Applications of Stacks
* The runtime stack in memory

« Converting a recursive algorithm to an iterative one
» use a stack to emulate the runtime stack

» Making sure that delimiters (parens, brackets, etc.) are balanced:
» push open (i.e., left) delimiters onto a stack

* when you encounter a close (i.e., right) delimiter,
pop an item off the stack and see if it matches

« example: 5 * [3 + {(5 + 16 - 2)]
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