
4nnals Hist Comput (1988) 9:271-281 0 American Federation of information Processing Societies

The Education of a Computer*
GRACE MURRAY HOPPER
with an introduction by David Gries

Categories and Subject Descriptors: K.2 [Computing Milieux]: History of
Computing-hardware, software, systems; 0.3 [Programming Languages]:
Processors-compilers, interpreters
General Terms: Languages
Additional Terms: Subroutine, Short-order Code

Introduction language existed, perhaps, but not much else. In

Reading an old article in computer science can be
this paper, Grace Hopper tells the world about

amusing and enlightening. The old article may
the tools and techniques she and others at Rem-

often seem quaint, in the way it uses some of our
ington Rand were attempting to create for the

well-worn and defined terms; or naive, in the way
UNIVAC, so that “the programmer may return to
being a mathematician.”

it treats some of the topics we now know so much
about; or a bit off the mark, in the way it at-

Hopper anticipates well what will happen-

tempts to solve a problem whose solution we now
even, perhaps, artificial intelligence-when she

know. Yet, we read the article with a sense of
says, “it is the current aim to replace, as far as

appreciation, respect, and even awe, as we reflect
possible, the human brain by an electronic digi-

on the times in which it was written, how little
tal computer.” She is one of the first to recognize

was then known, and the contribution it makes.
that the software and not the hardware will turn

We can see-in the full development of some really
out to be most expensive: “With the computer paid

important idea, or perhaps just hints of things to
for, the cost and time of programming comes to

come-a sign of some concept struggling to emerge
the notice of vice-presidents and project direc-

but still needing a few more years, we know, be-
tors.” She looks for the day when the mathema-

fore it has grown enough to get out of its cocoon,
tician won’t have to know the instruction codes

We can sense a bit of what the field was like in
of the machine, and, although her programs deal

those days, gain an appreciation for the past, and
with mathematics, she foresees the same kind of

understand in some small way the problems with
applications in commercial programming (which

which people were faced.
in those days was essentially nonexistent).

Grace Hopper’s paper The Education of a
On a more technical level, there are glimmer-

Computer, presented in 1952 at one of the first
ings of many tools and techniques concerning

conferences of the Association for Computing
compilers that we now accept as commonplace:

Machinery, is one such gem. Thirty-five years ago
the subroutine library, complete with specifica-

there were no programming languages, and con-
tions; the translation of a formula into its ele-

sequently no compilers. There were not even nice
mentary components, the prime function of a

assembly languages as we now know them today,
compiler; the subroutine interface and relative

so no assemblers. A primitive symbolic machine
addressing, which obviates the need to recompile
it for each use; the linking loader; and code op-
timization. Hopper even anticipates symbolic

*Reprinted with permission from the Proceedings of the
manipulation. In discussing the processing of a

Association for Computing Machinery Conference, Pitts- function f(x), she says “the formulas for the der-
burgh, Pennsylvania, May 1952. ivatives of f(x) will be derived by repeated ap-

Annals of the History of Computing, Volume 9, Number 3/4, 1988 l 271

G. M. Hopper l Education of a Computer

plications of [a compiling routine of type] Bl” and W. Mauchly of Eckert-Mauchly and M. V. Wilkes
declares later on that more type B routines must of the University of Cambridge. From Aiken came,
be designed. in 1946, the idea of a library of routines de-

Hopper builds her paper around a diagram- scribed in the Mark I manual, and the concepts
matic model of a production line consisting of an embodied in the Mark III coding machine, from
operation, with a control, a set of tools, input, and Mauchly, the basic principles of the “short-order
output. She adeptly uses it to model the mathe- code” and suggestions, criticisms, and untiring
matician, the computer, and a compiling pro- patience in listening to these present attempts;
gram, as well as a composition of all three that from Wilkes, the greatest help of all, a book on
describes a complete human-computer system. the subject. For those of their ideas which are in-
Her diagrams are reminiscent (actually, the other eluded herein, I most earnestly express my debt
way around!) of the diagrams used to show how and my appreciation.
a compiler is bootstrapped or moved from one
machine to another.

Enjoy this paper, while learning about the be- /n troduction

ginnings of our field. Don’t expect to see all words To start at the beginning, Figure 1 represents the
used as they are today. Even the notion of the configuration of the elements required by an op-
programmer and his task may be different (Hop- eration: input to the operations; controls, even if
per wants “the compiling routine [to be] the pro- they be only start and stop; previously prepared
grammer and perform all those services neces- tools supplied to the operation; and output of
sary to the production of a finished program”; the products, which may, in turn, become the input
mathematician supplies the formula and some of another operation. This is the basic element of
control information). The phrases and terminol- a production line; input of raw materials, con-
ogy are based on the notions and technology of trolled by human beings, possibly through in-
the day, which were far removed from ours, with struments; supplied with machine tools; the op-
our massive software system and proliferation of eration produces an automobile, a rail, or a can
computers into all aspects of our lives. This pa- of tomatoes.
per, by one of the pioneers, will give you a re- The armed services, government, and industry
markable glimpse of the past. are interested not only in creating new opera-

David Gries
tions to produce new results, but also increasing
the efficiency of old operations. A very old op-
eration, Figure 2, is the solution of a mathemat-

David Gries is a Professor of Computer Science ical problem. It fits the operational configura-
at Cornell University, previous chairman of the tion: input of mathematical data; control by the
Computer Science Department, and current mathematician; supplied with memory, formu-
chairman of the Computer Research Board. las, tables, pencil, and paper; the brain carries on
When Grace Hopper was first presenting this the arithmetic, and produces results.
paper, he was finishing eighth grade at P.S. 107 It is the current aim to replace, as far as pos-
in New York and had not yet heard the word sible, the human brain by an electronic digital
“computer.” He is author of text Compiler computer. That such computers themselves fit this
Construction for Digital Computers (1971), one of configuration may be seen in Figure 3. (With your
the first texts on compilers and for almost 10 permission, I shall use UNIVAC as synonymous
years a major text on the subject. with electronic digital computer; primarily be-

cause I think that way, but also because it is con-
venient.)

The Education of a Computer Adding together the configurations of the hu-
man being and the electronic computer, Figure 4

While the materialization is new, the idea of shows the solution of a problem in two levels of
mechanizing mathematical thinking is not new. operation. The arithmetical chore has been re-
Its lineage starts with the abacus and descends moved from the mathematician, who has become
through Pascal, Leibnitz, and Babbage. More im- a programmer, and this duty assigned to the UNI-

mediately, the ideas here presented originate from VAC. The programmer has been supplied with a
Howard H. Aiken of Harvard University, John “code” into which he translates his instructions

272 l Annals of the History of Computing, Volume 9, Number 3/4, 1988

G. M. Hopper l Education of a Computer

Figure 1. An operation.

where she earned an M.A. in 1930, and a Ph.D.
in 1934. She also attended New York University
as a Vassar Faculty Fellow in 194 1.

In December 1943 she was sworn in, and in
May 1944, she joined the U.S. Naval Reserve
(USNR) and attended the USNR Midshipman
School (W). After graduation she was
commissioned a Lieutenant (JG) and ordered to
the Bureau of Ordinance Computation Project at
Harvard, where she learned to program
computers. In 1946, she was returned to inactive
duty, only to be recalled to active duty in August
1967. She was appointed on 8 November 1983
as Commodore; the title of that grade changed to
Rear Admiral on 8 November 1985.

Figure 2. Solution of problem.

She also worked as a senior mathematician at
Eckert-Mauchly Computer Corp. in Philadephia,
and helped program the UNIVAC I, first commercial
large-scale electronic computer. She remained
with the company when it was bought by
Remington Rand and later merged with Sperry
Corporation.

At her retirement ceremony aboard the U. S.S.
Constitution in Boston, Navy Secretary John F,
Lehmann Jr. presented Admiral Hopper with the
Distinguished Service Medal. More than 40
colleges and universities have conferred honorary
degrees on Admiral Hopper, and she has been
honored by her peers on several occasions. She
was the recipient of the first Computer Sciences
“Man of the Year” award presented by the Data

1 UNwPER 1 bF;m

UNISERVO

Figure 3. UNIVAC system.

to the computer. The “standard knowledge” de-
signed into the UNIVAC by its engineers, consists
of its elementary arithmetic and logic.

This situation remains static until the novelty
of inventing programs wears off and degenerates
into the dull labor of writing and checking pro-
grams. This duty now looms as an imposition on
the human brain. Also, with the computer paid
for, the cost of programming and the time con-
sumed, comes to the notice of vice-presidents and
project directors. Common sense dictates the in-

Processing Management Association. Her en try
in “Who’s Who” requires 34 lines to thumbnail

sertion of a third level of operation, Figure 5.

her accomplishments, appointments, and honors.
The programmer may return to being a math-

ematician. He is supplied with a catalogue of

Annals of the History of Computing, Volume 9, Number 3/4, 1988 l 273

G. M. Hopper l Education of a Computer

r---------- ______- -- --____ ------- ------------ ---------7
I I
I OP. I I
I PROGRAMMER I

I I
I I
b I
I r---------------------------,--

Figure 4. Solution of a problem.

subroutines. No longer does he need to have
available formulas or tables of elementary func-
tions. He does not even need to know the partic-
ular instruction code used by the computer. He
needs only to be able to use the catalogue to sup-
ply information to the computer about his prob-
lem. The UNIVAC. on the basis of the information

supplied by the mathematician, under the con-
trol of a “compiling routine of type A,” using sub-
routines and its own instruction code, produces a
program. This program, in turn directs the UNI-
VAC through the computation on the input data
and the desired results are produced. A major re-
duction in time consumed and in sources of error

- .- .- !- ‘- .__ .- .- .- .- .- .- __ .- .-.- .-
OP. II

_ _- .- .- .- .- .- -

iop,L ‘1.j ,-----i l’“i”‘. __ _,__ __ __(__ -[_,__ __ _,

,I., .,,\, >.,, ,..,. ‘I - !
i T ! !
iA; I I

I I
! 1 TASK I! I ! I

I
CATALOGUE

I
[1 ROUTINES I!

I ! 1

Figure 5. Compiling routines and subroutines.

274 l Annals of the History of Computing, Volume 9, Number 3/4, 1988

G. M. Hopper l Education of a Computer

has been made. If the library is well-stocked, pro- derivatives. This information processed under a
gramming has been reduced to a matter of hours,
rather than weeks. The program is no longer sub-

compiling routine of Type A yields a program to
direct the computation.

ject either to errors of transcription or of un-
tested routines.

Specifications for computer information, a cat-
alogue, compiling routines, and subroutines will
be given after adding another level to the block
diagram. As Figure 5 stands the mathematician
must still perform all mathematical operations,
relegating to the UNIVAC programming and com-
putational operations. However, the computer in-
formation delivered by the mathematician no
longer deals with numerical quantities as such.
It treats of variables and constants in symbolic
form together with operations upon them. The
insertion of a fourth level of operation is now
possible, Figure 6. Suppose, for example, the
mathematician wishes to evaluate a function and
its first n derivatives. He sends the information
defining the function itself to the UNIVAC. Under
control of a “compiling routine of type B,” in this
case a differentiator, using task routines, the
UNIVAC delivers the information necessary to
program the computation of the function and its
derivatives. From the formula for the function,
the UNIVAC derives the formulas of the successive

Expansion makes this procedure look, and seem,
long and complicated. It is not. Reducing again
to the two-component system, the mathematician
and the computer, Figure 7 presents a more ac-
curate picture of the computing system.

Presuming that code, program, input data, and
results are familiar terms, it remains to define
and specify the forms of information and routines
acceptable to this system. These include

catalogue,
computer information,
subroutine,
compiling routines, type A and B,
and task routines.

Catalogue and Computer Information

As soon as the purpose is stated to make use of
subroutines, two methods arise. In one, the pro-
gram refers to an immediately available subrou-
tine, uses it, and continues computation. For a
limited number of subroutines, this method is

._._.________~.___._______________
/ OP. II

,-.-.-.-.-._._.-. _____._.___.___.~_._.____________,~,

lop’ -1 j 1-1

!____- .--.-----.-.--.-.-.-.-.-.-i.-.-.-.-.-.-.--~

t
L .-.-.-.- _ -.-.- -_ -.-.-.-.-.-. --..

~-.________---.-._.____________________-.-.-.-.
1 OP. III

b INFORM AT ION

I
..-.----.--.L.-.-

OP. IY i j
I

Figure 6. Compiling Type B and task routines.

Annals of the History of Computing, Volume 9, Number 3/4, 1988 l 275

G, M. Hopper l Education of a Computer

COMPILING A

I
I I

-_-----__---_--------~,-----~--~~4

INFORMATION

I
I
I
I
I SUBROUTINES
I
8
I
I
I
I
I
L-----------------.----I-___L-___I. -__------------

Figure 7. Computing system.

feasible and useful. Such a system has been de-
veloped under the nickname of the “short-order
code” by members of the staff of the Computa-
tional Analysis Laboratory [at Eckert-Mauchly
Computer Corporation].

The second method not only looks up the sub-
routine, but translates it, properly adjusted, into
a program. Thus, the completed program may be
run as a unit whenever desired, and may itself
be placed in the library as a more advanced sub-
routine.

Each problem must be reduced to the level of
the available subroutines. Suppose a simple
problem, to compute

As presented in Figure 9, however, this infor-
mation is not yet sufficiently standardized to be
acceptable to a compiling routine. Several prob-
lems must be considered and procedures defined.

The operations are numbered in normal se-
quence and this number becomes part of the com-
puter information. Thus when it is desired to
change the normal sequence, the alternate des-
tination is readily identified. The compiling rou-
tine translates these operation numbers into in-
structions in the coded program. Two fundamental
situations arise, the alternate destination either

y = e-x2 sin cx, CONTROL

using elementary subroutines. Each step of the
formula falls into the operational pattern, Figure

?I

8; that is,
p-yq ,~I ,pr-1

u = x2
u = e-u

&I
STANDARD

v = cx CONSTANTS

V = sin v
y=uv. Figure 8. Operation.

276 * Annals of the History of Computing, Volume 9, Number 3/4, 1988

G. M. Hopper l Education of a Computer

y = e-x
2
sin cx

OPERATION

NUMBER
OPERATION ARGUMENTS RESULTS I CONTROL

TRANSFER 0,01,99,2,5

bOi 1(1,2,3,4,5)

x,Ax,Lx ,n,c
1 ,2,3,10,6

u=x 2

4

X"

apn

x2
1 .lO

@-u
x-e

U

4

U = ecu

5 I

CqP

amc

u = cx

7 I
c,x

6,1

sin v

tso

V V = sin v

7 8

y = uv
9

0;; ‘I2,

x+Ax--+x xiL,-+l , xcL,-+ 8

1 8 1

@
am0

u, v

518

x, Y
1,g

x, Ax, Lx
~,2,3

6
EDIT

yr=

e-+L

daL

8
STOP

ust

Figure 9. Example.

precedes the operation under consideration or fol-
lows it, by-passing several intermediate opera-
tions. In both cases, it is necessary only to have
the compiling routine remember where it has
placed each subroutine or that a transfer of con-
trol to operation h has been indicated. In any event
the mathematician need only state, “go to oper-
ation K,” and the compiling routine does the rest.

The symbols to be used for the arguments and
results, as well as for the operations, are of next
concern. One mathematician might write

y z e-2 sin cx

and another

u = .P2 sin gv.

The obvious solution proves best. Make a list of
arguments and results and number them. (This
amounts to writing all constants and variables as
xi.) The order is immaterial, so that forgotten
quantities can be added at the end.

1 x x1 6 c x6
2 Ax x2 7 v x7
3 L. X8 8 v x8
4 u xq 9 Y x9
5 u xg 10 n Xl0

As symbols for the operations and subroutines,
a system of “call-numbers” is used. These alpha-
betic characters represent the class of subrou-
tines. Following Wilkes’ example, these symbols
are partially phonetic; that is, a = arithmetic, t
= trigonometric, and x = exponential; amc =

Annals of the History of Computing, Volume 9, Number 3/4, 1988 4 277

G. M. Hopper l Education of a Computer

arithmetic, multiplication by a constant, z - e = ecu,
ts0 = trigonometric, sine. Placed with the call-,
numbers, n, f, or s, indicates normal, floating, or
stated (fixed) decimal point. Other letters and
digits indicate radians or degrees for angles,
complex numbers, etc. These call-numbers are
listed in the catalogue together with the order in
which arguments, controls, and results are to be
stated. The general rules for the description of an
operation are:

1. call-numbers,
2. number of operation,
3. arguments in order of appearance in formula,

variables preceding constants,
4. controls, normal exit if altered, followed by al-

ternate exits in order of appearance in sub-
routine,

5. results, in order of appearance. __

All exceptions to the general rules are listed in
the catalogue.

The problem has been reduced to computer in-
formation. The exact positions of characters in
words as submitted to the UNIVAC has been omit-
ted since it hardly seems of general interest. The
preparation of information might be called cre-
ating a “multiple-address code,” by which any
number of arguments may enter an operation, to
produce any number of results, and to proceed di-
rectly to the next operation unless routed to any
one of several other operations.

Subroutines

1. call-number;
2. arguments, the destination of the arguments

within the subroutine, expressed in the rela-
tive coding of the subroutine;

3. non-modification indicators locating constants
embedded in the subroutine which are not to
be altered;

4. results, the positions of the results within the
subroutine, expressed in relative coding.

Each subroutine is arranged in a standard pat-
tern.

Entrance line. The first line of subroutine is he. The first line of subroutine is
its entrance line, thus in relative coding it is line, thus in relative coding it is
number one. It is the first line of the subroutine lt is the first line of the subroutine
transferred to a program, and it contains an in- 1 a program, and it contains an in-
struction transferring control to the first action isferring control to the first action
line.

Exit lines. The second line of a subroutine is The second line of a subroutine is
its normal exit line. This contains an instruction ILS normal exit line. This contains an instruction
transferring control to the line following the last
line of the subroutine. Unless an alternate trans-
fer of control is desried, all exists from the sub-
routine are referred to the normal exit line. Al-
ternate exit lines, involving transfers of control
from the usual sequence, follow the normal exit
line in a predetermined order as listed in the cat-
alogue.

Arguments. The exit lines are followed by
spaces reserved for the arguments arranged in
predetermined order.

Results. The results, also in specified order,
follow the arguments.

Constants. The results are followed, when pos-
sible, by any arbitrary constants peculiar to the
subroutine. When the subroutine has been com-
pounded from other subroutines, groups of con-
stants may also appear embedded in the subrou-
tine. These are cared for by the non-modification
information.

The first action line appears next in the sub-
routine. Its position in the relative coding is de-
fined by the entrance line. No instruction line may
precede this line.

The sequence assigned to the entrance and exit
lines, arguments, results, and constants is arbi-
trary. It is convenient. All that is required is that
a sequence be established and that the computer
recognize this sequence.

For convenience in manipulation, a certain
number of elementary subroutines have been
combined to form a sub-library. These include

a = arithmetic

Each subroutine in the library is expressed in
coding relative to its entrance line considered as
001. They are, in general, programmed and coded
for maximum accuracy and minimum computing
time. They may store within themselves con-
&ants peculiar to themselves. They may also make
use of certain “permanent constants” read in with
every program. These permanent constants oc-
cupy a reserved section of the memory and are
called for by alphabetic memory locations, a trick,
at present peculiar to UNIVAC. Thus, these ad-
dresses are not modified in the course of posi-
tioning the subroutine in a program. They in-
elude such quantities as 1/27r: rr/4,log,,e, ~0, .2,
.5, and the like.

Each subroutine is preceded by certain infor-
mation, matching and supplementing that sup-
plied by the mathematician: b = transfer of data

278 l Annals of the History of Computing, Volume 9, Number 3/4, 1988

G. M. Hopper l Education of a Computer

c = counters treatment to such values as zero and infinity, and
h = hyperbolic functions provide signals and printed information when the
i = input routines capacity of the computer is exceeded.
I = logarithmic functions An elementary subroutine consists of a
0 = output routines threading routine accompanied by one or more
p = polynomials kernel routines. Hence, the threading routines are
r = roots and fractional exponents similar to the subroutines in form having at the
t = trigonometric functions beginning an entrance line, exit lines, (usually
u = control transfers undetermined until the kernel routine is sup-
w = storage routines plied), arguments, results, and constants. At the
x = exponential functions end of a threading routine are certain lines pre-
y = editing routines pared to “overlap” the first section of the kernal

routine. This overlap contains

As subroutines are added to extend the li-
brary, it becomes more useful and programming 1. the entrance line of the kernal routine;

time is further reduced. 2. the exit line of the kernel routine set-up by

Indeed, the day may come when the elemen- threading routine;

tary subroutines are rarely used and the com- 3. arguments; and

puter information will contain but seven or eight 4. results.

items calling into play powerful subroutines.
Compiling Routines of Type A are designed to se-
lect and arrange subroutines according to infor-

Construction of Subroutines mation supplied by the mathematician or by the
computer. Basically, there is but one Type A rou-

It is not necessary, nor is it advisable, that the tine. However, since the UNIVAC code contains in-
inexperienced programmer tamper with the cod- structions transferring two neighboring quan-
ing within a subroutine. It is usually minimum tities simultaneously, a second compiling routine
latency coding using every trick and device known has been designed to care for floating decimal,
to the experienced programmer. It has been tested complex number, and double precision programs.
by operation on the computer. However, in order For each operation listed by the mathematician,
to speed the original construction, on paper, of a type A routine will perform the following ser-
the elementary routines, kernel routines and vices:
threading routines have been devised.

A kernel routine computes a mathematical 1. locate the subroutine indicated by the cell-
function or carries out an elementary process for number;
a limited range of the variable concerned; for 2. from the computer and subroutine informa-
example, sin X, for 0 < x < n/4 and lo-” for tion combined with its record of the program,
0 < x < 1. A kernel routine is always entered fabricate and enter in the program the in-
and left by way of a threading routine. structions transferring the arguments from

Threading routines, incomplete without ker- working storage to the subroutine;
nels, remove from the arguments and store, such 3. adjust the entrance and normal exit lines to
quantities as algebraic signs, integral parts, and the position the subroutine in the program and
exponents, deliver the reduced arguments to the enter them in the program;
kernel routine, receive results from the kernel, 4. according to the control information supplied
and adjust algebraic signs and exponents. For ex- by the programmer, adjust alternate exit lines
ample, the threading routines for sin y remove and enter them in the program (this process
the algebraic sign of y, reduce y by multiples of involves reference to the record);
2n, reduce the remainder to a quantity x less than 5. according to the control information supplied
n/4, store the information and select the sin x or with previous operations adjust auxiliary en-
cos x kernel routine. The kernel routine returns trance lines and enter them in the program;
sin z or cos X. The threading routine adjusts the 6. modify all addresses in the subroutine in-
sign, exponent, and decimal point completing the structions and enter these instructions in the
computation. program;

Threading routines recognize and give special 7. according to information supplied by the sub-

Annals of the History of Computing, Volume 9, Number 3/4, 1988 l 279

G. M. Hopper l Education of a Computer

routine, leave unaltered all constants embed-
ded in the subroutine and transfer them to the
program;

8. from the computer and the subroitine infor-
mation fabricate and enter in the program the
instructions transferring the results to

9. maintain and produce a record of the program
including the call-number of each subroutine
and the position of its entrance line in the pro-
gram.

2. removal of error sources such as programming
errors and transcription errors;

The compiling routines also contain certain in-
structions concerning input tapes, tape library,
and program tapes, peculiar to the UNIVAC. All
counting operations such allocation of temporary
storage and program space, and control of input
and output are carried on steadily by the com-
piling routine. Stated bluntly, the compiling rou-
tine is the programmer and performs all those
services necessary to the production of a finished
program.

Compiling Routines of Type B will for each _ -
operation, by means of “task routines,” replace or
supplement the given computer information with
new information. Thus, compiling routine B-l will,
for each operation, copy the information concern-
ing that operation and call in the corresponding
task routine. The task routine will generate the
formula, and derive the information, necessary to
compute the derivative of the operation. Compil-
ing routine B-l then records this information in
a form suitable for submission to a Type A rou-
tine.

3. conservation of programming time;
4. ability to operate on operation;
5. duplication of effort is avoided, since each pro-

gram in turn may become a subroutine.

Only two disadvantages are immediately evi-
dent. Because of a standardization, a small amount
of time is lost in performing duplicate data trans-
fers which could be eliminated in a tailor-made
routine. In base load problems, this could become
serious. Even in this case, however, it is worth-
while to have UNIVAC produce the original pro-
gram and then eliminate such duplication before
rerunning the problem. The second disadvantage
should not long remain serious. It is the fact that,
if a desired subroutine does not exist, it must be
programmed and added to the library. This will
be most likely to occur in the case of input and
output editing routines until a large variety is
accumulated. This situation also emphasizes the
need for the greatest generality in the construc-
tion of subroutines.

Since information may be re-submitted to a type
B routine, it is obvious that in order to obtain a
program to compute f(x) and its first n deriva-
tives, only the information defining f(x) and the
value of n need be given. The formulas for the
derivatives of f(x) will be derived by repeated ap-
plications of B-l and programmed by a type A
routine.

It is here that the question can best be an-
swered concerning a liking for or an aversion to
subroutines. Since the use of subroutines in this
fashion increases the abilities of the computer,
the question becomes meaningless and trans-
forms into a question of how to produce better
subroutines faster. However, balancing the ad-
vantages and disadvantages of using subrou-
tines, among the advantages are:

1. relegation of mechanical jobs such as memory
allocation, address modification, and tran-
scription to the UNIVAC;

280 l Annals of the History of Computing, Volume 9, Number 3

Several directions of future developments in
this field can be pointed out. It is to be hoped that
reports will be presented on some of them next
September.

More type A compiling routines will be de-
vised; those handling commercial rather than
mathematical programs; some special purpose
compiling routines such as a routine which will
compute approximate magnitudes as it proceeds
and select sub-routines accordingly. Compiling
routines must be informed of the average time
required for each sub-routine so that they can
supply estimates of running time with each pro-
gram. Compiling routines can be devised which
will correct the computational procedure submit-
ted to produce the most efficient program. For ex-
ample, if both sin 8 and cos 8 are called for in a
routine, they will be computed more rapidly si-
multaneously. This will involve sweeping the
computer information once to examine its struc-
ture.

Type B routines at present include linear op-
erators. More type B r&tines must be designed.
It can scarcely be denied that type C and D rou-
tines will be found to exist adding higher levels
of operation. Work is already in progress to pro-
duce the formulas developed by type B routines
in algebraic form in addition to producing their
computational programs.

Thus by considering the profesional program-
mer (not the mathematician), as an integral part

I, 1988

G. M. Hopper l Education of a Computer

subject only to translation into suitable lan-
guage. And it is further evident that the com-
puter is fully capable of remembering and acting
upon any instructions once presented to it by the
programmer.

df the computer, it is evident that the memory of
the programmer and all information and data to

not forget and does not make mistakes. It is hoped

which he can refer is available to the computer
that its undergraduate course will be completed
shortly and it will be accepted as a candidate for
a graduate degree.

Acknowledgment

With some specialized knowledge of more ad-
vanced topics, UNIVAC at present has a well
grounded mathematical education fully equiva-
lent to that of a college sophomore, and it does

We were unable to reproduce to acceptable qual-
ity the figures from the original paper. Mr. He
Xudong, a Ph.D. candidate at Virginia Tech, re-
produced the figures using a Mac II.

Annals of the History of Computing, Volume 9, Number 3/4, 1988 l 281

