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What to do:
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What to do:
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Understanding BigInt

• We know that the largest integer we can store in a primitive variable in Java is an 

unsigned long.

• How can we represent very large integers in Java?



Understanding BigInt

• We know that the largest integer we can store in a primitive variable in Java is an 

unsigned long.

• How can we represent very large integers in Java? 

• How is it that Python does not have this issue?

number = 5
number = 50000
number = 500000000000
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does not contain the 

assigned value, but a 

reference to an object 

that represents that 

value.
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Understanding BigInt

• We know that the largest integer we can store in a primitive variable in Java is an 

unsigned long.
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Understanding BigInt

• We know that the largest integer we can store in a primitive variable in Java is an 

unsigned long.

• How can we represent very large integers in Java? 

• How is it that Python does not have this issue?
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number = "any type"
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Understanding BigInt

• We know that the largest integer we can store in a primitive variable in Java is an 

unsigned long.

• How can we represent very large integers in Java? 

• Java is a strongly typed compiled language.

int number = 5;
number = 50000;
number = 500000000000;
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Understanding BigInt

• We know that the largest integer we can store in a primitive variable in Java is an 

unsigned long.

• How can we represent very large integers in Java? 

• Java is a strongly typed compiled language.
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Understanding BigInt

• We know that the largest integer we can store in a primitive variable in Java is an 
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• Java is a strongly typed compiled language.
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Understanding BigInt

• We know that the largest integer we can store in a primitive variable in Java is an 

unsigned long.

• How can we represent very large integers in Java? 

• Java is a strongly typed compiled language.

int number = 5; // assume 2 bytes per integer

number = 50000;
number = 500000000000;
number = 10.34; // needs double the bytes
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Understanding BigInt

• We know that the largest integer we can store in a primitive variable in Java is an 

unsigned long.

• How can we represent very large integers in Java? 

• Java’s BigInteger class!

memory

1000

1001

1002

1003

7000

s
ta

c
k

h
e
a
p

BigInteger

https://www.geeksforgeeks.org/biginteger-class-in-java/


Understanding BigInt

• We know that the largest integer we can store in a primitive variable in Java is an 

unsigned long.

• How can we represent very large integers in Java? 

• Java’s BigInteger class!
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Understanding BigInt

• We know that the largest integer we can store in a primitive variable in Java is an 

unsigned long.

• How can we represent very large integers in Java? 

• Using an array to represent an integer!

int[] number = {5,0}; // 50
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Understanding BigInt

• We know that the largest integer we can store in a primitive variable in Java is an 

unsigned long.

• How can we represent very large integers in Java? 

• Using an array to represent an integer!

int[] number = {5,0,0}; // 500
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Understanding BigInt

• We know that the largest integer we can store in a primitive variable in Java is an 

unsigned long.

• How can we represent very large integers in Java? 

• Using an array to represent an integer!

int[] number = {5,0,0,0,0}; // 50000
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Understanding BigInt

• We know that the largest integer we can store in a primitive variable in Java is an 

unsigned long.

• How can we represent very large integers in Java? 

• Using an array to represent an integer!

int[] number = {5,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
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Understanding BigInt

• We know that the largest integer we can store in a primitive variable in Java is an 

unsigned long.

• How can we represent very large integers in Java? 

• Using an array to represent an integer!

int[] number = {6,5,5};
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Understanding BigInt

• We know that the largest integer we can store in a primitive variable in Java is an 

unsigned long.

• How can we represent very large integers in Java? 

• Using an array to represent an integer!

int[] number = {0,0,6,5,5};
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Understanding BigInt

• We know that the largest integer we can store in a primitive variable in Java is an 

unsigned long.

• How can we represent very large integers in Java? 

• Using an array to represent an integer!

int[] op1 = {0,0,6,5,5}; // 655
int[] op2 = {0,0,0,1,0}; // 10
int[] sum = {0,0,0,0,0}; // 0
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Representing integers with Arrays

0 0 6 5 5op1

0 0 0 1 0

0 0 0 0 0

op2

sum

3

2

S
ig

n
ific

a
n
t D

ig
its

Each digit (element of the array) 

must be between 0 .. 9

inclusively!

onestenshundredsthousands

ten

thousands



Representing integers with Arrays

0 0 6 5 5op1

0 0 0 1 0

0 0 0 0 0

op2

sum

3

2

S
ig

n
ific

a
n
t D

ig
its

Each digit (element of the array) 

must be between 0 .. 9

inclusively!

43210

Corresponding array positions

op1.length – 1
represents the 

position/index of the 

least significant digit



Representing integers with Arrays

0 0 6 5 5op1

0 0 0 1 0

0 0 0 0 0

op2

sum

3

2

S
ig

n
ific

a
n
t D

ig
its

Each digit (element of the array) 

must be between 0 .. 9

inclusively!

43210

Corresponding array positions

?
represents the 

most significant digit

? position
represents the 

most significant digit



Representing integers with Arrays

0 0 6 5 5op1

0 0 0 1 0

0 0 0 0 0

op2

sum

3

2

S
ig

n
ific

a
n
t D

ig
its

0 carry



Representing integers with Arrays

0 0 6 5 5op1

0 0 0 1 0

0 0 0 0 5

op2

sum

3

2

S
ig

n
ific

a
n
t D

ig
its

0 carry

+

+

=



Representing integers with Arrays

0 0 6 5 5op1

0 0 0 1 0

0 0 0 6 5

op2

sum

3

2

S
ig

n
ific

a
n
t D

ig
its

0 carry

+

+

=



Representing integers with Arrays

0 0 6 5 5op1

0 0 0 1 0

0 0 6 6 5

op2

sum

3

2

S
ig

n
ific

a
n
t D

ig
its

0 carry

+

+

=



Representing integers with Arrays
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Representing integers with Arrays
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Representing integers with Arrays:
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Representing integers with Arrays:
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Representing integers with Arrays
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Procedural solution with just Arrays

{

int[] op1 = {0,0,3,4,5};

int[] op2 = {0,0,0,9,8};

int [] sum = add(op1, op2);

}

add has to process 

through the length of 

the arrays, even though 

it is not necessary.



Procedural solution with just Arrays

{

int[] op1 = {0,0,3,4,5}, op2 = {0,0,0,9,8};

}

How can we take

into account the 

significant digits of 

each number?



Procedural solution with just Arrays

{

int[] op1 = {0,0,3,4,5}, op2 = {0,0,0,9,8};

int s_op1 = 3; // significant digits of op1

int s_op2 = 2; // significant digits of op2

}

add more 

variables!



Procedural solution with just Arrays

{

int[] op1 = {0,0,3,4,5}, op2 = {0,0,0,9,8};

int s_p1 = 3, s_op2 = 2;

int[] sum = add(op1, s_p1, op2, s_op2);

}



Procedural solution with just Arrays

{

int[] op1 = {0,0,3,4,5}, op2 = {0,0,0,9,8};

int s_p1 = 3, s_op2 = 2;

int[] sum = add(op1, s_p1, op2, s_op2);

}

public static int[] add(int[] o1, int s1, int[] o2, int s2) {

int[] sum = {0,0,0,0,0};

. . . .   

return sum;              

}



Object Oriented Design:

Encapsulating the data into a BigInt object

digits

sigDigit

Encapsulates the data within 

the object!

And provide all the methods necessary 

to perform the required operations!



Object Oriented Design:

Encapsulating the data into a BigInt object

1

digits

sigDigit

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Array of digits

Represents the number 0

BigInt b = new BigInt(); // no-arg constructor

Heap

BigInt object



Object Oriented Design:

Encapsulating the data into a BigInt object

1

digits

sigDigit

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Array of digits

Represents the number 0

BigInt b = new BigInt(); // b references the object

Heap

b

BigInt object



another BigInt Object

8

digits

sigDigit

0 0 0 0 0 0 0 0 0 0 0 0 1 0 5 0 9 8 0 0

Array of digits

Represents the number 

10,509,800

BigInt b = new BigInt(10509800); // custom constructor

Heap

b

BigInt object



Programming with Objects:
Mathematical Operations

{

BigInt b = new BigInt(); // should create a BigInt object representing 0

System.out.println( b ); // output the contents – need toString()

}



Programming with Objects:
Mathematical Operations

{

BigInt b = new BigInt(); // should create a BigInt object representing 0

System.out.println( b.toString() ); // this is the call Java will make…

}



Programming with Objects:
Mathematical Operations

{

BigInt b = new BigInt(); // should create a BigInt object representing 0

System.out.println( b ); // output the contents of the object

int[] arr = {1,2,3}; // array representing the number 123

b = new BigInt( arr ); // create a new BigInt object from the array passed

System.out.println( b );

}



Programming with Objects:
Mathematical Operations

{

BigInt b = new BigInt(); // should create a BigInt object representing 0

System.out.println( b ); // output the contents of the object

int[] arr = {1,2,3}; // array representing the number 123

b = new BigInt( 3567 ); // or, create a new BigInt object from the integer passed

System.out.println( b );

}



Programming with Objects:
Mathematical Operations

{

BigInt op1 = new BigInt(13456); // create a BigInt object representing 13,456

BigInt op2 = new BigInt( 223 ); // create a BigInt object representing 223

BigInt sum = op1.add(op2); // Compute the sum and store in another Bigint object

System.out.println( op1 + “+” + op2 + “=“ + sum );

}



Baby steps…


