Applications of Stacks
* The runtime stack in memory

« Converting a recursive algorithm to an iterative one
» use a stack to emulate the runtime stack

» Making sure that delimiters (parens, brackets, etc.) are balanced:
» push open (i.e., left) delimiters onto a stack

* when you encounter a close (i.e., right) delimiter,
pop an item off the stack and see if it matches

« example: 5 * [3 + {(5 + 16 - 2)]

Applications of Stacks
» The runtime stack in memory

» Converting a recursive algorithm to an iterative one
* use a stack to emulate the runtime stack

» Making sure that delimiters (parens, brackets, etc.) are balanced:
* push open (i.e., left) delimiters onto a stack

» when you encounter a close (i.e., right) delimiter,
pop an item off the stack and see if it matches

« example: 5 * [3 + {(5 + 16 - 2)]

push [

Applications of Stacks
* The runtime stack in memory

« Converting a recursive algorithm to an iterative one
» use a stack to emulate the runtime stack

» Making sure that delimiters (parens, brackets, etc.) are balanced:
» push open (i.e., left) delimiters onto a stack

* when you encounter a close (i.e., right) delimiter,
pop an item off the stack and see if it matches

« example: 5 * [3 + {(5 + 16 - 2)]

push [push {

Applications of Stacks
» The runtime stack in memory

» Converting a recursive algorithm to an iterative one
* use a stack to emulate the runtime stack

» Making sure that delimiters (parens, brackets, etc.) are balanced:
* push open (i.e., left) delimiters onto a stack

» when you encounter a close (i.e., right) delimiter,
pop an item off the stack and see if it matches

« example: 5 * [3 + {(5 + 16 - 2)]

push [push { push (
{ {
[[[

Applications of Stacks
* The runtime stack in memory

« Converting a recursive algorithm to an iterative one
» use a stack to emulate the runtime stack

» Making sure that delimiters (parens, brackets, etc.) are balanced:
» push open (i.e., left) delimiters onto a stack
* when you encounter a close (i.e., right) delimiter,
pop an item off the stack and see if it matches
« example: 5 * [3 + {(5 + 16 - 22]

push [push { push ((), so
pop.

Applications of Stacks
» The runtime stack in memory

» Converting a recursive algorithm to an iterative one
* use a stack to emulate the runtime stack

» Making sure that delimiters (parens, brackets, etc.) are balanced:
* push open (i.e., left) delimiters onto a stack

» when you encounter a close (i.e., right) delimiter,
pop an item off the stack and see if it matches

« example: 5 * [3 + {(5 + 16 - 2)]

push [push { push (| ¢),s0
pop.
{ { get {
[[[which [
matches

Applications of Stacks
* The runtime stack in memory

« Converting a recursive algorithm to an iterative one
» use a stack to emulate the runtime stack

» Making sure that delimiters (parens, brackets, etc.) are balanced:
» push open (i.e., left) delimiters onto a stack

* when you encounter a close (i.e., right) delimiter,
pop an item off the stack and see if it matches

« example: 5 * [3 + {(5 + 16 - 2)_]

push [push { push ((), so 1,s0
pop. pop.
get (, {
[[[which [
matches

Applications of Stacks
» The runtime stack in memory

» Converting a recursive algorithm to an iterative one
* use a stack to emulate the runtime stack

» Making sure that delimiters (parens, brackets, etc.) are balanced:
* push open (i.e., left) delimiters onto a stack

» when you encounter a close (i.e., right) delimiter,
pop an item off the stack and see if it matches

e example: 5 * [3 + {(5 + 16 - 2)]

push [push { push ((), so 1,s0
pop. pop.
{ { gt (, [1 get {,
[[[which [which [
matches doesn't

match

