initialize m?

m is the
"min so far"

vals =

Finding the Position of the Smallest Value

def minval_posn(vals):
initialize variable(s)

for ______________________:
if _________:

update var(s)
return ________

L = [45, 80, 10, 30, 27, 50, 5, 15]
0 1 2 3 4 5 6 7

m
=
45

m
=
10

m
=
5 6

should
be

returned

CAS CS 111 Boston University, Spring 2025 205

• Write a function is_prime(n) that:
• returns True if n is prime
• returns False otherwise

• Use a loop to check all possible divisors.

• What are they?

• For example, what divisors do we need to check for 41?
2, 3, 4, 5, 6, 7, 8, ..., 37, 38, 39, 40

• What type of loop should we use?

Determining if a Number is Prime

• Write a function is_prime(n) that:
• returns True if n is prime
• returns False otherwise

def is_prime(n):
max_div = int(math.sqrt(n)) # max possible divisor

try all possible divisors
____________________________________:

if ________________:
return ________ # when can we return "early"?

If we get here, what must be the case?
return ____________

Determining if a Number is Prime

CAS CS 111 Boston University, Spring 2025 206

• Write a function is_prime(n) that:
• returns True if n is prime
• returns False otherwise

def is_prime(n):
max_div = int(math.sqrt(n)) # max possible divisor

try all possible divisors
for div in range(2, max_div + 1):

if n % div == 0:
return False

else:
return True

Does this version work?

Another Sample Problem

• any_below(vals, cutoff)

• should return True if any of the values in vals is < cutoff

• should return False otherwise

• examples:

• any_below([50, 18, 25, 30], 20) should return True

• any_below([50, 18, 25, 30], 10) should return False

• How should this method be implemented using a loop?

def any_below(vals, cutoff):

for ____ in _____________:

if ________________:

CAS CS 111 Boston University, Spring 2025 207

def any_below(vals, cutoff):
for x in vals:

if x >= cutoff:
return False

return True

def any_below(vals, cutoff):
for x in vals:

if x < cutoff:
return True

return False

Which of these works?

def any_below(vals, cutoff):
for x in vals:

if x < cutoff:
return True

else:
return False

more than one of them

A.

B.

C.

D.

*

Estimating π
by dart throwing!

(-1,-1)

(1,1)

area

area
=

π

4

π =
area

area

4

*
π ~

darts in4

darts in

"hits"

"throws"

2

1

CAS CS 111 Boston University, Spring 2025 208

pi_two(n)

pi_one(e)

n == number of
darts to throw

e == how close to
π we need to get

Which function will use which kind of loop?

Loops: for or while?

for while

definite
iteration

indefinite
iteration

For a known number
of repetitions

For an unknown
number of repetitions

Thinking in Loops

CAS CS 111 Boston University, Spring 2025 209

Pre-Lecture
Nested Loops

Computer Science 111
Boston University

Repeating a Repetition!
for i in range(3): # 0, 1, 2

for j in range(4): # 0, 1, 2, 3
print(i, j)

0 0
0 1
0 2
0 3
1 0
1 1
1 2
1 3
2 0
2 1
2 2
2 3

CAS CS 111 Boston University, Spring 2025 210

Repeating a Repetition!
for i in range(3):

for j in range(4):
print(i, j)

print('---')

inner loop outer loop

for r in range(h):
for c in range(w):

process the pixel at (r, c)

Nested loops
and

2D structure

CAS CS 111 Boston University, Spring 2025 211

Tracing a Nested for Loop

for i in range(5): # [0,1,2,3,4]
for j in range(i):

print(i, j)

i range(i) j value printed

CAS CS 111 Boston University, Spring 2025 212

Nested Loops

Computer Science 111
Boston University

for y in range(84):
for m in range(12):
for d in range(f(m,y)):
for h in range(24):
for mn in range(60):
for s in range(60):

tick()

Nested Loops!

CAS CS 111 Boston University, Spring 2025 213

How many lines are printed?

for i in range(5):
for j in range(7):

print(i, j)

Recall: Tracing a Nested for Loop

for i in range(5): # [0,1,2,3,4]
for j in range(i):

print(i, j)

i range(i) j value printed
0 [] none nothing (we exit the inner loop)
1 [0] 0 1 0
2 [0,1] 0 2 0

1 2 1
3 [0,1,2] 0 3 0

1 3 1
2 3 2

4 [0,1,2,3] 0 4 0
1 4 1
2 4 2
3 4 3

full output:
1 0
2 0
2 1
3 0
3 1
3 2
4 0
4 1
4 2
4 3

CAS CS 111 Boston University, Spring 2025 214

Second Example: Tracing a Nested for Loop

for i in range(4):
for j in range(i, 3):

print(i, j)
print(j)

i range(i, 3) j value printed

You will implement a
menu of options:

(0) Input a new list of prices
(1) Print the current list
(2) Find the latest price
(3) Find the average price
...
(8) Quit
Enter your choice:

Using Loops: T.T. Securities (TTS)

prices = [45, 80, 10, 30, 27, 50, 5, 15]

day
0

day
1

day
2

day
3

day
4

day
5

day
6

day
7

Analyzes a sequence of stock prices

CAS CS 111 Boston University, Spring 2025 215

Our starter code
def display_menu():

""" prints a menu of options
"""
print()
print('(0) Input a new list of prices')
print('(1) Print the current prices')
print('(2) Find the latest price')
Add the new menu options here.

print('(8) Quit')
print()

...

Our starter code
def tts():

prices = []
while True:

display_menu()
choice = int(input('Enter your choice: '))
print()
if choice == 0:

prices = get_new_prices()
elif choice == 8:

break
elif choice == 1:

print_prices(prices)
elif choice == 2:

latest = latest_price(prices)
print('The latest price is', latest)

add code to process the other choices here
...

print('See you yesterday!')

CAS CS 111 Boston University, Spring 2025 216

• Each menu option will have its own helper function.

• Each function will use one or more loops.

• most of them will not be nested!

• You may not use the built-in sum, min, or max functions.

• use your own loops instead!

The remainder of the program

T.T. Securities
==

Time Travel
Securities!

(0) Input a new list of prices
(1) Print the current list
(2) Find the latest price
(3) Find the average price
...

(7) Your TTS investment plan
(8) Quit
Enter your choice:

CAS CS 111 Boston University, Spring 2025 217

The TTS Advantage!

prices = [45, 80, 10, 30, 27, 50, 5, 15]

Day Price
0 45.00
1 80.00
2 10.00
3 30.00
4 27.00
5 50.00
6 5.00
7 15.00

To be realistic, however (for the SEC), you may only sell after you buy.

Time travel into the future
to find the best days to

buy and sell!

What is the TTS
investment plan for

the prices shown here?

diff should return the smallest
absolute diff. between any value
from l1 and any value from l2.

Finding a minimum difference

>>> diff([12,3,7], [6,0,5])
1

l1 l2

• How can we try all possible pairs of values?

• As we try pairs, we keep track of the min diff thus far:

def diff(l1, l2):
mindiff = abs(l1[0]-l2[0])
for x in l1:

for y in l2:
d = abs(x - y)
if d < mindiff:

mindiff = d
return mindiff

CAS CS 111 Boston University, Spring 2025 218

>>> diff_indices([12,3,7], [6,0,5])
[2, 0]

l1 l2
What if we want the indices of the min-diff values?

def diff_indices(l1, l2): # what needs to change?
mindiff = abs(l1[0] - l2[0])

for x in l1:
for y in l2:

d = abs(x - y)
if d < mindiff:

mindiff = d

return mindiff

index of value in l2
index of value in l1

CAS CS 111 Boston University, Spring 2025 219

>>> diff_indices([12,3,7], [6,0,5])
[2, 0]

l1 l2
What if we want the indices of the min-diff values?

def diff_indices(l1, l2):
mindiff = abs(l1[0] - l2[0])
pos1 = 0
pos2 = 0

for i in range(len(l1)):
for j in range(len(l2)):

d = abs(l1[i] - l2[j])
if d < mindiff:

mindiff = d
pos1 = i
pos2 = j

return [pos1, pos2]

index of value in l2
index of value in l1

for row in range(3):
for col in range(4):

print('#', end=' ')
print() # go to next line

#
#
#

col

ro
w

1 2 30

2

1

0

Printing Patterns

CAS CS 111 Boston University, Spring 2025 220

for row in range(3):
for col in range(6):

print(_____, end=' ')
print() # go to next line

Fill in the Blank #1

0 1 2 3 4 5
0 1 2 3 4 5
0 1 2 3 4 5

col

ro
w

for row in range(3):
for col in range(6):

print(_____, end=' ')
print() # go to next line

Fill in the Blank #2

0 0 0 0 0 0
1 1 1 1 1 1
2 2 2 2 2 2

col

ro
w

CAS CS 111 Boston University, Spring 2025 221

for row in range(5):
for col in ___________:

print(_____, end=' ')
print() # go to next line

What is needed in the blanks to get this pattern?

0 0 0 0 0
1 1 1 1
2 2 2
3 3
4

for row in range(3):
for col in range(6):

print(_____, end=' ')
print() # go to next line

What is needed in the blank to get this pattern?

0 1 2 3 4 5
1 2 3 4 5 6
2 3 4 5 6 7

0 1 0 1 0 1
1 0 1 0 1 0
0 1 0 1 0 1

if you have time...

CAS CS 111 Boston University, Spring 2025 222

ASCII art...? How about ASCII video!

http://www.asciimation.co.nz/

CAS CS 111 Boston University, Spring 2025 223

Pre-Lecture
References and Mutable Data

Computer Science 111
Boston University

Recall: Variables as Boxes

• You can picture a variable as a named "box" in memory.

• Example from an earlier lecture:

num1 = 100
num2 = 120 num1 100 num2 120

CAS CS 111 Boston University, Spring 2025 224

Variables and Values

• In Python, when we assign a value to a variable,
we're not actually storing the value in the variable.

• Rather:

• the value is somewhere else in memory

• the variable stores the memory address of the value.

• Example: x = 7

4001x 7

4000

Memory

4001

4002

4003

...

References

• We say that a variable stores a reference to its value.

• also known as a pointer

• Because we don't care about the actual memory address,
we use an arrow to represent a reference:

7

Memory

x

7

4000

Memory

4001

4002

4003

4001x

...

CAS CS 111 Boston University, Spring 2025 225

Lists and References

prices = [25, 10, 30, 45]

• When a variable represents a list, it stores a reference
to the list.

• The list itself is a collection of references!

• each element of the list is a reference to a value

prices

25 10 30 45

Mutable vs. Immutable Data

• In Python, strings and numbers are immutable.

• their contents/components cannot be changed

• Lists are mutable.

• their contents/components can be changed

• example:

>>> prices = [25, 10, 30, 45]

>>> prices[2] = 50

>>> print(prices)

[25, 10, 50, 45]

CAS CS 111 Boston University, Spring 2025 226

Changing a Value vs. Changing a Variable

• There's no way to change an immutable value like 7.

x = 7

• However, we can use assignment to change the variable—
making it refer to a different value:

x = 4

7

Memory

x

7

Memory

x

4

Changing a Value vs. Changing a Variable

• Here's our original list:

• Lists are mutable, so we can change the value (the list)
by modifying its elements:

prices[1] = 50

prices

25 10 30 45

prices

25 10 30 4550

CAS CS 111 Boston University, Spring 2025 227

Changing a Value vs. Changing a Variable

• We can also change the variable—making it refer
to a completely different list:

prices = [18, 20, 4]

prices

25 30 4550

20 418

Simplifying Our Mental Model

• When a variable represents an immutable value,
it's okay to picture the value as being inside the variable.

x = 7

• a simplified picture, but good enough!

• The same thing holds for list elements that are immutable.

prices = [25, 10, 30, 45]

• We still need to use references for mutable data like lists.

7x

prices 25 10 30 45

CAS CS 111 Boston University, Spring 2025 228

Simplifying Our Mental Model (cont.)

• Python Tutor uses this simplified model, too:

Copying Variables

• The assignment

var2 = var1

copies the contents of var1 into var2:

x = 50
y = x

50

50y

x

CAS CS 111 Boston University, Spring 2025 229

Copying References

• Consider this example:

list1 = [7, 8, 9, 6, 10, 7, 9, 5]
list2 = list1

• Given the lines of code above, what will the lines below print?

list2[2] = 4
print(list1[2], list2[2])

• Copying a list variable simply copies the reference.

• It doesn't copy the list itself!

list2

list1 7 8 9 6 10 7 9 5

Copying a List

• We can copy a list like this one using a full slice:

list1 = [7, 8, 9, 6, 10, 7, 9, 5]
list2 = list1[:]

• What will this print now?

list2[2] = 4
print(list1[2], list2[2])

list2

list1 7 8 9 6 10 7 9 5

7 8 9 6 10 7 9 5

CAS CS 111 Boston University, Spring 2025 230

Passing a List to a Function

• When a list is passed into a function:

• the function gets a copy of the reference to the list

• it does not get a copy of the list itself

• Thus, if the function changes the components of the list,
those changes will be there when the function returns.

• Consider the following program:

def main():
a = [1, 2, 3]
triple(a)
print(a)

def triple(vals):
for i in range(len(vals)):

vals[i] = vals[i] * 3

Passing a List to a Function (cont.)

vals

a

main

1 2 3

a

main

1 2 3

triple

a

main

3 6 9

a

main

3 6 9

triple

def main():
a = [1, 2, 3]
triple(a)
print(a) # prints [3, 6, 9]

vals

before call to triple()

during call to triple()

after call to triple()

CAS CS 111 Boston University, Spring 2025 231

References and Mutable Data

Computer Science 111
Boston University

Recall: References

x = 7

• Because we don't care about the actual memory address,
we use an arrow to represent a reference:

7

4000

Memory

4001

4002

4003

4001x

...

7

Memory

x

CAS CS 111 Boston University, Spring 2025 232

Recall: Lists and References

prices = [25, 10, 30, 45]

prices

25 10 30 45

Mutable vs. Immutable Data

• In Python, strings and numbers are immutable.

• their contents/components cannot be changed

• Lists are mutable.

• their contents/components can be changed

CAS CS 111 Boston University, Spring 2025 233

Changing a Value vs. Changing a Variable

• There's no way to change an immutable value like 'hello'.

s = 'hello'

• However, we can change the variable:

s = 'goodbye'

'hello's

'hello'

'goodbye'

s

Changing a Value vs. Changing a Variable

• Lists are mutable, so we can change the value (the list)
by modifying its elements:

prices[1] = 50

prices

25 10 30 45

prices

25 10 30 4550

CAS CS 111 Boston University, Spring 2025 234

Recall: Simplifying Our Mental Model

• When a variable represents an immutable value,
it's okay to picture the value as being inside the variable.

x = 7

• a simplified picture, but good enough!

• The same thing holds for list elements that are immutable.

prices = [25, 10, 30, 45]

• We still need to use references for mutable data like lists.

7x

prices 25 10 30 45

Recall: Copying References

• Consider this example:

list1 = [7, 8, 9, 6, 10, 7, 9, 5]
list2 = list1

list2

list1 7 8 9 6 10 7 9 5

The variables are like
two business cards that
both have the address
of the same office.

The list is the office.

CAS CS 111 Boston University, Spring 2025 235

Recall: Copying a List

• We can copy a list like this one using a full slice:

list1 = [7, 8, 9, 6, 10, 7, 9, 5]
list2 = list1[:]

list2

list1 7 8 9 6 10 7 9 5

7 8 9 6 10 7 9 5

The variables are like
business cards for
two offices at different
addresses. The two
offices just happen to
have the same
contents!

list1 = [1, 2, 3]
list2 = list1[:]
list3 = list2
list2[1] = 7
print(list1, list2, list3)

What does this program output?

list2

list1

list3

CAS CS 111 Boston University, Spring 2025 236

list1 = [1, 2, 3]
list2 = list1[:]
list3 = list2
list2[1] = 7
print(list1, list2, list3)

Another Way to Picture References

128

312list2

list1 1 2 3

1 2 3

312list3

128 (memory address)

312 (memory address)

Changing the Internals vs. Changing a Variable

• When two variables hold a reference to the same list...

list1 = [7, 8, 9]
list2 = list1

• ...if we change the internals of the list,
both variables will "see" the change:

list2[2] = 4
print(list1) # prints [7, 8, 4]

list2

list1 7 8 9

list2

list1 7 8 4

CAS CS 111 Boston University, Spring 2025 237

Changing the Internals vs. Changing a Variable (cont.)

• When two variables hold a reference to the same list...

list1 = [7, 8, 9]
list2 = list1

• ...if we change one of the variables itself,
that does not change the other variable:

list2 = [4, 5, 6]
print(list1) # prints [7, 8, 9]

list2

list1 7 8 9

list2

list1 7 8 9

4 5 6

def mystery1(vals):
vals[1] = 4 # changes the internals of the list

a = [1, 2, 3]
mystery1(a)
print(a)

Passing a List to a Function, version 1

global

a 1 2 3

before mystery1 during mystery1 after mystery1

global

a

mystery1

vals

1 2 3

global

a

CAS CS 111 Boston University, Spring 2025 238

def mystery2(vals):
vals = [1, 4, 3] # changes the variable itself

a = [1, 2, 3]
mystery2(a)
print(a)

Passing a List to a Function, version 2

global

a 1 2 3

before mystery2 during mystery2 after mystery2

global

a

mystery2

vals

1 2 3

global

a

def mystery3(x):
x = x * 2 # changes the variable itself

a = 2
mystery3(a)
print(a)

Passing an Immutable Value to a Function

2

global

a

before mystery3 during mystery3 after mystery3

global

a

mystery3

x

global

a

Because the value is immutable,
we can think of the function
getting a copy of the value.

2

2

CAS CS 111 Boston University, Spring 2025 239

def mystery1(x):
x *= 2
return x

def mystery2(vals):
vals[0] = 111
return vals

x = 7
vals = [7, 7]
mystery1(x)
mystery2(vals)
print(x, vals)

What does this program output? (part I)

global

vals

x

7 7

7

global

vals

x

before mystery1 during mystery1 after mystery1

global

vals

x

7 7

mystery1

x

7

7 7

def mystery1(x):
x *= 2
return x

def mystery2(vals):
vals[0] = 111
return vals

x = 7
vals = [7, 7]
mystery1(x)
mystery2(vals)
print(x, vals)

What does this program output? (part II)

global

vals

x

7 7

global

vals

x

before mystery2 during mystery2 after mystery2

global

vals

x

7 7

mystery2

vals

7

CAS CS 111 Boston University, Spring 2025 240

def foo(vals, i):
i += 1
vals[i] *= 2

i = 0
l1 = [1, 1, 1]
l2 = l1
foo(l2, i)
print(i, l1, l2)

Extra Practice:
What does this program print?

Draw your own memory diagrams!

global

l2

l1

i

before foo during foo after foo

foo

global

l2

l1

i

global

l2

l1

i

foo

i

vals

def mystery1(x):
x *= 2
return x

def mystery2(vals):
vals[0] = 111
return vals

x = 7
vals = [7, 7]
mystery1(x)
mystery2(vals)
print(x, vals)

How can we make the global x
reflect mystery1's change?

Recall Our Earlier Example...

CAS CS 111 Boston University, Spring 2025 241

def foo(vals, i):
i += 1
vals[i] *= 2

i = 0
l1 = [1, 1, 1]
l2 = l1
foo(l2, i)
print(i, l1, l2) # output: 0 [1, 2, 1] [1, 2, 1]

Extra Practice:
What does this program print?

Draw your own memory diagrams!

global

l2

l1

i 0

before foo during foo after foo

foo

i

vals

1 1 1

global

l2

l1

i 0

1 1 1

global

l2

l1

i 0

1 2 1

0
1

2

def mystery1(x):
x *= 2
return x

def mystery2(vals):
vals[0] = 111
return vals

x = 7
vals = [7, 7]
x = mystery1(x) # assign the return value!
mystery2(vals)
print(x, vals)

global

vals

x

7 7

7

global

vals

x 7

before mystery1 during mystery1 after mystery1

global

vals

x

7 7

mystery1

x

7

7

14

7 7

14

How can we make the global x
reflect mystery1's change?

Recall Our Earlier Example...

CAS CS 111 Boston University, Spring 2025 242

Pre-Lecture
2-D Lists

Computer Science 111
Boston University

2-D Lists

• Recall that a list can include sublists

mylist = [17, 2, [2, 5], [1, 3, 7]]

• To capture a rectangular table or grid of values,
use a two-dimensional list:

table = [[15, 8, 3, 16, 12, 7, 9 5],
[6, 11, 9, 4, 1, 5, 8, 13],
[17, 3, 5, 18, 10, 6, 7, 21],
[8, 14, 13, 6, 13, 12, 8, 4],
[1, 9, 5, 16, 20, 2, 3, 9]]

• a list of sublists, each with the same length

• each sublist is one "row" of the table

CAS CS 111 Boston University, Spring 2025 243

Dimensions of a 2-D List

table = [[15, 8, 3, 16, 12, 7, 9 5],
[6, 11, 9, 4, 1, 5, 8, 13],
[17, 3, 5, 18, 10, 6, 7, 21],
[8, 14, 13, 6, 13, 12, 8, 4],
[1, 9, 5, 16, 20, 2, 3, 9]]

len(table) is the # of rows in table

table[r] is the row with index r

len(table[r]) is the # of elements in row r

len(table[0]) is the # of columns in table

Picturing a 2-D List

table = [[15, 8, 3, 16, 12, 7, 9 5],
[6, 11, 9, 4, 1, 5, 8, 13],
[17, 3, 5, 18, 10, 6, 7, 21],
[8, 14, 13, 6, 13, 12, 8, 4],
[1, 9, 5, 16, 20, 2, 3, 9]]

• Here's one way to picture the above list:

0 15 8 3 16 12 7 9 5

1 6 11 9 4 1 5 8 13

2 17 3 5 18 10 6 7 21

3 8 14 13 6 13 12 8 4

4 1 9 5 16 20 2 3 9

0 1 2 3 4 5 6 7 column
indices

row
indices

CAS CS 111 Boston University, Spring 2025 244

Accessing an Element of a 2-D List

table = [[15, 8, 3, 16, 12, 7, 9 5],
[6, 11, 9, 4, 1, 5, 8, 13],
[17, 3, 5, 18, 10, 6, 7, 21],
[8, 14, 13, 6, 13, 12, 8, 4],
[1, 9, 5, 16, 20, 2, 3, 9]]

table[r][c] is the element at row r, column c in table

examples:

>>> print(table[2][1])
3

>>> table[-1][-2] = 0

row index
column index

Using Nested Loops to Process a 2-D List

table = [[15, 8, 3, 16, 12, 7, 9 5],
[6, 11, 9, 4, 1, 5, 8, 13],
[17, 3, 5, 18, 10, 6, 7, 21],
[8, 14, 13, 6, 13, 12, 8, 4],
[1, 9, 5, 16, 20, 2, 3, 9]]

for r in range(len(table)):
for c in range(len(table[0])):

process table[r][c]

CAS CS 111 Boston University, Spring 2025 245

Using Nested Loops to Process a 2-D List
table = [[15, 19, 3, 16],

[6, 21, 9, 4],
[17, 3, 5, 18]]

count = 0
for r in range(len(table)):

for c in range(len(table[0])):
if table[r][c] > 15:

count += 1
print(count)

r c table[r][c] count

CAS CS 111 Boston University, Spring 2025 246

2-D Lists;
References Revisited

Computer Science 111
Boston University

2-D Lists

• Recall that a list can include sublists

mylist = [17, 2, [2, 5], [1, 3, 7]]

• what is len(mylist)?

• To capture a rectangular table or grid of values,
use a two-dimensional list:

table = [[15, 8, 3, 16, 12, 7, 9, 5],
[6, 11, 9, 4, 1, 5, 8, 13],
[17, 3, 5, 18, 10, 6, 7, 21],
[8, 14, 13, 6, 13, 12, 8, 4],
[1, 9, 5, 16, 20, 2, 3, 9]]

• a list of sublists, each with the same length

• each sublist is one "row" of the table

CAS CS 111 Boston University, Spring 2025 247

2-D Lists: Try These Questions!

table = [[15, 8, 3, 16, 12, 7, 9, 5],
[6, 11, 9, 4, 1, 5, 8, 13],
[17, 3, 5, 18, 10, 6, 7, 21],
[8, 14, 13, 6, 13, 12, 8, 4],
[1, 9, 5, 16, 20, 2, 3, 9]]

• what is len(table)?

• what does table[0] represent?

table[1]?

table[-1]?

• what is len(table[0])?

• what is table[3][1]?

• how would you change the 1 in the lower-left corner to a 7?

Which Of These Counts the Number of Evens?
table = [[15, 19, 3, 16],

[6, 21, 9, 4],
[17, 3, 5, 18]]

count = 0
for r in range(len(table)):

for c in range(len(table[0])):
if table[r][c] % 2 == 0:

count += 1

count = 0
for r in len(table):

for c in len(table[0]):
if c % 2 == 0:

count += 1

count = 0
for r in range(len(table[0])):

for c in range(len(table)):
if table[r][c] % 2 == 0:

count += 1

A.

B.

C.

D. either A or B E. either A or C

CAS CS 111 Boston University, Spring 2025 248

Using Nested Loops to Process a 2-D List
table = [[15, 19, 3, 16],

[6, 21, 9, 4],
[17, 3, 5, 18]]

count = 0
for r in range(len(table)):

for c in range(len(table[0])):
if table[r][c] % 2 == 0:

count += 1
print(count)

r c table[r][c] count

Recall: Picturing a 2-D List

table = [[15, 8, 3, 16, 12, 7, 9, 5],
[6, 11, 9, 4, 1, 5, 8, 13],
[17, 3, 5, 18, 10, 6, 7, 21],
[8, 14, 13, 6, 13, 12, 8, 4],
[1, 9, 5, 16, 20, 2, 3, 9]]

• Here's one way to picture the above list:

0 15 8 3 16 12 7 9 5

1 6 11 9 4 1 5 8 13

2 17 3 5 18 10 6 7 21

3 8 14 13 6 13 12 8 4

4 1 9 5 16 20 2 3 9

0 1 2 3 4 5 6 7 column
indices

row
indices

CAS CS 111 Boston University, Spring 2025 249

Picturing a 2-D List (cont)

• Here's a more accurate picture:

15 8 3 16 12 7 9 5

6 11 9 4 1 5 8 13

17 3 5 18 10 6 7 21

8 14 13 6 13 12 8 4

1 9 5 16 20 2 3 9

table

Recall: Copying a List

• We can't copy a list by a simple assignment:

list1 = [7, 8, 9, 6, 10, 7, 9, 5]
list2 = list1

• We can copy this list using a full slice:

list1 = [7, 8, 9, 6, 10, 7, 9, 5]
list2 = list1[:]

list2

list1 7 8 9 6 10 7 9 5

7 8 9 6 10 7 9 5

list2

list1 7 8 9 6 10 7 9 5

CAS CS 111 Boston University, Spring 2025 250

Changing the Internals vs. Changing a Variable

• When two variables hold a reference to the same list...

list1 = [7, 8, 9]
list2 = list1

• ...if we change the internals of the list,
both variables will "see" the change:

list2[2] = 4
print(list1) # prints [7, 8, 4]

list2

list1 7 8 9

list2

list1 7 8 4

The variables are like
two business cards that
both have the address
of the same office.

The list is the office.

We're changing the
contents of the office.

Using either
business card to find
the office will lead you
to see the changed
contents.

Changing the Internals vs. Changing a Variable (cont.)

• When two variables hold a reference to the same list...

list1 = [7, 8, 9]
list2 = list1

• ...if we change one of the variables itself,
that does not change the other variable:

list2 = [4, 5, 6]
print(list1) # prints [7, 8, 9]

list2

list1 7 8 9

list2

list1 7 8 9

4 5 6

The variables are like
two business cards that
both have the address
of the same office.

The list is the office.

We're changing the
address on one of the
business cards.
It now refers to a
different office.

The other business card
still refers to the original
unchanged office!

CAS CS 111 Boston University, Spring 2025 251

def mystery5(x):
x = x * -1
return x

def mystery6(l1, l2):
l1[0] = 0
l2 = [1, 1]

x = 7
vals = [7, 7]
mystery5(x)
mystery6(vals, vals)
print(x, vals)

What is the output of this program? (part I)

global

vals

x

7 7

7

global

vals

x

7 7

mystery5

x

7

7

global

vals

x

7 7

before mystery5 during mystery5 after mystery5

def mystery5(x):
x = x * -1
return x

def mystery6(l1, l2):
l1[0] = 0
l2 = [1, 1]

x = 7
vals = [7, 7]
mystery5(x)
mystery6(vals, vals)
print(x, vals)

What is the output of this program? (part II)

global

vals

x

7 7

global

vals

x

7 7

mystery6
l1

l2

global

vals

x

before mystery6 during mystery6 after mystery6

CAS CS 111 Boston University, Spring 2025 252

Copying a 2-D List

grid1 = [[1, 2], [3, 4], [5, 6], [7, 8]]

• This still doesn't copy the list: grid2 = grid1

(see above)

• This doesn't either! grid3 = grid1[:]

(see next slide)

1 2

grid1

3 4 5 6 7 8grid2

A Shallow Copy

grid1 = [[1, 2], [3, 4], [5, 6], [7, 8]]
grid3 = grid1[:]

• grid1 and grid3 now share the same sublists.

• known as a shallow copy

• What would this print?
grid1[1][1] = 0
print(grid3)

1 2

grid1

3 4 5 6 7 8

grid3

CAS CS 111 Boston University, Spring 2025 253

A Deep Copy: Nothing is Shared

grid1 = [[1, 2], [3, 4], [5, 6], [7, 8]]

• In PS 7, you'll see one way to do this.

grid1

grid3

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

CAS CS 111 Boston University, Spring 2025 254

Pre-Lecture
Using Objects

Computer Science 111
Boston University

What Is An Object?

• An object is a construct that groups together:

• one or more data values (the object's attributes)

• one or more functions that operate on those data values
(known as the object's methods)

CAS CS 111 Boston University, Spring 2025 255

Strings Are Objects

• In Python, a string is an object.

• attributes:

• the characters in the string

• the length of the string

• methods: functions inside the string that we can use
to operate on the string

upper() replace()
lower() split()
find() ...
count()

contents 'h''e''l''l''o'

length 5

upper() replace()
lower() split()
find() ...
count()

contents 'b''y''e'

length 3

string object for 'hello' string object for 'bye'

Calling a Method

• An object's methods are inside the object,
so we use dot notation to call them.

• Example:

name = 'Perry'

allcaps = name.upper()

• Because a method is inside the object,
it is able to access the object's attributes.

the object's
variable

the method
name

the dot

upper() replace()
lower() split()
find() ...
count()

contents 'P''e''r''r''y'

length 5

string object for 'Perry'

CAS CS 111 Boston University, Spring 2025 256

String Methods (partial list)
• s.upper(): return a copy of s with all uppercase characters

• s.lower(): return a copy of s with all lowercase characters
>>> name = 'Perry'
>>> name.lower()
'perry'
>>> name
'Perry' # original string is unchanged!

• s.find(sub): return the index of the first occurrence of the
substring sub in the string s (-1 if not found)

• s.count(sub): return the number of occurrences of the
substring sub in the string s (0 if not found)

• s.replace(target, repl): replace all occurrences of the
substring target in s with the substring repl

Splitting a String

• The split() method breaks a string into a list of substrings.

>>> name = ' Martin Luther King '
>>> name.split()
['Martin', 'Luther', 'King']
>>> components = name.split()
>>> components[0]
'Martin'

• By default, it uses whitespace characters (spaces, tabs,
and newlines) to determine where the splits should occur.

• You can specify a different separator:
>>> date = '11/10/2014'
>>> date.split('/')

CAS CS 111 Boston University, Spring 2025 257

Pre-Lecture
Working with Text Files

Computer Science 111
Boston University

Text Files

• A text file can be thought of as one long string.

• The end of each line is stored as a newline character ('\n').

• Example: the following three-line text file

is equivalent to the following string:

'Don't forget!\n\nTest your code fully!\n'

Don't forget!

Test your code fully!

CAS CS 111 Boston University, Spring 2025 258

Opening a Text File

• Before we can read from a text file, we need to open
a connection to the file.

• Example:

f = open('reminder.txt', 'r')

where:

• 'reminder.txt' is the name of the file we want to read

• 'r' indicates that we want to read from the file

• Doing so creates an object known as a file handle.

• we use the file handle to perform operations on the file

Processing a File Using Methods

• A file handle is an object.

• We can use its methods to
process a file.

>>> f = open('reminder.txt', 'r')

>>> f.readline()
"Don't forget!\n"

>>> f.readline()
'\n'

>>> f.readline()
'Test your code fully!\n'

>>> f.readline()

>>> f = open('reminder.txt', 'r') # start over at top

>>> f.read()
"Don't forget!\n\nTest your code fully!\n"

reminder.txt

Don't forget!

Test your code fully!

CAS CS 111 Boston University, Spring 2025 259

Processing a File Using a for Loop

• We often want to read and process a file one line at a time.

• We could use readline() inside a loop, but...
we don't know how many lines there are!

• Python makes it easy!

for line in file-handle:
code to process line goes here

• reads one line at a time and assigns it to line

• continues looping until there are no lines left

Processing a CSV File

• CSV = comma-separated values

• each line is one record

• the fields in a given record
are separated by commas

CS,111,MWF 10-11
MA,123,TR 3-5
CS,105,MWF 1-2
EC,100,MWF 2-3
...

courses.txt

CAS CS 111 Boston University, Spring 2025 260

Processing a CSV File
file = open('courses.txt')

count = 0
for line in file:

line = line[:-1]
fields = line.split(',')
if fields[0] == 'CS':

print(fields[0],fields[1])
count += 1

line fields output count
0

'CS,111,MWF 10-11\n'
'CS,111,MWF 10-11' ['CS','111','MWF 10-11'] CS 111 1

'MA,123,TR 3-5\n'
'MA,123,TR 3-5' ['MA','123','TR 3-5'] none 1

CS,111,MWF 10-11
MA,123,TR 3-5
CS,105,MWF 1-2
EC,100,MWF 2-3
...

courses.txt

Complete the rest of the table!

CAS CS 111 Boston University, Spring 2025 261

Using Objects;
Working with Text Files

Computer Science 111
Boston University

pixels = load_pixels('my_image.png') # get a 2-D list!
h = len(pixels)
W = len(pixels[0])
for r in range(h):

for c in range(w):
process pixels[r][c] in some way

Image Processing

• An image is a 2-D collection
of pixels.

• h rows, w columns

• The pixel at position (r, c)
tells you the color of the
image at that location.

• We'll load an image's pixels
into a 2-D list and process it:

CAS CS 111 Boston University, Spring 2025 262

• Each pixel is represented by a list
of 3 integers that specify its color:

[red, green, blue]

• example: the pink pixel at right
has color
[240, 60, 225]

• known as RGB values

• each value is between 0-255

• Other examples:

• pure red: [255, 0, 0]

• pure green: [0, 255, 0]

• pure blue: [0, 0, 255]

• white: [255, 255, 255]

• black: [0, 0, 0]

Pixels

Recall: String Methods (partial list)
• s.lower(): return a copy of s with all lowercase characters

• s.upper(): return a copy of s with all uppercase characters

• s.find(sub): return the index of the first occurrence of the
substring sub in the string s (-1 if not found)

• s.count(sub): return the number of occurrences of the
substring sub in the string s (0 if not found)

• s.replace(target, repl): return a new string in which
all occurrences of target in s are replaced with repl

CAS CS 111 Boston University, Spring 2025 263

Examples of Using String Methods

>>> chant = 'We are the Terriers!'

>>> chant.upper()

>>> chant.lower()

>>> chant.replace('e', 'o')

Recall: Splitting a String

• The split() method breaks a string into a list of substrings.

>>> name = 'Martin Luther King'
>>> name.split()
['Martin', 'Luther', 'King']
>>> components = name.split()
>>> components[0]
'Martin'

• By default, it uses whitespace characters (spaces, tabs,
and newlines) to determine where the splits should occur.

• You can specify a different separator:
>>> date = '11/10/2014'
>>> date.split('/')
['11', '10', '2014']

CAS CS 111 Boston University, Spring 2025 264

Discovering What An Object Can Do

• Use the documentation for the Python Standard Library:

docs.python.org/3/library

What is the output of this program?

s = ' programming '
s = s.strip()
s.upper()
s = s.split('r')
print(s)

CAS CS 111 Boston University, Spring 2025 265

Recall: Processing a File Using a for Loop

• We often want to read and process a file one line at a time.

• We could use readline() inside a loop, but...

• what's the problem we would face?

• Python makes it easy!

for line in file-handle:
code to process line goes here

• reads one line at a time and assigns it to line

• continues looping until there are no lines left

How Should We Fill in the Blank?

file = open('courses.txt', 'r')

count = 0
for line in file:

line = line[:-1]
fields = ___________________
if fields[0] == 'CS':

print(fields[0],fields[1])
count += 1

CS,111,MWF 10-11
MA,123,TR 3-5
CS,105,MWF 1-2
EC,100,MWF 2-3
...

courses.txt

CAS CS 111 Boston University, Spring 2025 266

Recall: Processing a CSV File
file = open('courses.txt', 'r')

count = 0
for line in file:

line = line[:-1]
fields = line.split(',')
if fields[0] == 'CS':

print(fields[0],fields[1])
count += 1

line fields output count
0

'CS,111,MWF 10-11\n'
'CS,111,MWF 10-11' ['CS','111','MWF 10-11'] CS 111 1

'MA,123,TR 3-5\n'
'MA,123,TR 3-5' ['MA','123','TR 3-5'] none 1

...

(see the pre-lecture video for more!)

CS,111,MWF 10-11
MA,123,TR 3-5
CS,105,MWF 1-2
EC,100,MWF 2-3
...

courses.txt

Closing a File

• When you're done with a file, close your connection to it:

file.close() # file is the file handle

• another example of a method inside an object!

• This isn't crucial when reading from a file.

• It is crucial when writing to a file, which we'll do later.

• text that you write to file may not make it
to disk until you close the file handle!

CAS CS 111 Boston University, Spring 2025 267

Extracting Relevant Data from a File

• Assume that the results of a track meet are summarized in a
comma-delimited text file (a CSV file) that looks like this:

Mike Mercury,BU,mile,4:50:00
Steve Slug,BC,mile,7:30:00
Len Lightning,BU,half-mile,2:15:00
Tom Turtle,UMass,half-mile,4:00:00

• We'd like to have a function that reads in such a results file
and extracts just the results for a particular school.

• example:
>>> extract_results('track_results.txt', 'BU')
Mike Mercury mile 4:50:00
Len Lightning half-mile 2:15:00

Extracting Relevant Data from a File

def extract_results(filename, target_school):
file = open(filename, 'r')

for line in file:
line = line[:-1] # chop off newline at end

fill in the rest of the loop body...
when you find a match for target_school,
print the athlete, event, and time.

file.close()
Mike Mercury,BU,mile,4:50:00
Steve Slug,BC,mile,7:30:00
Len Lightning,BU,half-mile,2:15:00
Tom Turtle,UMass,half-mile,4:00:00

CAS CS 111 Boston University, Spring 2025 268

Handling Schools with No Records

• We'd like to print a message when the target school does not
appear in the file.

• Would this work?

def extract_results(filename, target_school):
file = open(filename, 'r')

for line in file:
line = line[:-1] # chop off newline at end

fields = line.split(',')

if fields[1] == target_school:
print(fields[0], fields[2], fields[3])

else:
print(target_school, 'not found')

file.close()

Handling Schools with No Records (cont.)

• Another option: use a variable to count the matches we find.

• Would this work?

def extract_results(filename, target_school):
file = open(filename, 'r')

count = 0
for line in file:

line = line[:-1] # chop off newline at end

fields = line.split(',')
if fields[1] == target_school:

print(fields[0], fields[2], fields[3])
count += 1

if count == 0:
print(target_school, 'not found')

file.close()

CAS CS 111 Boston University, Spring 2025 269

Pre-Lecture
Classes:

Defining New Types of Objects

Computer Science 111
Boston University

Objects, Objects, Everywhere!

• Recall: Strings are objects with:

• attributes – data values
inside the object

• methods – functions
inside the object

• In fact, everything in Python is an object!

• integers

• floats

• lists

• booleans

• file handles

• ...

CAS CS 111 Boston University, Spring 2025 270

Classes

• A class is a blueprint – a definition of a data type.

• specifies the attributes and methods of that type

• Objects are built according to the blueprint
provided by their class.

• they are "values" / instances of that type

• use the type function to determine the class:

>>> type(111)
<class 'int'>

>>> type(3.14159)
<class 'float'>

>>> type('hello!')

>>> type([1, 2, 3])

Creating Your Own Classes

• In an object-oriented programming language,
you can define your own classes.

• your own types of objects

• your own data types!

• Example: let's say that we
want objects that represent
rectangles.

• A Rectangle object could have methods for:

• computing its area, perimeter, etc.

• growing it (changing its dimensions), moving it, etc.

height 30

width 50

y 150

x 200
coordinates of
its upper-left
corner

a Rectangle object

CAS CS 111 Boston University, Spring 2025 271

An Initial Rectangle Class

class Rectangle:
""" a blueprint for objects that represent

a rectangular shape
"""

def __init__(self, init_width, init_height):
""" the Rectangle constructor """
self.x = 0
self.y = 0
self.width = init_width
self.height = init_height

• __init__ is the constructor.

• it's used to create new objects

• it specifies the attributes

• Inside its methods, an object refers to itself as self!

height

width

y

x

Constructing and Using an Object

class Rectangle:
""" the Rectangle constructor """
def __init__(self, init_width, init_height):

self.x = 0
self.y = 0
self.width = init_width
self.height = init_height

>>> r1 = Rectangle(100, 50) # calls __init__!
>>> r2 = Rectangle(75, 350) # construct another one!

height 350

width 75

y 0

x 0r2

height 50

width 100

y 0

x 0r1

CAS CS 111 Boston University, Spring 2025 272

Accessing and Modifying an Object's Attributes

>>> r1 = Rectangle(100, 50)

• Access the attributes
using dot notation:

>>> r1.width
100
>>> r1.height
50

• Modify them as you would any other variable:

>>> r1.x = 25
>>> r1.y = 10
>>> r1.width *= 2

height 50

width 100

y 0

x 0r1

height 50

width

y

xr1

Fill in the updated
field values.

CAS CS 111 Boston University, Spring 2025 273

Pre-Lecture
Defining Methods

Computer Science 111
Boston University

Our Initial Rectangle Class

class Rectangle:
""" a blueprint for objects that represent

a rectangular shape
"""

def __init__(self, init_width, init_height):
""" the Rectangle constructor """
self.x = 0
self.y = 0
self.width = init_width
self.height = init_height

height 30

width 50

y 150

x 200
coordinates of
its upper-left
corner

a Rectangle object

CAS CS 111 Boston University, Spring 2025 274

Client Programs

• Our Rectangle class is not a program.

• Instead, it will be used by code defined elsewhere.

• referred to as client programs or client code

• More generally, when we define a new type of object,
we create a building block that can be used in other code.

• just like the objects from the built-in classes:
str, list, int, etc.

• our programs have been clients of those classes!

Initial Client Program
construct two Rectangle objects
r1 = Rectangle(100, 50)
r2 = Rectangle(75, 350)

print dimensions and area of each
print('r1:', r1.width, 'x', r1.height)
area1 = r1.width * r1.height
print('area =', area1)

print('r2:', r2.width, 'x', r2.height)
area2 = r2.width * r2.height
print('area =', area2)

grow both Rectangles
r1.width += 50
r1.height += 10
r2.width += 5
r2.height += 30

print new dimensions
print('r1:', r1.width, 'x', r1.height)
print('r2:', r2.width, 'x', r2.height)

CAS CS 111 Boston University, Spring 2025 275

Using Methods to Capture an Object's Behavior

• Rather than having the client grow the Rectangle objects,
we'd like to give each Rectangle object the ability to grow itself.

• We do so by adding a method to the class:

class Rectangle:
""" the Rectangle constructor """
def __init__(self, init_width, init_height):

self.x = 0
self.y = 0
self.width = init_width
self.height = init_height

def grow(self, dwidth, dheight):
self.width += dwidth
self.height += dheight

Calling a Method

class Rectangle:
...
def grow(self, dwidth, dheight):

self.width += dwidth
self.height += dheight

>>> r1 = Rectangle(100, 50)

>>> r1.grow(25, 100)

>>> r1.width
125

>>> r1.height

before grow

after grow

CAS CS 111 Boston University, Spring 2025 276

Another Example of a Method

• Here's a method for getting the area of a Rectangle:

def area(self):
return self.width * self.height

• Sample method calls:

>>> r1.area()
5000
>>> r2.area()

• we're asking r1 and r2 to
give us their areas

• nothing in the parentheses
because the necessary info.
is in the objects' attributes! height 80

width 20

y 100

x 50r2

height 50

width 100

y 20

x 10r1

Second Version of our Rectangle Class

class Rectangle:
""" a blueprint for objects that represent

a rectangular shape
"""
def __init__(self, init_width, init_height):

""" the Rectangle constructor """
self.x = 0
self.y = 0
self.width = init_width
self.height = init_height

def grow(self, dwidth, dheight):
self.width += dwidth
self.height += dheight

def area(self):
return self.width * self.height

CAS CS 111 Boston University, Spring 2025 277

Original Client Program...
construct two Rectangle objects
r1 = Rectangle(100, 50)
r2 = Rectangle(75, 350)

print dimensions and area of each
print('r1:', r1.width, 'x', r1.height)
area1 = r1.width * r1.height
print('area =', area1)

print('r2:', r2.width, 'x', r2.height)
area2 = r2.width * r2.height
print('area =', area2)

grow both Rectangles
r1.width += 50
r1.height += 10
r2.width += 5
r2.height += 30

print new dimensions
print('r1:', r1.width, 'x', r1.height)
print('r2:', r2.width, 'x', r2.height)

Simplified Client Program
construct two Rectangle objects
r1 = Rectangle(100, 50)
r2 = Rectangle(75, 350)

print dimensions and area of each
print('r1:', r1.width, 'x', r1.height)
print('area =', r1.area())

print('r2:', r2.width, 'x', r2.height)
print('area =', r2.area())

grow both Rectangles
r1.grow(50, 10)
r2.grow(5, 30)

print new dimensions
print('r1:', r1.width, 'x', r1.height)
print('r2:', r2.width, 'x', r2.height)

CAS CS 111 Boston University, Spring 2025 278

Methods That Modify an Object

class Rectangle:
""" a blueprint for objects that represent

a rectangular shape
"""
def __init__(self, init_width, init_height):

""" the Rectangle constructor """
self.x = 0
self.y = 0
self.width = init_width
self.height = init_height

def grow(self, dwidth, dheight):
self.width += dwidth
self.height += dheight
why don't we need a return?

def area(self):
return self.width * self.height

Methods That Modify an Object

r1 = Rectangle(100, 50)
r1.grow(50, 10)
print('r1:', r1.width, 'x', r1.height)

height 50

width 100

y 0

x 0

r1

global

dwidth

self

grow

stack frames objects

dheight

complete the diagram

continued on next slide

CAS CS 111 Boston University, Spring 2025 279

Methods That Modify an Object (cont.)

r1 = Rectangle(100, 50)
r1.grow(50, 10)
print('r1:', r1.width, 'x', r1.height)

height

width

y 0

x 0

r1

global

stack frames objects

output: _________________

CAS CS 111 Boston University, Spring 2025 280

Classes:
Defining New Types of Objects

Computer Science 111
Boston University

Another Analogy

• A class is like a cookie cutter.

• specifies the "shape" that all objects
of that type should have

• Objects are like the cookies.

• created with the "shape"
specified by their class

CAS CS 111 Boston University, Spring 2025 281

Recall: An Initial Rectangle Class

class Rectangle:
""" a blueprint for objects that represent

a rectangular shape
"""

def __init__(self, init_width, init_height):
self.x = 0
self.y = 0
self.width = init_width
self.height = init_height

• What is __init__ used for?

• How many attributes do Rectangle objects have?

The Need to Import

• When client code is in a separate file, it needs to import
the contents of the file with the class definition:

assume this is in a file named rectangle.py
class Rectangle:

""" a blueprint for objects that represent
a rectangular shape

"""
def __init__(self, init_width, init_height):

self.x = 0
self.y = 0
self.width = init_width
self.height = init_height

client code in a different file
from rectangle import *

r1 = Rectangle(100, 50)
r2 = Rectangle(75, 350)
...

CAS CS 111 Boston University, Spring 2025 282

Initial Client Program
from rectangle import *

construct two Rectangle objects
r1 = Rectangle(100, 50) # what function is being called?
r2 = Rectangle(75, 350)

print dimensions and area of each
print('r1:', r1.width, 'x', r1.height)
area1 = r1.width * r1.height
print('area =', area1)

print('r2:', r2.width, 'x', r2.height)
area2 = r2.width * r2.height
print('area =', area2)

grow both Rectangles
r1.width += 50
r1.height += 10
r2.width += 5
r2.height += 30

print new dimensions
print('r1:', r1.width, 'x', r1.height)
print('r2:', r2.width, 'x', r2.height)

Recall: Constructing and Using an Object

class Rectangle:
""" the Rectangle constructor """
def __init__(self, init_width, init_height):

self.x = 0
self.y = 0
self.width = init_width
self.height = init_height

>>> r1 = Rectangle(100, 50) # calls __init__!
>>> r2 = Rectangle(75, 350) # construct another one!

height 350

width 75

y 0

x 0r2

height 50

width 100

y 0

x 0r1

CAS CS 111 Boston University, Spring 2025 283

Recall: Second Version of our Rectangle Class

assume this is in rectangle.py

class Rectangle:
""" a blueprint for objects that represent

a rectangular shape
"""
def __init__(self, init_width, init_height):

""" the Rectangle constructor """
self.x = 0
self.y = 0
self.width = init_width
self.height = init_height

def grow(self, dwidth, dheight):
self.width += dwidth
self.height += dheight

def area(self):
return self.width * self.height

Recall: Simplified Client Program
from rectangle import *

construct two Rectangle objects
r1 = Rectangle(100, 50)
r2 = Rectangle(75, 350)

print dimensions and area of each
print('r1:', r1.width, 'x', r1.height)
print('area =', r1.area())

print('r2:', r2.width, 'x', r2.height)
print('area =', r2.area())

grow both Rectangles
r1.grow(50, 10)
r2.grow(5, 30)

print new dimensions
print('r1:', r1.width, 'x', r1.height)
print('r2:', r2.width, 'x', r2.height)

CAS CS 111 Boston University, Spring 2025 284

Be Objective!
class Rectangle:

...
def grow(self, dwidth, dheight):

...

def area(self):
...

r1 = Rectangle(100, 50)
r2 = Rectangle(20, 80)

• Give an expression for:

• the width of r1:

• the height of r2:

• Write an assignment that changes r1's x-coordinate to 50:

• Write a method call that:

• increases r2's width by 5 and height by 10:
• gets r1's area:

Method vs. Function

• Our area method is part of the Rectangle class:
class Rectangle:

...
def area(self): # methods have a self

return self.width * self.height

• thus, it is inside Rectangle objects

• sample call:
r.area()

• Here's a function that takes two Rectangle objects as inputs:

def total_area(r1, r2): # functions don't
return r1.area() + r2.area()

• it is not part of the class and is not inside Rectangle objects

• sample call:
total_area(r, other_r)

• it is a client of the Rectangle class!

CAS CS 111 Boston University, Spring 2025 285

def perimeter(self, width, height):
return 2*width + 2*height

def perimeter():
return 2*self.width + 2*self.height

def perimeter(self):
return 2*self.width + 2*self.height

Which of these is a correct perimeter method?

A.

B.

C.

D. none of the above

Fill in the blank to call the perimeter method.

class Rectangle:
...
def perimeter(self):

return 2*self.width + 2*self.height

r = Rectangle(35, 20)

perim = ________________________

CAS CS 111 Boston University, Spring 2025 286

scale Method

class Rectangle:
...
def perimeter(self):

return 2*self.width + 2*self.height

def scale(______________________):

• In the space above, write a method called scale that
scales the dimensions of a Rectangle by a specified factor.

sample call:
r.scale(5)

Why doesn't scale need to return anything?

Memory Diagrams for Method Calls, part I
Rectangle client code
r1 = Rectangle(100, 50)
r2 = Rectangle(20, 80)

r1.scale(5)
r2.scale(3)
print(r1.width, r1.height, r2.width, r2.height)

height 50

width 100

y 0

x 0

r2

r1

global

stack frames objects

50

100

__init__

self

init_
height

init_
width

CAS CS 111 Boston University, Spring 2025 287

Memory Diagrams for Method Calls, part II
Rectangle client code
r1 = Rectangle(100, 50)
r2 = Rectangle(20, 80)

r1.scale(5)
r2.scale(3)
print(r1.width, r1.height, r2.width, r2.height)

height 50

width 100

y 0

x 0

r2

r1

global

stack frames objects

Memory Diagrams for Method Calls, part III
Rectangle client code
r1 = Rectangle(100, 50)
r2 = Rectangle(20, 80)

r1.scale(5)
r2.scale(3)
print(r1.width, r1.height, r2.width, r2.height)

height 80

width 20

y 0

x 0
height 50

width 100

y 0

x 0

r2

r1

global

stack frames objects

80

20

__init__

self

init_
height

init_
width

CAS CS 111 Boston University, Spring 2025 288

Memory Diagrams for Method Calls, part IV
Rectangle client code
r1 = Rectangle(100, 50)
r2 = Rectangle(20, 80)

r1.scale(5)
r2.scale(3)
print(r1.width, r1.height, r2.width, r2.height)

height 80

width 20

y 0

x 0
height 50

width 100

y 0

x 0

r2

r1

global

stack frames objects

Memory Diagrams for Method Calls, part V
Rectangle client code
r1 = Rectangle(100, 50)
r2 = Rectangle(20, 80)

r1.scale(5)
r2.scale(3)
print(r1.width, r1.height, r2.width, r2.height)

height 80

width 20

y 0

x 0
height 250

width 500

y 0

x 0

r2

r1

global

factor 5

self

scale

stack frames objects

CAS CS 111 Boston University, Spring 2025 289

Memory Diagrams for Method Calls, part VI
Rectangle client code
r1 = Rectangle(100, 50)
r2 = Rectangle(20, 80)

r1.scale(5)
r2.scale(3)
print(r1.width, r1.height, r2.width, r2.height)

height 240

width 60

y 0

x 0
height 250

width 500

y 0

x 0

r2

r1

global

factor 3

self

scale

stack frames objects

Memory Diagrams for Method Calls, part VII
Rectangle client code
r1 = Rectangle(100, 50)
r2 = Rectangle(20, 80)

r1.scale(5)
r2.scale(3)
print(r1.width, r1.height, r2.width, r2.height)

height 240

width 60

y 0

x 0
height 250

width 500

y 0

x 0

r2

r1

global

stack frames objects

output: 500 250 60 240

CAS CS 111 Boston University, Spring 2025 290

No Return Value Is Needed After a Change

• A method operates directly on the called object,
so any changes it makes will be there after the method returns.

• example: the call r2.scale(3) from the last slide

• scale gets a copy of the reference in r2

• thus, scale's changes to the internals of the object
can be "seen" using r2 after scale returns

height 240

width 60

y 0

x 0

r2

r1

global

factor 3

self

scale

stack frames objects

CAS CS 111 Boston University, Spring 2025 291

Pre-Lecture
Comparing and Printing Objects

Computer Science 111
Boston University

Recall: Our Rectangle Class
rectangle.py

class Rectangle:
def __init__(self, init_width, init_height):

self.x = 0
self.y = 0
self.width = init_width
self.height = init_height

def grow(self, dwidth, dheight):
self.width += dwidth
self.height += dheight

def area(self):
return self.width * self.height

...

CAS CS 111 Boston University, Spring 2025 292

What is the output of this client program?

from rectangle import *

r1 = Rectangle(40, 75)
r2 = Rectangle(40, 75)
r3 = r1

print(r1 == r2)
print(r1 == r3)

height 75

width 40

y 0

x 0
height 75

width 40

y 0

x 0

r3

r2

global

r1

__eq__ (Implementing Our Own ==)

• The __eq__ method of a class allows us to implement
our own version of the == operator.

• If we don't write a __eq__ method for a class,
we get a default version that compares the object's
memory addresses

• see the previous example!

CAS CS 111 Boston University, Spring 2025 293

__eq__ Method for Our Rectangle Class

class Rectangle:
... r1 r2
def __eq__(self, other):

if self.width == other.width and
self.height == other.height:
return True

else:
return False

>>> r1 = Rectangle(40, 75)
>>> r2 = Rectangle(40, 75)

>>> print(r1 == r2)

__repr__ (Printing/Evaluating an Object)

• The __repr__ method of a class returns a string representation
of objects of that class.

• It gets called when you:

• evaluate an object in the Shell:
>> r1 = Rectangle(100, 80)

>> r1 # calls __repr__

• apply str():
>> r1string = str(r1) # also calls __repr__

• print an object:
>> print(r1) # also calls __repr__

CAS CS 111 Boston University, Spring 2025 294

__repr__ (Printing/Evaluating an Object)

• If we don't write a __repr__ method for a class,
we get a default version that isn't very helpful!

>>> r2 = Rectangle(50, 20)
>>> r2

<__main__.Rectangle object at 0x03247C30>

__repr__ Method for Our Rectangle Class

class Rectangle:
...
def __repr__(self):

return str(self.width) + ' x ' + str(self.height)

• Note: the method does not do any printing.

• It returns a string that can then be printed or used when
evaluating the object:

>>> r2 = Rectangle(50, 20)

>>> print(r2)
50 x 20

>>> r2

CAS CS 111 Boston University, Spring 2025 295

More Object-Oriented Programming

Computer Science 111
Boston University

Recall: Our Rectangle Class
rectangle.py

class Rectangle:
def __init__(self, init_width, init_height):

self.x = 0
self.y = 0
self.width = init_width
self.height = init_height

def grow(self, dwidth, dheight):
self.width += dwidth
self.height += dheight

def area(self):
return self.width * self.height

def perimeter(self):
return 2*self.width + 2*self.height

def scale(self, factor):
self.width *= factor
self.height *= factor

CAS CS 111 Boston University, Spring 2025 296

What is the output of this program?

from rectangle import *

r1 = Rectangle(40, 75)
r2 = Rectangle(40, 75)
r3 = r1

r1.scale(2)
print(r1.width, r2.width, r3.width)

height 75

width 40

y 0

x 0
height 75

width 40

y 0

x 0

r3

r2

global

r1

factor

self

scale

What about this program?

from rectangle import *

r1 = Rectangle(40, 75)
r2 = Rectangle(40, 75)
r3 = r1

print(r1 == r2)
print(r1 == r3)

height 75

width 40

y 0

x 0
height 75

width 40

y 0

x 0

r3

r2

global

r1

CAS CS 111 Boston University, Spring 2025 297

Recall: __eq__ Method for Our Rectangle Class

class Rectangle:
...
def __eq__(self, other):

if self.width == other.width and \
self.height == other.height:
return True

else:
return False

>>> r1 = Rectangle(40, 75)
>>> r2 = Rectangle(40, 75)

>>> print(r1 == r2)

Recall: __repr__ Method for Our Rectangle Class

class Rectangle:
...
def __repr__(self):

return str(self.width) + ' x ' + str(self.height)

• Note: the method does not do any printing.

• It returns a string that can then be printed or used when
evaluating the object:

>>> r2 = Rectangle(50, 20)

>>> print(r2)
50 x 20

>>> r2
50 x 20

>>> str(r2)
'50 x 20'

CAS CS 111 Boston University, Spring 2025 298

Updated
Rectangle

Class

class Rectangle:

def __init__(self, init_width, init_height):
self.x = 0

self.y = 0

self.width = init_width
self.height = init_height

def grow(self, dwidth, dheight):

self.width += dwidth
self.height += dheight

def area(self):

return self.width * self.height

def perimeter(self):

return 2*self.width + 2*self.height

def scale(self, factor):
self.width *= factor

self.height *= factor

def __eq__(self, other):

if self.width == other.width and self.height == other.height:
return True

else:
return False

def __repr__(self):
return str(self.width) + ' x ' + str(self.height)

Simplifying the Client Program Again...

from rectangle import *

Construct two Rectangle objects
r1 = Rectangle(100, 50)
r2 = Rectangle(75, 350)

Print dimensions and area of each
print('r1:', r1)
print('area =', r1.area())

print('r2:', r2)
print('area =', r2.area())

grow both Rectangles
r1.grow(50, 10)
r2.grow(5, 30)

Print new dimensions
print('r1:', r1)
print('r2:', r2)

CAS CS 111 Boston University, Spring 2025 299

More Practice Defining Methods

• Write a method that moves the
rectangle to the right by some amount.

• sample call: r.move_right(30)

def move_right(self, amount):

• Write a method that determines if the rectangle is a square.

• return True if it does, and False otherwise

• sample call: r1.is_square()

height 30

width 50

y 150

x 200
coordinates
of the
upper-left
corner

Date Class
class Date:

def __init__(self, init_month, init_day, init_year):
""" constructor that initializes the

three attributes
"""
you will write this!

def __repr__(self):
"""This method returns a string representation for the

object of type Date that calls it (named self).
"""
s = "%02d/%02d/%04d" % (self.month, self.day, self.year)
return s

def is_leap_year(self):
""" Returns True if the calling object is

in a leap year. Otherwise, returns False.
"""
if self.year % 400 == 0:

return True
elif self.year % 100 == 0:

return False
elif self.year % 4 == 0:

return True
return False

year 1918

day 11

month 11

CAS CS 111 Boston University, Spring 2025 300

Date Class (cont.)

• Example of how Date objects can be used:

>>> d = Date(12, 31, 2018)
>>> print(d) # calls __repr__
12/31/2018
>>> d.advance_one() # a method you will write

nothing is returned!
>>> print(d) # d has been changed!
01/01/2019

Methods Calling Other Methods

class Date:
...

def days_in_month(self):
""" returns the num of days in this date's month """
numdays = [0,31,28,31,30,31,30,31,31,30,31,30,31]

if self.is_leap_year() == True:
numdays[2] = 29

return numdays[self.month]

• The object calls is_leap_year() on itself!

CAS CS 111 Boston University, Spring 2025 301

Which call(s) does the method get wrong?

class Date:
...

def is_before(self, other): # buggy version!
""" returns True if the called Date object (self)

occurs before other, and False otherwise.
"""
if self.year < other.year:

return True
elif self.month < other.month:

return True
elif self.day < other.day:

return True
else:

return False

d1 = Date(11, 10, 2014)
d2 = Date(1, 1, 2015)
d3 = Date(1, 15, 2014)

A. d1.is_before(d2)

B. d2.is_before(d1)

C. d3.is_before(d1)

D. more than one

Extra: Can you think of
any other cases that it
would get wrong
involving these dates?

CAS CS 111 Boston University, Spring 2025 302

Dictionaries

Computer Science 111
Boston University

Recall: Extracting Relevant Data from a File

def extract_results(filename, target_school):
file = open(filename, 'r')

for line in file:
line = line[:-1] # chop off newline at end

fields = line.split(',')

if fields[1] == target_school:
print(fields[0], fields[2], fields[3])

file.close()

Mike Mercury,BU,mile,4:50:00
Steve Slug,BC,mile,7:30:00
Len Lightning,BU,half-mile,2:15:00
Tom Turtle,UMass,half-mile,4:00:00

CAS CS 111 Boston University, Spring 2025 303

Another Data-Processing Task

Mike Mercury,BU,mile,4:50:00
Steve Slug,BC,mile,7:30:00
Len Lightning,BU,half-mile,2:15:00
Tom Turtle,UMass,half-mile,4:00:00

• Now we'd like to count the number of results from each school,
and report all of the counts:

>>> school_counts('results.txt')
There are 3 schools in all.
BU has 2 result(s).
BC has 1 result(s).
UMass has 1 result(s).

• Python makes this easy if we use a dictionary.

What is a Dictionary?

• A dictionary is a set of key-value pairs.
>>> counts = {'BU': 2, 'UMass': 1, 'BC': 1}

• We can use the key like an index to lookup the associated value!
>>> counts['BU']
2

>>> counts['BC']
1

• It is similar to a "physical" dictionary:
• keys = words
• values = definitions
• use the word to lookup its definition

general syntax:
{key1: value1, key2: value2, key3: value3...}

CAS CS 111 Boston University, Spring 2025 304

Using a Dictionary

>>> counts = {} # create an empty dictionary

>>> counts['BU'] = 2

>>> counts['BC'] = 1

>>> counts # a set of key: value pairs
{'BU': 2, 'BC': 1}

>>> counts['BU'] # use the key to get the value
2
>>> counts['BC']
1

>>> counts['UMass'] = 1
>>> counts
{'BU': 2, 'UMass': 1, 'BC': 1} # order is not fixed

key value

Other Dictionary Operations

>>> counts = {'BU': 2, 'UMass': 1, 'BC': 1}

>>> len(counts)
3

>>> 'BU' in counts # is 'BU' one of the keys?
True

>>> 'Harvard' in counts
False

>>> 'Harvard' not in counts
True

>>> 2 in counts

CAS CS 111 Boston University, Spring 2025 305

Processing All of the Items in a Dictionary

counts = {'BU': 2, 'UMass': 1, 'BC': 1}

for key in counts: # get one key at a time
print(key, counts[key])

the above outputs:
BU 2
UMass 1
BC 1

• More generally:

for key in dictionary:
code to process key-value pair goes here

• gets one key at a time and assigns it to key

• continues looping until there are no keys left

Processing All of the Items in a Dictionary

counts = {'BU': 2, 'UMass': 1, 'BC': 1}

for key in counts: # get one key at a time
print(key, counts[key])

key counts[key] output
'BU' counts['BU']  2 BU 2




Fill in the rest of the table!

CAS CS 111 Boston University, Spring 2025 306

What Is the Output?

d = {4: 10, 11: 2, 12: 3}

count = 0
for x in d:

if x > 5:
count += 1

print(count)

Using a Dictionary to Compute Counts

def school_counts(filename):
file = open(filename, 'r')

counts = {}

for line in file:
fields = line.split(',')

school = fields[1]
if school not in counts:

counts[school] = 1 # new key-value pair
else:

counts[school] += 1 # existing k-v pair

file.close()

print('There are', len(counts), 'schools in all.')
for school in counts:

print(school, 'has', counts[school], 'result(s).')

Mike Mercury,BU,mile,4:50:00
Steve Slug,BC,mile,7:30:00
Len Lightning,BU,half-mile,2:15:00
Tom Turtle,UMass,half-mile,4:00:00

CAS CS 111 Boston University, Spring 2025 307

Another Example
of Countingdef word_frequencies(filename):

file = open(filename, 'r')
text = file.read() # read it all in at once!
file.close()

words = text.split()

d = {}

for word in words:
if word not in d:

d[word] = 1
else:

d[word] += 1

return d

Shakespeare, Anyone?

>>> freqs = word_frequencies('romeo.txt')

>>> freqs['Romeo']
1

>>> freqs['ROMEO:'] # case and punctuation matter
47

>>> freqs['love']
12

>>> len(freqs)
2469

• In his plays, Shakespeare used 31,534 distinct words!

• He also coined a number of words:

gust besmirch unreal

swagger watchdog superscript

Act I of Romeo & Juliet.
See PS 8!

http://www‐math.cudenver.edu/~wbriggs/qr/shakespeare.html

http://www.pathguy.com/shakeswo.htm
http://www.shakespeare‐online.com/biography/wordsinvented.html

CAS CS 111 Boston University, Spring 2025 308

Generate Text Based on Shakespeare!

>>> d = create_dictionary('romeo.txt')

>>> generate_text(d, 50)
ROMEO: Out of mine own word: If you merry! BENVOLIO:
Come, go to. She hath here comes one of the year, Come
hither, nurse. ROMEO: Well, in spite, To be gone.
BENVOLIO: For men depart.[Exeunt all Christian souls!-
Were of wine. ROMEO: Bid a sea nourish'd with their
breaths with

Generate Text Based on Shakespeare
...Or Anyone Else!
Boston University is an international,
comprehensive, private research university,
committed to educating students to be reflective,
resourceful individuals ready to live, adapt, and
lead in an interconnected world. Boston University
is committed to generating new knowledge to benefit
society.

We remain dedicated to our founding principles: that
higher education should be accessible to all and
that research, scholarship, artistic creation, and
professional practice should be conducted in the
service of the wider community—local and
international. These principles endure in the
University’s insistence on the value of diversity,
in its tradition and standards of excellence, and in
its dynamic engagement with the City of Boston and
the world.

Boston University comprises a remarkable range of
undergraduate, graduate, and professional programs
built on a strong foundation of the liberal arts and
sciences. With the support and oversight of the
Board of Trustees, the University, through our
faculty, continually innovates in education and
research to ensure that we meet the needs of
students and an ever-changing world. mission.txt

CAS CS 111 Boston University, Spring 2025 309

>>> d2 = create_dictionary('mission.txt')

>>> generate_text(d2, 20)
We remain dedicated to benefit society. Boston
University is an ever-changing world. Boston University
comprises a strong foundation of diversity,

Generate Text Based on Shakespeare
...Or Anyone Else!

Boston University is an international, comprehensive, private research
university, committed to educating students to be reflective, resourceful
individuals ready to live, adapt, and lead in an interconnected world. Boston
University is committed to generating new knowledge to benefit society.

We remain dedicated to our founding principles: that higher education should be
accessible to all and that research, scholarship, artistic creation, and
professional practice should be conducted in the service of the wider community—
local and international. These principles endure in the University’s insistence
on the value of diversity, in its tradition and standards of excellence, and in
its dynamic engagement with the City of Boston and the world.

Boston University comprises a remarkable range of undergraduate, graduate, and
professional programs built on a strong foundation of the liberal arts and
sciences. With the support and oversight of the Board of Trustees, the
University, through our faculty, continually innovates in education and research
to ensure that we meet the needs of students and an ever-changing world.

mission.txt

Markov Models

• Allow us to model any sequence of real-world data.

• human speech

• written text

• sensor data

• etc.

• Can use the model to generate new sequences that are
based on existing ones.

• We'll use a first-order Markov model.

• each term in the sequence depends only on the one term
that immediately precedes it

CAS CS 111 Boston University, Spring 2025 310

A Markov Model in Dictionary Form

{'$': ['Boston', 'It', 'It', 'It'],

'Boston': ['University'],

'University': ['is'],
'is': ['a', 'committed', 'committed', 'amazing!'],

'to': ____________________________________,

'committed': ___________________________________,

... }

• Sentence-ending words should not be used as keys.

• words that end with a '.', '?', or '!' (e.g., 'world.')

Boston University is a comprehensive university.
It is committed to educating students to be ready
to live and to lead in an interconnected world.
It is committed to generating new knowledge.
It is amazing!

edited_mission.txt

sentence-start symbol key = a word w

value = a list of the
words that follow w
in the text

Model Creation Function

def create_dictionary(filename):
read in file and split it into a list of words

d = {}
current_word = '$'

for next_word in words:
if current_word not in d:

d[current_word] = [next_word]
else:

d[current_word] += [next_word]

update current_word to be either
next_word or '$'...

return d
key = a word w

value = a list of the
words that follow w
in the text

CAS CS 111 Boston University, Spring 2025 311

Model Creation Example
words = ['Boston', 'University', 'is', 'a', 'comprehensive',

'university.', 'It', 'is', 'committed', ...]
d = {}
current_word = '$'

for next_word in words:
if current_word not in d:

d[current_word] = [next_word]
else:

d[current_word] += [next_word]

update current_word to be either next_word or '$'...

current_word next_word action taken
'$' 'Boston' d['$'] = ['Boston']
'Boston' 'University' d['Boston'] = ['University']

'is' 'a' d['is'] = ['a']
'a' 'comprehensive' d['a'] = ['comprehensive']
'comprehensive' 'university.' d['comprehensive']=['university.']

'$' 'It' d['$']  ['Boston', 'It']
'It' 'is' d['It'] = ['is']

generate_text(word_dict, num_words)

start with current_word = '$'

repeat num_words times:

wordlist = words that can follow current_word

(use the word_dict dictionary!)

next_word = random.choice(wordlist)

print next_word, followed by a space (use end=' ')

update current_word to be either next_word or '$'

print() # force a newline at the end of everything

CAS CS 111 Boston University, Spring 2025 312

>>> d = create_dictionary('edited_mission.txt')

Boston University is a comprehensive university.
It is committed to educating students to be ready
to live and to lead in an interconnected world.
It is committed to generating new knowledge.
It is amazing!

edited_mission.txt

Which of these could be one of the entries in d?

A. 'a': ['comprehensive']

B. 'It': ['is']

C. 'knowledge.': ['new']

D. two of the above (which ones?)

E. A, B, and C

Using the Model to Generate New Text

• Here's a portion of our Markov model for the above text:
{'$': ['Boston', 'It', 'It', 'It'],

'Boston': ['University'],

'University': ['is'],
'is': ['a', 'committed', 'committed', 'amazing!'],

'to': ['educating', 'be', 'live', 'lead', 'generating'],

'committed': ['to', 'to'],

'It': ['is', 'is', 'is'], … }

• We use it to generate new text…

Boston University is a comprehensive university.
It is committed to educating students to be ready
to live and to lead in an interconnected world.
It is committed to generating new knowledge.
It is amazing!

edited_mission.txt

CAS CS 111 Boston University, Spring 2025 313

Board Objects for Connect Four

Computer Science 111
Boston University

• Two players, each with one type of checker

• 6 x 7 board that stands vertically

• Players take turns dropping a checker
into one of the board's columns.

• Win == four adjacent checkers in any direction:

horizontal vertical up diagonal down diagonal

PS 9: Connect Four!

CAS CS 111 Boston University, Spring 2025 314

Recall: Classes and Objects

• A class is a blueprint – a definition of a new data type.

• We can use the class to create one or more objects.

• "values" / instances of that type

• One thing we'll need: a Board class!

Board Objects

• To facilitate testing, we'll allow for dimensions other than 6 x 7.

• example:

b = Board(5, 6)

• slots is a 2-D list of
single-character strings!

' ' (space) for empty slot

'X' for one player's checkers

'O' (not zero!) for the other's

slots

width 6

height 5

Board object
b

' ' ' ' ' ' ' ' ' ' ' '

' ' ' ' ' ' 'X' ' ' ' '

' ' ' ' 'O' 'X' 'O' ' '

' ' 'X' 'O' 'X' 'O' ' '

'X' 'O' 'O' 'O' 'X' 'X'

CAS CS 111 Boston University, Spring 2025 315

From a Client, How Could We Set the Blue Slot to 'X'?

b = Board(5, 6)

slots

width 6

height 5

Board object
b

' ' ' ' ' ' ' ' ' ' ' '

' ' ' ' ' ' 'X' ' ' ' '

' ' ' ' 'O' 'X' 'O' ' '

' ' 'X' 'O' 'X' 'O' ' '

'X' 'O' 'O' 'O' 'X' 'X'

How would you do this
if the code were inside a
Board method?

Board Constructor

class Board:
""" a data type for a Connect Four board with

arbitrary dimensions
"""
def __init__(self, height, width):

""" a constructor for Board objects """
self.height = height
self.width = width

self.slots = _______________________________

slots

width 6

height 5

Board object

' ' ' ' ' ' ' ' ' ' ' '

' ' ' ' ' ' ' ' ' ' ' '

' ' ' ' ' ' ' ' ' ' ' '

' ' ' ' ' ' ' ' ' ' ' '

' ' ' ' ' ' ' ' ' ' ' '

CAS CS 111 Boston University, Spring 2025 316

Incorrect Board Constructor

slots

width 6

height 5

Board object ' ' ' ' ' ' ' ' ' ' ' '

class Board:
""" a data type for a Connect Four board with

arbitrary dimensions
"""
def __init__(self, height, width):

""" a constructor for Board objects """
self.height = height
self.width = width
self.slots = [[' ']*width] * height doesn't work!

get height copies of
the reference to the list

created by [[' ']*width]

__repr__ Method
def __repr__(self):

""" returns a string representation of a Board """
s = '' # begin with an empty string

for row in range(self.height):
s += '|'
for col in range(self.width):

s += self.slots[row][col] + '|'
s += '\n'

add the row of hyphens to s
add the column indices to s

return s
		O		O		
	X	O	X	X	O	
	O	O	O	X	X	X

0 1 2 3 4 5 6

 you'll add code here!

CAS CS 111 Boston University, Spring 2025 317

class Board:
...
def add_checker(self, checker, col):

""" adds the specified checker to column col """

code to determine appropriate row goes here

self.slots[???][col] = checker
end of method

• Why don't we need a return statement?

• add_checker()'s only purpose is to change
the state of the Board

• when a method changes the internals of an object,
those changes will still be there after the method completes

• thus, no return is needed!

add_checker Method

class Board:
...
def add_checker(self, checker, col):

""" adds the specified checker to column col """

code to determine appropriate row goes here

self.slots[???][col] = checker
end of method

>>> b = Board(3, 5) # empty Board

>>> ________________ # add 'X' to column 2

>>> print(b)

		X		

0 1 2 3 4

Which of these correctly fills in the blank?

A. b.add_checker('X', 2)

B. add_checker(b, 'X', 2)

C. b = b.add_checker('X', 2)

D. more than one of these

CAS CS 111 Boston University, Spring 2025 318

Your Task in add_checker()

class Board:
...

def add_checker(self, checker, col):
""" adds the specified checker to column col """

code to determine appropriate row goes here

self.slots[???][col] = checker

no return needed!

>>> b.add_checker('O', 4)

		O		O		
	X	O	X	X	O	
	O	O	O	X	X	

0 1 2 3 4 5 6

Board b

Which call(s) does the method get wrong?

class Board:
...

def add_checker(self, checker, col): # buggy version!
""" adds the specified checker to column col """

row = 0
while self.slots[row][col] == ' ':

row += 1

self.slots[row][col] = checker

A. b.add_checker('X', 0)

B. b.add_checker('O', 6)

C. b.add_checker('X', 2)

D. A and B

E. A, B, and C

		O		O		
	X	O	X	X	O	
	O	O	O	X	X	

0 1 2 3 4 5 6

Board b

CAS CS 111 Boston University, Spring 2025 319

Inheritance

Computer Science 111
Boston University

class Player:

def __init__(self, checker):
...

def __repr__(self):
...

def opponent_checker(self):
...

def next_move(self, b):
""" Get a next move for this player that is valid

for the board b.
"""
self.num_moves += 1

while True:
col = int(input('Enter a column: '))
if valid column index, return that integer
else, print 'Try again!' and keep looping

Also in PS 9: A Player Class

Player object
p

num_moves 0

checker 'X'

p = Player('X')

CAS CS 111 Boston University, Spring 2025 320

The APIs of Our Board and Player Classes

class Board:
__init__(self, col)
__repr__(self)
add_checker(self, checker, col)
clear(self)
add_checkers(self, colnums)
can_add_to(self, col)
is_full(self)
remove_checker(self, col)
is_win_for(self, checker)

class Player:
__init__(self,col)
__repr__(self)
opponent_checker(self)
next_move(self, b)

Make sure to take
full advantage

of these methods
in your work

on PS 9!

Recall: Our Date Class
class Date:

def __init__(self, new_month, new_day, new_year):
""" Constructor """
self.month = new_month
self.day = new_day
self.year = new_year

def __repr__(self):
""" This method returns a string representation for the

object of type Date that calls it (named self).
"""
s = "%02d/%02d/%04d" % (self.month, self.day, self.year)
return s

def is_leap_year(self):
""" Returns True if the calling object is

in a leap year. Otherwise, returns False.
"""
if self.year % 400 == 0:

return True
elif self.year % 100 == 0:

return False
elif self.year % 4 == 0:

return True
return False

year 1918

day 11

month 11

CAS CS 111 Boston University, Spring 2025 321

Holidays == Special Dates!

• Each holiday has:

• a month

• a day

• a year

• a name (e.g., 'Thanksgiving')

• an indicator of whether
it's a legal holiday

• We want Holiday objects to have Date-like functionality:
>>> tg = Holiday(11, 28, 2019, 'Thanksgiving')
>>> today = Date(11, 18, 2019)
>>> tg.days_between(today)
result: 10

• But we want them to behave differently in at least one way:
>>> print(tg)
Thanksgiving (11/28/2019)

tg

name 'Thanksgiving'

year 2019

day 28

islegal True

month 11

Let Holiday Inherit From Date!

class Holiday(Date):
def __init__(self, month, day, year, name):

...

• Holiday gets all of the attributes and methods of Date.

• we don't need to redefine them here!

• Holiday is a subclass of Date.

• Date is a superclass of Holiday.

 Holiday inherits from Date

CAS CS 111 Boston University, Spring 2025 322

Constructors and Inheritance

class Holiday(Date):
def __init__(self, month, day, year, name):

call Date constructor to initialize month,day,year
super().__init__(month, day, year)

initialize the non-inherited fields
self.name = name
self.islegal = True # default value

>>> tg = Holiday(11, 28, 2019, 'Thanksgiving')

• super() provides access to the superclass of the current class.

• allows us to call its version of __init__,
which initializes the inherited attributes

 Holiday inherits from Date

Overriding an Inherited Method

class Holiday(Date):
def __init__(self, month, day, year, name):

call Date constructor to initialize month,day,year
super().__init__(month, day, year)

initialize the non-inherited fields
self.name = name
self.islegal = True # default value

def __repr__(self): # overrides the inherited __repr__
s = self.name
mdy = super().__repr__() # use inherited __repr__
s += ' (' + mdy + ')'
return s

• To see something different when we print a Holiday object,
we override (i.e., replace) the inherited version of __repr__.

 Holiday inherits from Date

CAS CS 111 Boston University, Spring 2025 323

Let Holiday Inherit From Date!

class Holiday(Date):
def __init__(self, month, day, year, name):

call Date constructor to initialize month,day,year
super().__init__(month, day, year)

initialize the non-inherited fields
self.name = name
self.islegal = True # default value

def __repr__(self): # overrides the inherited __repr__
s = self.name
mdy = super().__repr__() # use inherited __repr__
s += ' (' + mdy + ')'
return s

• That's it! Everything else is inherited!

• All other Date methods work the same on Holiday objects
as they do on Date objects!

 Holiday inherits from Date

Inheritance in PS 9

• Player – the superclass

• includes fields and methods needed by all C4 players

• in particular, a next_move method

• use this class for human players

• RandomPlayer – a subclass for an unintelligent computer player

• no new fields

• overrides next_move with a version that chooses at random
from the non-full columns

• AIPlayer – a subclass for an "intelligent" computer player

• uses AI techniques

• new fields for details of its strategy

• overrides next_move with a version that tries to determine
the best move!

CAS CS 111 Boston University, Spring 2025 324

AI for Connect Four

Computer Science 111
Boston University

Inheritance in PS 9

• Player – the superclass

• includes fields and methods needed by all C4 players

• in particular, a next_move method

• use this class for human players

• RandomPlayer – a subclass for an unintelligent computer player

• no new fields

• overrides next_move with a version that chooses at random
from the non-full columns

• AIPlayer – a subclass for an "intelligent" computer player

• uses AI techniques

• new fields for details of its strategy

• overrides next_move with a version that tries to determine
the best move!

CAS CS 111 Boston University, Spring 2025 325

"Arithmetizing" Connect Four

• Our AIPlayer assigns a score to each possible move

• i.e., to each column

• It looks ahead some number of moves into the future
to determine the score.

• lookahead = # of future moves that the player considers

• Scoring columns:

–1: an already full column

0: if we choose this column, it will result in a loss
at some point during the player's lookahead

100: if we choose this column, it will result in a win
at some point during the player's lookahead

50: if we choose this column, it will result in
neither a win nor a loss during the player's lookahead

0 moves are made!

to
move

-1 50 50 50 50 50 50

LA-0 scores for

A Lookahead of 0

'X'

'O'

• A lookahead-0 player only assesses the current board
(0 moves!).

CAS CS 111 Boston University, Spring 2025 326

to
move

LA-1 scores for

A Lookahead of 1

'X'

'O'

• A lookahead-1 player assesses the outcome of only
the considered move.

1 move is made!

A lookahead-1 player
will "see" an

impending victory.

next_move

will return 4!

-1 50 50 50 100 50 50

to
move

LA-1 scores for

A Lookahead of 1

'X'

'O'

• A lookahead-1 player assesses the outcome of only
the considered move.

1 move is made!

-1 50 50 50 50 50100

How do these
scores change if
it is 's turn
instead of 's?

CAS CS 111 Boston University, Spring 2025 327

to
move

LA-2 scores for

A Lookahead of 2

'X'

'O'

• A lookahead-2 player looks 2 moves ahead.

• what if I make this move, and then my opponent makes
its best move?

• note: we assume the opponent looks ahead 2 – 1 = 1 move

A lookahead-2 player
will "see" a way to win

or
a way to block the
opponent's win.

-1 0 0 0 0 050

to
move

LA-0 scores for

Example 2: LA-0

'X'

'O'

• A lookahead-0 player only assesses the current board
(0 moves!).

50 50 50 50 50 -150

CAS CS 111 Boston University, Spring 2025 328

to
move

LA-1 scores for

Example 2: LA-1

'X'

'O'

• A lookahead-1 player assesses the outcome of only
the considered move.

50 50 50 50 50 -150What scores change
with the increased LA?

to
move

LA-2 scores for

Example 2: LA-2

'X'

'O'

• A lookahead-2 player looks 2 moves ahead.

• what if I make this move, and then my opponent makes
its best move?

• note: we assume the opponent looks ahead 2 – 1 = 1 move

-1

CAS CS 111 Boston University, Spring 2025 329

to
move

LA-3 scores for

LA-3!

'X'

'O'

• A lookahead-3 player looks 3 moves ahead.

• what if I make this move, and then my opponent makes
its best move, and then I make my best subsequent move?

• note: we assume the opponent looks ahead 3 – 1 = 2 moves

-1What would change?

to
move

LA-0 scores for

Example 2: LA-0

'X'

'O'

• A lookahead-0 player only assesses the current board
(0 moves!).

50 50 50 50 50 -150same board,
different player,

same LA-0 scores

CAS CS 111 Boston University, Spring 2025 330

to
move

LA-1 scores for

Example 2: LA-1

'X'

'O'

• A lookahead-1 player assesses the outcome of only
the considered move.

50 50 50 50 50 -150What would change?

What Are the LA-2 Scores for ?

• Look 2 moves ahead. Assume the opponent looks 1 move ahead.

A.

B.

C.

to
move

 LA-1 scores

50 50 100 50 50 -10

0 0 100 0 0 -10

50 50 100 50 50 -150

50 50 100 50 50 -150

 no change?

CAS CS 111 Boston University, Spring 2025 331

to
move

LA-3 scores for

Example 2: LA-3

'X'

'O'

• A lookahead-3 player looks 3 moves ahead.

• what if I make this move, and then my opponent makes
its best move, and then I make my best subsequent move?

• note: we assume the opponent looks ahead 3 – 1 = 2 moves

to
move

LA-4 scores for

LA-4!

'X'

'O'

• A lookahead-4 player looks 4 moves ahead.

• assumes the opponent looks ahead 4 – 1 = 3 moves

CAS CS 111 Boston University, Spring 2025 332

to
move

LA-4 scores for

LA-4!

'X'

'O'

• A lookahead-4 player looks 4 moves ahead.

• assumes the opponent looks ahead 4 – 1 = 3 moves

1

2

3

4

0 0 100 0 0 -10Consider column 0:
1. 'O' moves there.
2. 'X' moves to 2.
3. 'O' moves to 4 to

block a diagonal win.
4. 'X' still wins

horizontally!

Same thing holds for the
other col's with new 0s.

col 0 col 1 col 2 col 3 col 4 col 5 col 6

col 0 col 1 col 2 col 3 col 4 col 5 col 6

col 0 col 1 col 2 col 3 col 4 col 5 col 6

col 0 col 1 col 2 col 3 col 4 col 5 col 6

-1

-1

-1

-1

50 50 50 50 50 50LA-0 scores for 'O':

LA-1 scores for 'O':

LA-2 scores for 'O':

LA-3 scores for 'O':

Looks 0 moves into the future

Looks 1 move into the future

Looks 2 moves into the future

Looks 3 moves into the future

What about this?

'X'

'O'
you - self - is

playing 'O'

CAS CS 111 Boston University, Spring 2025 333

def scores_for(self, b):

""" returns a list of scores – one for each col in board b
"""
scores = [50] * b.width

for col in range(b.width):

???

return scores

scores_for – the AI in AIPlayer!

col 2

col 1

col 0

Suppose you're playing
with LA 2...

For each column:

1) add a checker to it

2) ask an opponent with
LA 1 for its scores for the
resulting board!

3) assume the opponent
will makes its best move,
and determine your
score accordingly

4) remove checker!

opp_scores = [0,0,0,0,0,0,0]
max(opp_scores) = 0
scores[0] = 100

A loss for my opponent
is a win for me!

scores_for

opp_scores = [50,50,50,50,50,100,50]
max(opp_scores) = 100
scores[1] = 0

A win for my opponent is a loss for me!

opp_scores = [0,0,0,0,0,0,0]
max(opp_scores) = 0
scores[2] = 100

col 3

opp_scores = [0,0,0,0,0,0,0]
max(opp_scores) = 0
scores[3] = 100

(self) 'X'
possible

next move

CAS CS 111 Boston University, Spring 2025 334

col 6

col 5

col 4

Suppose you're playing
with LA 2...

For each column:

1) add a checker to it

2) ask an opponent with
LA 1 for its scores for the
resulting board!

3) assume the opponent
will makes its best move,
and determine your
score accordingly

4) remove checker!

opp_scores = [0,0,0,0,0,0,0]
max(opp_scores) = 0
scores[4] = 100

scores_for

opp_scores = [50,50,50,50,50,50,50]
max(opp_scores) = 50
scores[5] = 50

A draw for my opponent is a draw for me!

opp_scores =
[50,50,50,50,50,100,50]
max(opp_scores) = 100
scores[6] = 0

(self) 'X'
possible

next move

(self) 'X'Suppose you're playing
with LA 2...

We've tried
all columns!

scores_for

col 6

col 5

col 4col 3
col 2

col 1

col 0

scores[0] = 100

scores[1] = 0

scores[2] = 100 scores[3] = 100 scores[4] = 100

scores[5] = 50

scores[6] = 0

return [100, 0, 100, 100, 100, 50, 0]

possible
next move

CAS CS 111 Boston University, Spring 2025 335

def scores_for(self, b):

""" returns a list of scores – one for each col in board b
"""
scores = [50] * b.width

for col in range(b.width):
if col is full:

use -1 for scores[col]
elif already win/loss:

use appropriate score (100 or 0)
elif lookahead is 0:

use 50
else:

try col – adding a checker to it
create an opponent with self.lookahead – 1
opp_scores = opponent.scores_for(...)
scores[col] = ???
remove checker

scores_for – the AI in AIPlayer!

return scores

(self) 'X'Suppose you're playing
with LA 2...

We've tried
all columns!

scores_for

col 6

col 5

col 4col 3
col 2

col 1

col 0

scores[0] = 100

scores[1] = 0

scores[2] = 100 scores[3] = 100 scores[4] = 100

scores[5] = 50

scores[6] = 0

return [100, 0, 100, 100, 100, 50, 0]

possible
next move

What should
next_move

return?

CAS CS 111 Boston University, Spring 2025 336

Breaking Ties

• possible moves: _______________

• self.tiebreak == 'LEFT': return ____

• self.tiebreak == 'RIGHT': return ____

• self.tiebreak == 'RANDOM': choose at random!

return [100, 0, 100, 100, 100, 50, 0]
0 1 2 3 4 5 6

Recall: Inheritance in PS 9

• Player – a class for human Connect Four players

• includes fields and methods needed by all C4 players

• in particular, a next_move method

• RandomPlayer – a class for an unintelligent computer player

• no new fields

• overrides next_move with a version that chooses at random
from the non-full columns

• AIPlayer – a class for an "intelligent" computer player

• uses AI techniques

• new fields for details of its strategy

• overrides next_move with a version that tries to determine
the best move!

CAS CS 111 Boston University, Spring 2025 337

Using the Player Classes

• Example 1: two human players

>>> connect_four(Player('X'), Player('O'))

• Example 2: human player vs. AI computer player:

>>> connect_four(Player('X'), AIPlayer('O', 'LEFT', 3))

• connect_four() repeatedly calls process_move():

def connect_four(p1, p2):
print('Welcome to Connect Four!')
print()
b = Board(6, 7)
print(b)

while True:
if process_move(p1, b) == True:

return b
if process_move(p2, b) == True:

return b

OOP == Object-Oriented Power!

• Which version of next_move gets called?

• It depends!

• if p is a Player object, call next_move from that class

• if p is a RandomPlayer, call that version of next_move

• if p is an AIPlayer, call that version of next_move

• The appropriate version is automatically called!

def process_move(p, b):
...

col = p.next_move(b)

...

CAS CS 111 Boston University, Spring 2025 338

Beware!

• Correct approach: call the next_move method within the object
to which the variable p refers:

• In theory, we can treat next_move as if it were a function:

• This won't work! Why?

def process_move(p, b):
...

col = Player.next_move(p, b) # wrong!
...

def process_move(p, b):
...

col = p.next_move(b)
...

CAS CS 111 Boston University, Spring 2025 339

Finite-State Machines

Computer Science 111
Boston University

Finite State Machine (FSM)

• An abstract model of computation

• Consists of:

• one or more states (the circles)
• exactly one of them is the start / initial state
• zero or more of them can be an accepting state

• a set of possible input characters (we're using {0, 1})

• transitions between states, based on the inputs

start state
(with "funnel")

accepting state
(double circle)

transitions
(arrows labeled with input)

q0 q1
1

0
q2

0

0
1

1

Make sure that each
state has:
• exactly one outgoing

transition for 0
• exactly one outgoing

transition for 1

CAS CS 111 Boston University, Spring 2025 340

• We can use an FSM to test if an input meets some criteria.

• An FSM accepts an input if the transitions produced by the
input leave the FSM in an accepting state.

• Example: input 111 on the FSM from the last slide

Accepting an Input Sequence

initial state transition
caused by

first 1

transition
caused by

next 1

transition
caused by

final 1

111 is
accepted!

• An FSM rejects an input if the transitions produced by the
input do not leave the FSM in an accepting state.

• Example: input 1101 on the FSM from the last slide

Rejecting an Input Sequence

initial state transition
from first 1

transition
from next 1

transition
from 0

transition
from final 1

1101 is not
accepted

CAS CS 111 Boston University, Spring 2025 341

Which Bit Strings Does This FSM Accept?

start state
(with "funnel")

accepting state
(double circle)

transitions
(arrows labeled with input)

q0 q1
1

0
q2

0

0
1

1

Which of these inputs is accepted?

A. 0000

B. 10010001

C. 00111

D. A and B

E. A and C

q0 q2

1

q1

0

0 0
11

In general, what English phrase describes the
inputs accepted by this FSM?

What does each state say about the
input seen thus far?
q0:
q1:
q2:

CAS CS 111 Boston University, Spring 2025 342

Which of these inputs is accepted?

A. 0101

B. 10010

C. 0011101

D. two or more

E. none of them

q0 q2 q3

1

1

0

In general, what English phrase describes the
inputs accepted by this FSM?

What does each state say about the
input seen thus far?
q0:
q1:
q2:
q3:

q1
0

0

1

1

0

Add the Missing Transitions: Does Not Contain 110

Construct a FSM accepting strings that
do NOT contain the pattern 110.

1 1

start end w/1 end w/11 fail!

Accepted: 1010001, 00111, ... Rejected: 101001100, 00110101, 1110, ...

CAS CS 111 Boston University, Spring 2025 343

Add the Missing Transitions: Multiple-of-3 0s

Construct a FSM accepting strings in which
the number of 0s is a multiple of 3.

0

1

• multiple of 3 = 0, 3, 6, 9, …
• number of 1s doesn't matter
• accepted strings include: 110101110, 11, 0000010
• rejected strings include: 101, 0000, 111011101111
• you may not need all four states!

start

State == Set of Equivalent Input Strings

0 0

mult of 3 +1 zero +2 zeros
1 11

0

• Two input strings are not equivalent if adding the same
characters to each of them produces a different outcome.

• one of the resulting strings is accepted

• the other is rejected

• Example: are '10' and '001' equivalent in mult-of-3-0s problem?

'10' + '00' '1000' (accepted)

'001' + '00' '00100' (rejected)

 '10' and '001' are not equivalent in this problem;
they must be in different states!

CAS CS 111 Boston University, Spring 2025 344

s100

Third-to-Last Bit Is a 1

Construct a FSM accepting only strings in which
the third bit from the end is a 1.

In theory, we could do something like this:

s

s0 s1

s11

s111

s10s01s00

s000 s001 s010 s011 s101 s110

1 1

1

1 1

1

10

0

0 0 0

0

0

Which state should we enter if:
• we're in s111 and the next bit is a 0?
• we're in s100 and the next bit is a 1?

additional transitions are needed!
Why are these accepting states?

examples of
accepted strings
101100
101
00110110

s100

Third-to-Last Bit Is a 1

s

s0 s1

s11

s111

s10s01s00

s000 s001 s010 s011 s101 s110

1 1

1

1 1

1

10

0

0 0 0

0

0

additional transitions are needed!

Examples of equivalent states:
• ø, 0, 00, 000: we're 3 transitions away from an accepting state
• 1, 01, 001: we're 2 transitions away from an accepting state

Construct a FSM accepting only strings in which
the third bit from the end is a 1.

Because we only care about the last 3 bits, 8 states is enough!

CAS CS 111 Boston University, Spring 2025 345

More FSM Practice!

• Construct a FSM accepting bit strings in which:

• the first bit is 0

• the last bit is 1

• Here are the classes of equivalent inputs:

• empty string (q0)

• first bit is 1 (q1)

• first bit is 0, last bit is 0 (q2)

• first bit is 0, last bit is 1 (q3)

Which of these is the correct FSM?

• Construct a FSM accepting bit strings in which:

• the first bit is 0

• the last bit is 1

A.

B.

C.

D.

CAS CS 111 Boston University, Spring 2025 346

Even More Practice!

• Construct a FSM accepting bit strings in which:

• the number of 1s is odd

• the number of 0s is even

• What are the classes of equivalent inputs?

Even More Practice!

• Construct a FSM accepting bit strings in which:

• the number of 1s is odd

• the number of 0s is even

• What are the classes of equivalent inputs?

q0 q1

q2 q3

CAS CS 111 Boston University, Spring 2025 347

Recall: State == Set of Equivalent Input Strings

0 0

mult of 3 +1 zero +2 zeros
1 11

0

• Two input strings are not equivalent if adding the same
characters to each of them produces a different outcome.

• one of the resulting strings is accepted

• the other is rejected

What About This Problem?

• Construct a FSM accepting bit strings that:

• start with some number of 0s

• followed by the same number of 1s

• 01, 0011, 000111, 00001111, etc.

• What are the classes of equivalent inputs?

CAS CS 111 Boston University, Spring 2025 348

What About This Problem?

• Construct a FSM accepting bit strings that:

• start with some number of 0s

• followed by the same number of 1s

• 01, 0011, 000111, 00001111, etc.

• What are the classes of equivalent inputs?

an infinite number of them!

n 0s, followed by (n+1) or more 1s, and/or by an alternation

between groups of 1s and 0s – rejected; can't recover!

n 0s, followed by n 1s – accepted! (and any further input is bad!)

n 0s, followed by (n–1) 1s – need one more 1 to accept

n 0s, followed by (n–2) 1s – need two more 1s to accept

n 0s, followed by (n–3) 1s – need three more 1s to accept
...

• Impossible to solve using a finite state machine!

Limitations of FSMs

• Because they're finite, FSMs can only count finitely high!

Computable with FSMs Uncomputable with FSMs

even/odd sums or differences

multiples of other integers

finite input constraints:

third digit is a 1
third-to-last digit is a 1
third digit == third-to-last digit
etc.

equal numbers of two values

two more 1s than 0s or vice versa

infinite input constraints:

anything modeled by a potentially
unbounded while loop

palindromes

CAS CS 111 Boston University, Spring 2025 349

A Better Machine!

Turing Machine (TM)

CAS CS 111 Boston University, Spring 2025 350

Alan Turing

1946

WWII

Enigma machine ~ The
axis's encryption engine

Bletchley Park

(1912-1954)

Alan Turing

1946

WWII

Enigma machine ~ The
axis's encryption engine

Bletchley Park

(1912-1954)

CAS CS 111 Boston University, Spring 2025 351

A Better Machine!

Turing Machine (TM)

• Electromechanical computation

• Water-based computation

• Integrated circuits

• Tinkertoy computation

• Parallel computers

• Molecular computation

• Quantum computation
http://www.cs.virginia.edu/~robins/The_Limits_of_Quantum_Computers.pdf

http://www.arstechnica.com/reviews/2q00/dna/dna-1.html

So far, all known computational devices can
compute only what Turing Machines can...

(but maybe faster...)

CAS CS 111 Boston University, Spring 2025 352

Algorithm Efficiency
and Problem Hardness

Computer Science 111
Boston University

Algorithm Efficiency
• This semester, we've developed algorithms for many tasks.

• For a given task, there may be more than one algorithm
that works.

• When choosing among algorithms, one important factor
is their relative efficiency.

• space efficiency: how much memory an algorithm requires

• time efficiency: how quickly an algorithm executes

• how many "operations" it performs

CAS CS 111 Boston University, Spring 2025 353

Example of Comparing Algorithms
• Consider the problem of finding a phone number in a

phonebook.

• Let’s informally compare the time efficiency of two algorithms
for this problem.

Algorithm 1 for Finding a Phone Number
def find_number1(person, phonebook):

for p in range(1, phonebook.num_pages + 1):

if person is found on page p:
return the person's phone number

return None

• If there were 1,000 pages in the phonebook, how many pages
would this look at in the worst case?

• What if there were 1,000,000 pages?

CAS CS 111 Boston University, Spring 2025 354

Algorithm 2 for Finding a Phone Number
def find_number2(person, phonebook):

min = 1
max = phonebook.num_pages

while min <= max:
mid = (min + max) // 2 # the middle page
if person is found on page mid:

return the person's number
elif person comes earlier in phonebook:

max = mid - 1
else:

min = mid + 1

return None

• If there were 1,000 pages in the phonebook, how many pages
would this look at in the worst case?

• What if there were 1,000,000 pages?

Searching a Collection of Data
• The phonebook problem is one example of a common task:

searching for an item in a collection of data.

• another example: searching for a value in a list

• Algorithm 1 is known as sequential search.

• Algorithm 2 is known as binary search.

• only works if the items in the data collection are sorted

• For large collections of data, binary search is significantly faster
than sequential search.

CAS CS 111 Boston University, Spring 2025 355

Sorting a Collection of Data
• It's often useful to be able to sort the items in a list.

• Example:

• Many algorithms have been developed for this purpose.

• CS 112 looks at a number of them

• For large collections of data, some sorting algorithms are much
faster than others.

• we can see this by comparing two of them

lst 35 6 19 23 3 47 9 15

lst 3 6 9 15 19 23 35 47

Selection Sort
• Basic idea:

• consider the positions in the list from left to right
• for each position, find the element that belongs there and

swap it with the element that’s currently there

• Example:

15 6 2 12 4

0 1 2 3 4

2

0

2 6 15 12 4

0 1 2 3 4

4

1

2 4 15 12 6

0 1 2 3 4

6

2

2 4 6 12 15

0 1 2 3 4

12

3

Why don’t we need to consider position 4?

CAS CS 111 Boston University, Spring 2025 356

If we're using selection sort to sort
[24, 8, 5, 2, 17, 10, 7]

what will the list look like after we select
elements for the first three positions?

A. [2, 5, 7, 24, 17, 10, 8]

B. [2, 5, 7, 8, 24, 17, 10]

C. [5, 8, 24, 2, 17, 10, 7]

D. [2, 5, 8, 24, 17, 10, 7]

E. none of these

Quicksort

• Another possible sorting algorithm is called quicksort.

• It uses recursion to "divide-and conquer":

• divide: rearrange the elements so that we end up with two
sublists that meet the following criterion:

• each element in the left list <= each element in the right list

example:

• conquer: apply quicksort recursively to the sublists,
stopping when a sublist has a single element

• note: when the recursive calls return, nothing else needs
to be done to "combine" the two sublists!

12 8 14 4 6 13 6 8 4 14 12 13

CAS CS 111 Boston University, Spring 2025 357

Comparing Selection Sort and Quicksort

• Selection sort's running time "grows proportionally to" n2,
(n = length of list).

• make the list 2x longer  the running time will be ~4x longer

• make the list 3x longer  the running time will be ~9x longer

• make the list 4x longer  ???

• Quicksort's running time "grows proportionally to" n log2n.

• we've seen that log2n grows much more slowly than n

• thus, n log2n grows much more slowly than n2

• For large lists, quicksort is significantly faster than selection sort.

We use selection sort to sort a list of length 40,000,
and it takes 3 seconds to complete the task.

If we now use selection sort to sort a list of length 80,000,
roughly how long should it take?

CAS CS 111 Boston University, Spring 2025 358

Algorithm Analysis

• Computer scientists characterize an algorithm's efficiency
by specifying its growth function.

• the function to which its running time is roughly proportional

• We've seen several different growth functions:

log2n # binary search

n # sequential/linear search

n log2n # quicksort

n2 # selection sort

• Others include:
cn # exponential growth

n! # factorial growth

• CS 112 develops a mathematical formalism for these functions.

How Does the Actual Running Time Scale?

• How much time is required to solve a problem of size n?

• assume the growth function gives the exact # of operations

• assume that each operation requires 1 sec (1 x 10-6 sec)

growth
function

problem size (n)
10 20 30 40 50 60

n .00001 s .00002 s .00003 s .00004 s .00005 s .00006 s
n2 .0001 s .0004 s .0009 s .0016 s .0025 s .0036 s
n5 .1 s 3.2 s 24.3 s 1.7 min 5.2 min 13.0 min
2n .001 s 1.0 s 17.9 min 12.7 days 35.7 yrs 36,600 yrs

CAS CS 111 Boston University, Spring 2025 359

Classifying Problems

• "Easy" problems: can be solved using an algorithm with a
growth function that is a polynomial of the problem size, n.

log2n

n

n log2n

n2

n3

etc.

• we can solve large problem instances in a
reasonable amount of time

• "Hard" problems: their only known solution algorithm
has an exponential or factorial growth function.

cn

n!

• they can only be solved exactly for small values of n

Example of a "Hard" Problem: Map Labeling

• Given: the coordinates of a set of point features on a map

• cities, towns, landmarks, etc.

• Task: determine positions for the point features' labels

• Because the point features tend to be closely packed,
we may get overlapping labels.

• Goal: find the labeling with the fewest overlaps

CAS CS 111 Boston University, Spring 2025 360

Map Labeling (cont.)

• One possible solution algorithm: brute force!

• try all possible labelings

• How long would this take?

• Assume there are only 4 possible positions for each point's label:

• for n point features, there are 4n possible labelings

• thus, running time will "grow proportionally" to 4n

• example: 30 points  430 possible labelings

• if it took 1 sec to consider each labeling,
it would take over 36,000 years to consider them all!

exponential time!

upper left upper right

lower left lower right

Can Optimal Map Labeling Be Done Efficiently?

• In theory, a problem like map labeling could have a
yet-to-be discovered efficient solution algorithm.

• How likely is this?

• Not very!

• If you could solve map labeling efficiently,
you could also solve many other hard problems!

• the NP-hard problems

• another example: the traveling salesperson problem
in the optional reading from CS for All

CAS CS 111 Boston University, Spring 2025 361

Dealing With "Hard" Problems

• When faced with a hard problem, we resort to approaches that
quickly find solutions that are "good enough".

• Such approaches are referred to as heuristic approaches.
• heuristic = rule of thumb
• no guarantee of getting the optimal solution
• typically get a good solution

Classifying Problems

• "Easy" problems: can be solved using an algorithm with a
growth function that is a polynomial of the problem size, n.

• we can solve large problem instances in a
reasonable amount of time

• "Hard" problems: their only known solution algorithm
has an exponential or factorial growth function.

• they can only be solved exactly for small values of n

• A third class: Impossible problems!

• can't be solved, no matter how long you wait!

• referred to as uncomputable problems

CAS CS 111 Boston University, Spring 2025 362

	lecture00_intro
	lecture02a_a_getting_started
	lecture02a_b_building_blocks
	lecture02a_in_class
	lecture02b_a_strings
	lecture02b_b_lists
	lecture02b_in_class
	lecture03_b_intro_functions
	lecture03_in_class
	lecture04_a_making_decisions
	lecture04_in_class
	lecture05_a_variable_scope
	lecture05_b_functions_calling_functions
	lecture05_in_class
	lecture06_a_intro_recursion
	lecture06_b_using_recursion_part1
	lecture06_in_class
	lecture07_in_class
	lecture08_a_using_recursion_part2
	lecture08_in_class
	lecture09_design2
	lecture10_a_list_comprehensions
	lecture10_in_class
	lecture11_a_max_min_lists_of_lists
	lecture11_b_ascii_caesar
	lecture11_in_class
	lecture12_algorithm_design
	lecture13a_a_binary_numbers
	lecture13a_b_binary_arithmetic
	lecture13a_in_class
	lecture13b_in_class
	lecture14_a_gates_circuits
	lecture14_in_class
	lecture15_a_minterm_expansion
	lecture15_in_class_spring
	lecture17_a_definite_loops
	lecture17_b_cumulative_computations
	lecture17a_16_in_class_spring
	lecture17b_in_class_spring
	lecture18_a_indefinite_loops
	lecture18_in_class
	lecture19_loop_design
	lecture20_a_nested_loops
	lecture20_in_class
	lecture24_a_references
	lecture24_in_class
	lecture25_a_2D_lists
	lecture25_in_class
	lecture26_a_using_objects
	lecture26_b_files
	lecture26_in_class
	lecture27_a_classes
	lecture27_b_methods
	lecture27_in_class
	lecture28_a_more_oop
	lecture28_in_class
	lecture29_dictionaries
	lecture30_C4_board
	lecture31_inheritance
	lecture32_ai
	lecture33_fsm
	lecture34_efficiency
	Blank Page

