CAS CS 111: Introduction to Computer Science I
Boston University, Spring 2022

Syllabus

Description: The first course for computer science majors and anyone seeking a rigorous introduction. Develops computational problem-solving skills by programming in the Python language, and exposes students to variety of other topics from computer science and its applications. Carries MCS divisional credit in CAS. Fulfills a single unit in each of the following BU Hub areas: Quantitative Reasoning II, Creativity/Innovation, Critical Thinking. **No prerequisites.**

Instructors
A1/C1: David G. Sullivan, Ph.D. (dgs@cs.bu.edu)
B1: Vahid Azadeh-Ranjbar, Ph.D. (vranjbar@bu.edu)

See the course website for instructor, TA and CA office hours.

Teaching Assistants (TAs)
Sam DeCosta (samdeco@bu.edu)
Prathana Dhungel (pd29@bu.edu)
Helen Feng (hlfeng@bu.edu)
Kristen Lamb (krislamb@bu.edu)
Devon Lewis (lewisd@bu.edu)
Stephanie Lieu (slieu@bu.edu)

Course Assistants (CAs)
We are fortunate to have a number of undergraduate course assistants (CAs) as members of the course staff. They will be assisting you in the labs and holding office hours each week. See the course website for their names and contact info.

Lectures and Labs

lectures:
section A1: MWF, 10:10-11:00 am
section B1: MWF, 11:15 am-12:05 pm
section C1: MWF, 12:20-1:10 p.m.

lab: a weekly, one-hour session; see your schedule for the time and location

Important: You must also be able to take the midterm exams, which will be held on two Wednesday evenings (3/2 and 4/6) from 6:30-7:45 p.m. We are not scheduled to meet on any other Wednesday evenings.

COVID-19-Related Class Expectations
To promote a safe learning environment, students must:

- comply with the University mandates for COVID-19 vaccination, screening, testing and contact tracing
- wear a face covering at all times during class; it should fully cover both your mouth and your nose.
Course Website: http://www.cs.bu.edu/courses/cs111
In addition, announcements and some course materials will be posted Blackboard.

Requirements and Grading
1. Weekly problem sets and final project (30% of the final grade)
2. Exams: two midterm exams (30%) and a final exam (30%)
3. Participation (10%; see below)

To pass the course, you must earn a passing grade on each of components 1 and 2.

Collaboration Policy
You are strongly encouraged to collaborate with one another in studying the lecture materials and preparing for the exams. Problem sets will include:

- *individual-only* problems that you must complete on your own
- *pair-optional* problems that you may complete alone or with a partner.

For both types of problems, you may discuss ideas and approaches with others (provided that you acknowledge this in your solution), but such discussions should be kept at a high level, and should not involve actual details of the code or of other types of answers. You must complete the actual solutions on your own (or, in the case of a pair-optional problem, with your partner if you choose to use one).

Rules for working with a partner on pair-optional problems:

- You may not work with more than one partner on a given assignment. (However, you are welcome to switch partners between assignments.)
- You may not split up the work and complete it separately.
- You must work together (at the same computer or via a Zoom meeting) for all problems completed as a pair, and your work must be a collaborative effort.
- You and your partner must both submit the same solution to each problem that you did as a pair, and you must clearly indicate that you worked on the problem as a pair by putting your partner's name at the top of the file.

Academic Misconduct
We will assume that you understand BU’s Academic Conduct Code:
http://www.bu.edu/academics/policies/academic-conduct-code
You should also carefully review the CS department's page on academic integrity:
http://www.bu.edu/cs/undergraduate/undergraduate-life/academic-integrity

Prohibited behaviors include:

- copying all or part of someone else's work, even if you subsequently modify it; this includes cases in which someone tells you what to write for your solution
- viewing all or part of someone else's work (with the exception of work that you and your partner do together on a pair-optional problem)
- showing all or part of your work to another student (with the exception of work that you and your partner do together on a pair-optional problem)
- consulting solutions from past semesters, or those found online or in books
- posting your work where others can view it (e.g., online)
- receiving assistance from others or collaborating with others during an exam, or consulting materials except those that are explicitly allowed.
Incidents of academic misconduct will be reported to the Academic Conduct Committee (ACC). The ACC may suspend/expel students found guilty of misconduct. **At a minimum, students who engage in misconduct will have their final grade reduced by one letter grade (e.g., from a B to a C).**

Other Policies

Laptops: Students taking CS courses are expected to have a laptop capable of running a currently supported version of Microsoft Windows, Mac OS X, or Linux. See this page for more info: https://www.bu.edu/cs/undergraduate/undergraduate-life/laptops

Late problem sets: Problem sets must be submitted by the date and time listed on the assignment (typically by 11:59 p.m.). There will be a 10% deduction for submissions up to 24 hours late. **We will not accept any homework that is more than 24 hours late.** Plan your time carefully, and don’t wait until the last minute so you will have time to ask questions and obtain assistance from the course staff.

Pre-lecture preparation: To help you prepare for lecture, you will typically be required to watch one or two short videos and to complete a short online quiz. Your work on these quizzes will not typically be graded for correctness, but it should demonstrate that you have adequately prepared for lecture. The pre-lecture quizzes must be submitted by the specified date and time; **late submissions will not be accepted.**

The participation portion of your grade will be based on your completion of the pre-lecture quizzes and in-lecture questions, and on your consistent participation in the lab sessions. You will receive full credit for participation if you answer at least 85% of the online lecture questions and if you participate in at least 85% of the lab sessions. If you complete x% of the questions or participate in x% of the lab sessions for a value of x that is less than 85, you will get x/85 of the possible points.

The final exam will replace your lowest problem-set grade if doing so helps your final grade. (The final-project grade cannot be replaced.) The final exam will also replace your lowest midterm-exam grade if doing so helps your final grade. Regardless of whether any such replacements occur, the final exam itself will always count for at least 30% of the final grade.

The final grades are not curved. The performance of the class as a whole is taken into account in assigning letter grades, but this can only improve your grade, not harm it.

Extensions and makeup exams will only be given in documented cases of serious illness or other emergencies. You cannot redo or complete extra work to improve your grade. Incompletes will not be given except in extraordinary circumstances.

Course Materials

- **Required:** CS 111 Coursepack. This contains all of the lecture notes for the course. More detail will be provided in class and in Lab 0.
- **Optional:** *CS for All* by Alvarado, Dodds, Kuenning, and Libeskind-Hadas (Franklin Beedle, 2019). This book is *not* required.
- **Required:** We will be using the Top Hat Pro platform. More detail will be provided in class.
<table>
<thead>
<tr>
<th>week</th>
<th>lecture dates</th>
<th>topics, exams, assignments, and special dates</th>
</tr>
</thead>
</table>
| 0 | 1/21 | Course overview and introduction
 | No labs this week. |
| 1 | 1/24, 1/26, 1/28 | Getting started in Python
 | Data types and expressions
 | Strings and lists
 | A first look at functions
 | **Problem Set 0 (all) due on 1/30** |
| 2 | 1/31, 2/2, 2/4 | Making decisions (conditional execution)
 | Functions (cont.)
 | Local and global variables; the runtime stack
 | Recursion
 | 2/2: last day to add a class
 | **Problem Set 1, part I due on 2/3**
 | **Problem Set 1, part II due on 2/6** |
| 3 | 2/7, 2/9, 2/11 | Recursion (cont.)
 | List comprehensions
 | Recursive design
 | **Problem Set 2, part I due on 2/10**
 | **Problem Set 2, part II due on 2/13** |
| 4 | 2/14, 2/16, 2/18 | Lists of lists; encryption and decryption
 | Algorithm design
 | Representing information
 | **Problem Set 3, part I due on 2/17**
 | **Problem Set 3, part II due on 2/20** |
| 5 | 2/22, 2/23, 2/25 | Binary addition
 | Gates and circuits
 | Minterm expansion
 | No lecture on 2/21 (Presidents’ Day)
 | Lecture on 2/22 (Mon. schedule)
 | No labs this week.
 | 2/24: last day to drop without a ’W’
 | **Problem Set 4, part I due on 2/24**
 | **Problem Set 4, part II due on 2/27** |
| 6 | 2/28, 3/2, 3/4 | Arithmetic circuits
 | Loops and imperative programming
 | Cumulative computations
 | **Midterm 1 on 3/2**
 | Spring break |
| 7 | 3/14, 3/16, 3/18 | Loops (cont.); design using loops
 | Nested loops
 | **Problem Set 5, part I due on 3/17**
<pre><code> | **Problem Set 5, part II due on 3/20** |
</code></pre>
<table>
<thead>
<tr>
<th>Week</th>
<th>Dates</th>
<th>Topics and Due Dates</th>
</tr>
</thead>
</table>
| 8 | 3/21, 3/23, 3/25 | References; mutable vs. immutable data
2-D lists
Object-oriented programming
File processing
Problem Set 6, part I due on 3/24
Problem Set 6, part II due on 3/27 |
| 9 | 3/28, 3/30, 4/1 | Classes: creating your own types of objects
Dictionaries
4/1: last day to drop a class with a 'W'
Problem Set 7, part I due on 3/31
Problem Set 7, part II due on 4/3 |
| 10 | 4/4, 4/6, 4/8 | Classes (cont.)
Midterm 2 on 4/6
Problem Set 8 (all) due on 4/10 |
| 11 | 4/11, 4/13, 4/15 | Inheritance
Games and AI
Overview of the final project
Problem Set 9, part I due on 4/14
Problem Set 9, part II due on 4/17 |
| 12 | 4/20, 4/22 | Finite-state machines
No lecture on 4/18 (Patriots' Day)
Labs will be held; Wed. is a Monday schedule
Final-project milestone due on 4/24 |
| 13 | 4/25, 4/27, 4/29 | Finite-state machines (cont.)
Algorithm efficiency
Problem Set 10 due on 4/28 |
| 14 | 5/2, 5/4 | Algorithm efficiency (cont.)
Problem "hardness"; Course wrap-up
Final project due on 5/3
5/5-5/8: Study period |
| 15 | | Final exam: time and date TBD
Please wait until your instructor informs you of the date. The initial date posted by the Registrar will **not** be correct.
Make sure that you are available for the entire exam period – up to and including Friday evening, May 13! |