
CS 112
How to approach programming problems:

The BigInt

Spring 2021

Christine Papadakis-Kanaris



How to Approach Programming Problems

What not to do:



How to Approach Programming Problems

What not to do:

Trial and Error 

Programming!



How to Approach Programming Problems

What to do:

#1

Understand the 

Problem!



How to Approach Programming Problems

What to do:



How to Approach Programming Problems

What to do:

#2

Form the 

solution



How to Approach Programming Problems

What to do:

#2

Identify the 

BASIC steps



Understanding BigInt

• We know that the largest integer we can store in a primitive variable in Java is an 

unsigned long.

• How can we represent very large integers in Java?



Understanding BigInt

• We know that the largest integer we can store in a primitive variable in Java is an 

unsigned long.

• How can we represent very large integers in Java? 

• How is it that Python does not have this issue?

number = 5
number = 50000
number = 500000000000

The variable number
does not contain the 

assigned value, but a 

reference to an object 

that represents that 

value.



Understanding BigInt

• We know that the largest integer we can store in a primitive variable in Java is an 

unsigned long.

• How can we represent very large integers in Java? 

• How is it that Python does not have this issue?

number = 5
number = 50000
number = 500000000000

memory

8000

5

1000

1001

1002

1003

7000

8000

9000

s
ta

c
k

h
e
a
p

number 1001

mapping

o
b
je

c
ts



Understanding BigInt

• We know that the largest integer we can store in a primitive variable in Java is an 

unsigned long.

• How can we represent very large integers in Java? 

• How is it that Python does not have this issue?

number = 5
number = 50000
number = 50000000000

memory

9090

5

50000

1000

1001

1002

1003

7000

8000

9000

9090

s
ta

c
k

h
e
a
p

number 1001

mapping

o
b
je

c
ts



Understanding BigInt

• We know that the largest integer we can store in a primitive variable in Java is an 

unsigned long.

• How can we represent very large integers in Java? 

• How is it that Python does not have this issue?

number = 5
number = 50000
number = 50000000000

memory

7000

500000000000

5

50000

1000

1001

1002

1003

7000

8000

9000

9090

s
ta

c
k

h
e
a
p

number 1001

mapping

o
b
je

c
ts



Understanding BigInt

• We know that the largest integer we can store in a primitive variable in Java is an 

unsigned long.

• How can we represent very large integers in Java? 

• How is it that Python does not have this issue?

number = 5
number = 50000
number = "any type"

memory

9000

500000000000

5

"any type"

50000

1000

1001

1002

1003

7000

8000

9000

9090

s
ta

c
k

h
e
a
p

number 1001

mapping

o
b
je

c
ts



Understanding BigInt

• We know that the largest integer we can store in a primitive variable in Java is an 

unsigned long.

• How can we represent very large integers in Java? 

• Java is a strongly typed compiled language.

int number = 5;
number = 50000;
number = 500000000000;

memory

1000

1001

1002

1003

7000

8000

9000

s
ta

c
k

h
e
a
p



Understanding BigInt

• We know that the largest integer we can store in a primitive variable in Java is an 

unsigned long.

• How can we represent very large integers in Java? 

• Java is a strongly typed compiled language.

int number = 5; // assume 2 bytes per integer

number = 50000;
number = 500000000000;

memory

5

1000

1001

1002

1003

7000

8000

9000

s
ta

c
k

h
e
a
p

number 1001

mapping



Understanding BigInt

• We know that the largest integer we can store in a primitive variable in Java is an 

unsigned long.

• How can we represent very large integers in Java? 

• Java is a strongly typed compiled language.

int number = 5; // assume 2 bytes per integer

number = 50000;
number = 500000000000;

memory

50000

1000

1001

1002

1003

7000

8000

9000

s
ta

c
k

h
e
a
p

number 1001

mapping



Understanding BigInt

• We know that the largest integer we can store in a primitive variable in Java is an 

unsigned long.

• How can we represent very large integers in Java? 

• Java is a strongly typed compiled language.

int number = 5; // assume 2 bytes per integer

number = 50000;
number = 500000000000;

memory

?

1000

1001

1002

1003

7000

8000

9000

s
ta

c
k

h
e
a
p

number 1001

mapping



Understanding BigInt

• We know that the largest integer we can store in a primitive variable in Java is an 

unsigned long.

• How can we represent very large integers in Java? 

• Java is a strongly typed compiled language.

int number = 5; // assume 2 bytes per integer

number = 50000;
number = 500000000000;
number = 10.34; // needs double the bytes

memory

?

1000

1001

1002

1003

7000

8000

9000

s
ta

c
k

h
e
a
p

number 1001

mapping



Understanding BigInt

• We know that the largest integer we can store in a primitive variable in Java is an 

unsigned long.

• How can we represent very large integers in Java? 

• Java’s BigInteger class!

memory

1000

1001

1002

1003

7000

s
ta

c
k

h
e
a
p

BigInteger

https://www.geeksforgeeks.org/biginteger-class-in-java/


Understanding BigInt

• We know that the largest integer we can store in a primitive variable in Java is an 

unsigned long.

• How can we represent very large integers in Java? 

• Java’s BigInteger class!

memory

7000

BIGINTEGER

OBJECT

1000

1001

1002

1003

7000

s
ta

c
k

h
e
a
p

BigInteger

mapping

number 1001

BigInteger number = new BigInteger( 5000000 );

https://www.geeksforgeeks.org/biginteger-class-in-java/


Understanding BigInt

• We know that the largest integer we can store in a primitive variable in Java is an 

unsigned long.

• How can we represent very large integers in Java? 

• Using an array to represent an integer!

int[] number = {5,0}; // 50

memory

7000

5

0

1000

1001

1002

1003

7000

s
ta

c
k

h
e
a
p

number 1001

mapping



Understanding BigInt

• We know that the largest integer we can store in a primitive variable in Java is an 

unsigned long.

• How can we represent very large integers in Java? 

• Using an array to represent an integer!

int[] number = {5,0,0}; // 500

memory

7000

5

0

0

1000

1001

1002

1003

7000

s
ta

c
k

h
e
a
p

number 1001

mapping



Understanding BigInt

• We know that the largest integer we can store in a primitive variable in Java is an 

unsigned long.

• How can we represent very large integers in Java? 

• Using an array to represent an integer!

int[] number = {5,0,0,0,0}; // 50000

memory

7000

5

0

0

0

0

1000

1001

1002

1003

7000

s
ta

c
k

h
e
a
p

number 1001

mapping



Understanding BigInt

• We know that the largest integer we can store in a primitive variable in Java is an 

unsigned long.

• How can we represent very large integers in Java? 

• Using an array to represent an integer!

int[] number = {5,0,0,0,0,0,0,0,0,0,0,0,0,0,0};

memory

7000

5

0

0

0

0

0

0

1000

1001

1002

1003

7000

s
ta

c
k

h
e
a
p

number 1001

mapping



Understanding BigInt

• We know that the largest integer we can store in a primitive variable in Java is an 

unsigned long.

• How can we represent very large integers in Java? 

• Using an array to represent an integer!

int[] number = {6,5,5};

memory

7000

6

5

5

1000

1001

1002

1003

7000

s
ta

c
k

h
e
a
p

number 1001

mapping

3 significant 

digits



Understanding BigInt

• We know that the largest integer we can store in a primitive variable in Java is an 

unsigned long.

• How can we represent very large integers in Java? 

• Using an array to represent an integer!

int[] number = {0,0,6,5,5};

memory

7000

0

0

6

5

5

1000

1001

1002

1003

7000

s
ta

c
k

h
e
a
p

number 1001

mapping

o
n
e
s

te
n
s

h
u
n

d
re

d

also 3 

significant 

digits



Understanding BigInt

• We know that the largest integer we can store in a primitive variable in Java is an 

unsigned long.

• How can we represent very large integers in Java? 

• Using an array to represent an integer!

int[] op1 = {0,0,6,5,5}; // 655
int[] op2 = {0,0,0,1,0}; // 10
int[] sum = {0,0,0,0,0}; // 0

memory

7000

8000

9000

0

0

6

5

5

1000

1001

1002

1003

7000

s
ta

c
k

h
e
a
pop1 1001

op2 1002

sum 1003

mapping



Representing integers with Arrays

0 0 6 5 5op1

0 0 0 1 0

0 0 0 0 0

op2

sum

3

2

S
ig

n
ific

a
n
t D

ig
its

Each digit (element of the array) 

must be between 0 .. 9

inclusively!

onestenshundredsthousands

ten

thousands



Representing integers with Arrays

0 0 6 5 5op1

0 0 0 1 0

0 0 0 0 0

op2

sum

3

2

S
ig

n
ific

a
n
t D

ig
its

Each digit (element of the array) 

must be between 0 .. 9

inclusively!

43210

Corresponding array positions

op1.length – 1
represents the 

position/index of the 

least significant digit



Representing integers with Arrays

0 0 6 5 5op1

0 0 0 1 0

0 0 0 0 0

op2

sum

3

2

S
ig

n
ific

a
n
t D

ig
its

Each digit (element of the array) 

must be between 0 .. 9

inclusively!

43210

Corresponding array positions

?
represents the 

most significant digit

? position
represents the 

most significant digit



Representing integers with Arrays

0 0 6 5 5op1

0 0 0 1 0

0 0 0 0 0

op2

sum

3

2

S
ig

n
ific

a
n
t D

ig
its

0 carry



Representing integers with Arrays

0 0 6 5 5op1

0 0 0 1 0

0 0 0 0 5

op2

sum

3

2

S
ig

n
ific

a
n
t D

ig
its

0 carry

+

+

=



Representing integers with Arrays

0 0 6 5 5op1

0 0 0 1 0

0 0 0 6 5

op2

sum

3

2

S
ig

n
ific

a
n
t D

ig
its

0 carry

+

+

=



Representing integers with Arrays

0 0 6 5 5op1

0 0 0 1 0

0 0 6 6 5

op2

sum

3

2

S
ig

n
ific

a
n
t D

ig
its

0 carry

+

+

=



Representing integers with Arrays

0 0 6 5 5op1

0 0 0 1 0

0 0 6 6 5

op2

sum

3

2

S
ig

n
ific

a
n
t D

ig
its

0 carry

Do we need to 

continue?

3



Representing integers with Arrays

0 0 6 5 5op1

0 0 0 1 0

0 0 6 6 5

op2

sum

3

2

S
ig

n
ific

a
n
t D

ig
its

0 carry

No, because we have added 

all the digits up to the largest 

significant digits of the two 

numbers.

3



Representing integers with Arrays:

what if?

0 9 6 5 5op1

0 8 0 1 0

0 ? 6 6 5

op2

sum

4

4

S
ig

n
ific

a
n
t D

ig
its

0
carry

3

+

+

=



Representing integers with Arrays:

what if?

0 9 6 5 5op1

0 8 0 1 0

0 7 6 6 5

op2

sum

4

4

S
ig

n
ific

a
n
t D

ig
its

1
carry

4



Representing integers with Arrays:

what if?

0 9 6 5 5op1

0 8 0 1 0

1 7 6 6 5

op2

sum

4

4

S
ig

n
ific

a
n
t D

ig
its

1
carry

5



Representing integers with Arrays:

another what if?

8 9 6 5 5op1

0 8 0 1 0

? 7 6 6 5

op2

sum

5

4

S
ig

n
ific

a
n
t D

ig
its

1
carry

5

+

+

=



Representing integers with Arrays:

another what if?

8 9 6 5 5op1

0 8 0 1 0

9 7 6 6 5

op2

sum

5

4

S
ig

n
ific

a
n
t D

ig
its

0
carry

5



Representing integers with Arrays:

yet another what if?

9 9 6 5 5op1

0 8 0 1 0

? 7 6 6 5

op2

sum

5

4

S
ig

n
ific

a
n
t D

ig
its

1
carry

5

=

+

+



Representing integers with Arrays:

another what if?

9 9 6 5 5op1

0 8 0 1 0

0 7 6 6 5

op2

sum

5

4

S
ig

n
ific

a
n
t D

ig
its

1
carry

5

Overflow!



Representing integers with Arrays

0 0 6 5 5op1

0 0 0 1 0

0 0 0 0 0

op2

sum

3

2

S
ig

n
ific

a
n
t D

ig
its

Array of digits



Procedural solution with just Arrays

{

int[] op1 = {0,0,3,4,5};

int[] op2 = {0,0,0,9,8};

int [] sum = add(op1, op2);

}

add has to process 

through the length of 

the arrays, even though 

it is not necessary.



Procedural solution with just Arrays

{

int[] op1 = {0,0,3,4,5}, op2 = {0,0,0,9,8};

}

How can we take

into account the 

significant digits of 

each number?



Procedural solution with just Arrays

{

int[] op1 = {0,0,3,4,5}, op2 = {0,0,0,9,8};

int s_op1 = 3; // significant digits of op1

int s_op2 = 2; // significant digits of op2

}

add more 

variables!



Procedural solution with just Arrays

{

int[] op1 = {0,0,3,4,5}, op2 = {0,0,0,9,8};

int s_p1 = 3, s_op2 = 2;

int[] sum = add(op1, s_p1, op2, s_op2);

}



Procedural solution with just Arrays

{

int[] op1 = {0,0,3,4,5}, op2 = {0,0,0,9,8};

int s_p1 = 3, s_op2 = 2;

int[] sum = add(op1, s_p1, op2, s_op2);

}

public static int[] add(int[] o1, int s1, int[] o2, int s2) {

int[] sum = {0,0,0,0,0};

. . . .   

return sum;              

}



Object Oriented Design:

Encapsulating the data into a BigInt object

digits

sigDigit

Encapsulates the data within 

the object!

And provide all the methods necessary 

to perform the required operations!



Object Oriented Design:

Encapsulating the data into a BigInt object

1

digits

sigDigit

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Array of digits

Represents the number 0

BigInt b = new BigInt(); // no-arg constructor

Heap

BigInt object



Object Oriented Design:

Encapsulating the data into a BigInt object

1

digits

sigDigit

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Array of digits

Represents the number 0

BigInt b = new BigInt(); // b references the object

Heap

b

BigInt object



another BigInt Object

8

digits

sigDigit

0 0 0 0 0 0 0 0 0 0 0 0 1 0 5 0 9 8 0 0

Array of digits

Represents the number 

10,509,800

BigInt b = new BigInt(10509800); // custom constructor

Heap

b

BigInt object



Programming with Objects:
Mathematical Operations

{

BigInt b = new BigInt(); // should create a BigInt object representing 0

System.out.println( b ); // output the contents – need toString()

}



Programming with Objects:
Mathematical Operations

{

BigInt b = new BigInt(); // should create a BigInt object representing 0

System.out.println( b.toString() ); // this is the call Java will make…

}



Programming with Objects:
Mathematical Operations

{

BigInt b = new BigInt(); // should create a BigInt object representing 0

System.out.println( b ); // output the contents of the object

int[] arr = {1,2,3}; // array representing the number 123

b = new BigInt( arr ); // create a new BigInt object from the array passed

System.out.println( b );

}



Programming with Objects:
Mathematical Operations

{

BigInt b = new BigInt(); // should create a BigInt object representing 0

System.out.println( b ); // output the contents of the object

int[] arr = {1,2,3}; // array representing the number 123

b = new BigInt( 3567 ); // or, create a new BigInt object from the integer passed

System.out.println( b );

}



Programming with Objects:
Mathematical Operations

{

BigInt op1 = new BigInt(13456); // create a BigInt object representing 13,456

BigInt op2 = new BigInt( 223 ); // create a BigInt object representing 223

BigInt sum = op1.add(op2); // Compute the sum and store in another Bigint object

System.out.println( op1 + “+” + op2 + “=“ + sum );

}



Baby steps…


