A bit of background:

At the time of this article (1952), the
computational community was in the midst
of a debate on how software, in general,
would be organized.

All programs at the time were simply
sequences of assembly instructions written
and tailored to accomplish a particular task.

The idea of writing reusable functions was
new and under debate: some (like von
Neumann) didn't like the idea. Hopper calls
them "subroutines" or "type A routines"

The idea of having the computer itself
generate reusable functions from higher-
level code was only a very early idea -- and
one Hopper helped form. She calls these
"type B routines." "C" and "D" represent yet
higher-level routines, left unspecified.

Up to this point in the article, Hopper has
described arguments and technical details in
favor of her "type A routines" (reusable
functions) and "type B routines" (computer-
compiled reusable functions). She concludes
by jumping into the debates of the day:

It is here that the question can best be an-
swered concerning a liking for or an aversion to
subroutines. Since the use of subroutines in this
fashion increases the abilities of the computer,
the question becomes meaningless and trans-
forms into a question of how to produce better
subroutines faster. However, balancing the ad-
vantages and disadvantages of using subrou-
tines, among the advantages are:

1. relegation of mechanical jobs such as memory
allocation, address modification, and tran-
scription to the UNIVAC;

2. removal of error sources such as programming
errors and transcription errors;

. conservation of programming time;

. ability to operate on operation;

. duplication of effort is avoided, since each pro-
gram in turn may become a subroutine.

O e W

Only two disadvantages are immediately evi-
dent. Because of a standardization, a small amount
of time is lost in performing duplicate data trans-
fers which could be eliminated in a tailor-made
routine. In base load problems, this could become
serious. Even in this case, however, it is worth-
while to have UNIVAC produce the original pro-
gram and then eliminate such duplication before
rerunning the problem. The second disadvantage
should not long remain serious. It is the fact that,
if a desired subroutine does not exist, it must be
programmed and added to the library. This will
be most likely to occur in the case of input and
output editing routines until a large variety is
accumulated. This situation also emphasizes the
need for the greatest generality in the construc-
tion of subroutines.

Several directions of future developments in
this field can be pointed out. It is to be hoped that
reports will be presented on some of them next
September.

More type A compiling routines will be de-
vised: those handling commercial rather than
mathematical programs; some special purpose
compiling routines such as a routine which will
compute approximate magnitudes as it proceeds
and select sub-routines accordingly. Compiling
routines must be informed of the average time
required for each sub-routine so that they can
supply estimates of running time with each pro-
gram. Compiling routines can be devised which
will correct the computational procedure submit-
ted to produce the most efficient program. For ex-
ample, if both sin 6 and cos 6 are called for in a
routine, they will be computed more rapidly si-
multaneously. This will involve sweeping the
computer information once to examine its struc-
ture.

Type B routines at present include linear op-
erators. More type B routines must be designed.
It can scarcely be denied that type C and D rou-
tines will be found to exist adding higher levels
of operation. Work is already in progress to pro-
duce the formulas developed by type B routines
in algebraic form in addition to producing their
computational programs.

Thus by considering the profesional program-
mer (not the mathematician), as an integral part



of the computer, it is evident that the memory of
the programmer and all information and data to
which he can refer is available to the computer
subject only to translation into suitable lan-
guage. And it is further evident that the com-
puter is fully capable of remembering and acting
upon any instructions once presented to it by the
programmer.

With some specialized knowledge of more ad-
vanced topics, UNIVAC at present has a well
grounded mathematical education fully equiva-
lent to that of a college sophomore, and it does

G. M. Hopper + Education of a Computer

not forget and does not make mistakes. It is hoped
that its undergraduate course will be completed
shortly and it will be accepted as a candidate for
a graduate degree.



