
PROVIDE: Hiding from Automated Network Scans
with Proofs of Identity

William Koch
Department of Computer Science

Boston University
Boston, MA 02215
wfkoch@bu.edu

Azer Bestavros
Department of Computer Science

Boston University
Boston, MA 02215

best@bu.edu

Abstract—Network scanners are a valuable tool for researchers
and administrators, however they are also used by malicious
actors to identify vulnerable hosts on a network. Upon the
disclosure of a security vulnerability, scans are launched within
hours. These opportunistic attackers enumerate blocks of IP
addresses in hope of discovering an exploitable host. Fortunately,
defensive measures such as port knocking protocols (PKPs)
allow a service to remain stealth to unauthorized IP addresses.
The service is revealed only when a client includes a special
authentication token (AT) in the IP/TCP header. However this AT
is generated from a secret shared between the clients/servers and
distributed manually to each endpoint. As a result, these defense
measures have failed to be widely adopted by other protocols
such as HTTP/S due to challenges in distributing the shared
secrets.

In this paper we propose a scalable solution to this problem
for services accessed by domain name. We make the following
observation: automated network scanners access servers by IP
address, while legitimate clients access the server by name.
Therefore a service should only reveal itself to clients who know
its name. Based on this principal, we have created a proof of
the verifier’s identity (a.k.a. PROVIDE) protocol that allows a
prover (legitimate user) to convince a verifier (service) that it is
knowledgeable of the verifier’s identity. We present a PROVIDE
implementation using a PKP and DNS (PKP+DNS) that uses
DNS TXT records to distribute identification tokens (IDT) while
DNS PTR records for the service’s domain name are prohibited
to prevent reverse DNS lookups. Clients are modified to make
an additional DNS TXT query to obtain the IDT which is used
by the PKP to generate an AT. The inclusion of an AT in the
packet header, generated from the DNS TXT query, is proof the
client knows the service’s identity. We analyze the effectiveness of
this mechanism with respect to brute force attempts for various
strength ATs and discuss practical considerations.

I. INTRODUCTION

The Internet is constantly being scanned for vulnerable
hosts [1]. These scans originate from automated network
scanners that send the same probe for a given range of IP
addresses, also commonly referred to as “horizontal scanning”.
A probe can be used to identify open ports, as well as the host’s
operating system and names of network services. Horizontal
scanning is typically conducted by opportunistic attackers,
hoping that if they scan enough IP addresses their odds of
finding a vulnerable host will increase. For example, a new
ransomware family known as SamSam, targets and infects
unpatched JBoss web servers allowing the attacker to pivot

and move laterally in a corporate network [2]. Additionally,
the infamous Sality botnet uses strategic horizontal scanning
of the entire IPv4 address space to recruit new bots [3].

The severity of this threat is further compounded by the
speeds and convenience at which the entire IPv4 address space
can be scanned. Off-the-shelf high-speed scanners such as
ZMap [4] and Masscan [5], combined with virtual machines
with 10Gbps links available for rent, e.g., Amazon EC2
instances with enhanced networking,1 would allow anyone
with a computer and a few dollars to scan the Internet in
minutes. Furthermore, it has been observed that scans are
launched within hours once new security vulnerabilities have
been disclosed [6]. Consequently, the attacker has a drastic
advantage over the server administrator.

Although it could be argued that there are some legitimate
and useful applications of Internet scanners (e.g., by re-
searchers or network security administrators), given the current
landscape, we are in dire need of a method to hide from scan-
ners. One such defense to prevent unauthorized connections
to a server is known as port knocking. Generally speaking, a
port knocking protocol (PKP) is a method for communicating
information across closed ports [7] [8]. It is typically used
to dynamically alter a firewall to allow authorized packets
access to a particular service. Initially the server’s firewall
is configured to reject all incoming connections. Upon being
scanned, all ports will appear closed. The port becomes visible
only when a client sends a packet containing an authentication
token (AT) known also to the server. The server continuously
monitors incoming traffic and alters the firewall to accept a
connection when the correct AT is observed.

Currently, there are dozens of port knocking implementa-
tions [9], used largely to hide private services such as SSH in
which the server is knowledgeable of the clients. As a result,
they have yet to be widely adopted by other protocols. One
explanation is the non-standardized way for distributing shared
keys to derive the ATs. Unfortunately this prohibits the use of
PKPs with open access protocols such as HTTP/S, DNS, and
anonymous FTP which are in the top ten most popular services
on the Internet [4].

We observe that horizontal scanning is performed by ac-
1EC2 Instance Types, https://aws.amazon.com/ec2/instance-types/



cessing a server by its IP address, whereas legitimate users
typically access a server by its domain name. Therefore, we
postulate that a server should only be visible to clients who
know the server’s name.

Based on this concept, we have created a proof of the
verifier’s identity (a.k.a. PROVIDE) protocol that allows a
prover (legitimate user) to convince a verifier (service) that
it is knowledgeable of the verifier’s identity. Periodically, the
verifier publishes an identification token (IDT) to a trusted
shared directory, indexed by its identity. If and only if the
prover is knowledgeable of the verifier’s identity can it retrieve
the IDT. Thus when the IDT is presented to the verifier, it
provides proof they must know the verifier’s identity.

We present a PROVIDE implementation using a PKP and
DNS(SEC) (PKP+DNS). The implementation prohibits reverse
DNS (rDNS) lookups, thereby forcing the client to know the
domain to obtain the IDT. The PKP+DNS implementation
allows any service accessed by a domain name, and not
reliant on rDNS lookups, to be converted to a stealth service
and hide from IP-based horizontal scans. Although PKPs
require modifications to the client, consequently making global
adoption challenging, PKP+DNS can be deployed in enterprise
networks immediately to protect from internal malicious scans.
We analyze the likelihood of a successful brute force attack
on the PKP and show that a mere a 16-bit AT would make
horizontal scanning impractical. Finally we discuss practical
considerations and the impact it will have on next generation
scanners.

II. DESIGN SPACE

In this section we provide details of the attacker we wish
to defend against, and the defenders goals.

A. Threat Model

We consider an opportunistic adversary, performing mali-
cious horizontal scans by IP address to discover vulnerable
servers. The adversary does not target any one specific server,
instead they scan a large number of IP addresses to increase
their odds of finding vulnerabilities. Adversaries are an end-
points and traffic does not flow through them. Additionally
they are not passively monitoring network traffic. We also
assume that such adversaries are reactive, and can promptly
initiate a scan when a new security vulnerabilities is disclosed.

The network scanner used by an adversary is a software
program, either off-the-self (e.g., ZMap [4], Masscan [5],
Nmap [10]) or a custom home-brewed solution. A scan targets
a set of ports for a given range of IP addresses. The scanners
are capable of high-speed transmission rates, equivalent to the
fastest available Internet port scanners, capable of reaching
speeds up to 14.23 million packets per second (Mpps) [11].
Additionally, the network from which the scan originates has
the bandwidth capable to reach such speeds.

B. Goals

Our proposed PROVIDE protocol and implementation have
the following goals for the defined threat: 1) Eliminate a

server’s visible footprint from IP-based network scanners.
2) Provide a key distribution solution for existing PKPs.
3) Allow all services accessed by domain name to be converted
to a stealth service. 4) Establish a binding between a domain
name and IP address in a packet header.

III. DESIGN

Often a party must prove its identity to a verifier to establish
trust. However it is also desired to have a method to prove the
inverse, in which the party must prove to the verifier they know
the verifier’s identity. In the following section we propose a
proof of the verifier’s identity (a.k.a. PROVIDE) protocol that
allows the party to prove to a verifier, in a single message
that they know the verifier’s identity, without revealing that
identity in the message. We use the protocol to hide network
services from IP-based network scanners, by forcing the client
(prover) to include a proof of identity in each request. If the
proof does not verify, the packet is rejected and the service
appears to not exist. We first introduce a general definition of
the generic PROVIDE protocol specification, and then present
an implementation using a PKP and DNS.

A. Proof of the Verifier’s Identity

Definition 1. A proof of the verifier’s identity (PROVIDE)
is a two-party non-interactive protocol where a prover (P ),
succeeds in convincing a verifier (V ) it knows the verifier’s
identity (ID), without actually revealing it. Both parties have
read access to a trusted shared directory (D) that provides
identification token (IDT) lookups for a given identity IDT ←
D[ID ]. Furthermore, the verifier has write access for its own
identity, allowing it to generate and publish IDTs, D[ID ] ←
IDT . Each new IDT generated is unpredictable and indistin-
guishable from the previous. If the prover is knowledgeable
of the verifier’s identity, it queries the directory for the IDT
and sends a representation of this IDT to the verifier as proof
of identity. PROVIDE has the following properties:

1) Deterministic completeness: The verifier will accept all
correct proofs.

2) Probabilistic soundness: The verifier will reject all
incorrect proofs. However there is configurable, non-
zero probability the verifier will accept a proof without
the prover having prior knowledge of their identity. For
example, the correct proof is guessed by brute force.

3) Identity remains confidential: When the prover queries
the directory, and submits proof to the verifier, the veri-
fier’s identity is not revealed.

4) Non-interactive: The verifier cannot interact with the
prover until the proof has been verified.

The prover is defined by two parameters (ID , f) represent-
ing a priori knowledge of the verifier’s identity and a shared
transform function. The transform function f(IDT ) allows the
prover to transform the IDT into a different encoding before
being sent to the verifier. The output of the transform function
is also referred to as the authentication token (AT) and may
be as simple as the identity function. The verifier is defined



by three parameters (ID , f, λ). The IDTs have a limited life
and are replaced at a rate λ. The PROVIDE protocol for an
instance in time is defined as follows:

1. At time t, V (ID , f, λ) generates an IDT and updates D,
D[ID ]← IDT .

2. At time t+ i ≤ t+ 1
λ

2.a. P (ID , f) makes the query IDT ′ ← D[ID ].
2.b. P sends AT = f(IDT ′) to V .
2.c. V accepts if f(IDT ) ≡ AT

B. A PROVIDE Protocol Implementation

In this section we present a PROVIDE protocol implemen-
tation built using a PKP, and DNS (PKP+DNS) to create
a stealth service. The implementation consists of a server
(the verifier), a client (the prover) and a name server (the
shared directory). This design is intended to be used with
an existing PKP implementation which uses an IDT as the
shared key distributed with DNS. We first make the following
assumptions:
• Clients access the service by domain name. This

implementation uses DNS to distribute the IDTs. If the
service is accessed by IP address, this defense will not
be applicable.

• Reverse DNS lookups for the server’s domain do not
exist. Reverse DNS lookups (rDNS) allow a domain name
to be resolved from an IP address through DNS PTR
records. The soundness property cannot be fulfilled for
a domain name containing PTR records, as the identity
can be trivially learned from the IP address without the
client having prior knowledge of the identity. Services
dependent on rDNS would not be suitable for this im-
plementation. For example, rDNS is commonly used by
mail servers to prevent spam.

An overview is illustrated in Figure 1. The details of the client,
server, and name server are described below.

1) Name server: DNS TXT records associate arbitrary
ASCII text with a domain name and are used to store IDTs
without any modifications to the DNS specification. According
to RFC 1464 [12], the general syntax for a DNS TXT record
is,

<owner> <class> <ttl> TXT "<name>=<value>"

The owner specifies who owns the record. The class adds
another dimension to a DNS record, however it is typically set
to IN for Internet. The TTL (time-to-live) specifies the number
of seconds until the record expires. Lastly we have the data
string associated with the TXT record. Ultimately it is up to the
application utilizing the TXT record to define how to interpret
and decode the data string, however it is recommended to
represent the data in (name, value) pairs. The max length of
the string is 255 characters [13], however multiple strings can
be associated with a single record and will be concatenated
by the end host.

The IDT is stored in the TXT record data string, accessed
by the name idt. Furthermore, the TTL is set to 1

λ which

indicates the number of seconds the IDT will be valid for.
The λ parameter provides a trade-off between effectiveness
and performance overhead. As λ increases, it will reduce time
IDTs can be shared and time to brute force ATs. However,
this will result in an increase in overhead for the entire system
as IDTs will be generated faster and the name server will be
queried more frequently. Additional configuration data specific
to the PKP may also be included in the TXT record to inform
the client how to authenticate, e.g., providing parameters to
the transform function.

In the domains zone file, the A and AAAA records asso-
ciates a domain name to a IPv4 and IPv6 address, respectively.
It is common for a domain name to be assigned multiple IP
addresses as a method of load balancing or redundancy. Each
server, at a separate IP address, is responsible for publishing
their own IDT. Therefore, there must be a TXT record for
each address record. A domain label is created from the
human-readable IP address notation, by replacing the periods
with dashes. This label is appended to the domain and set
as the owner of the TXT record. Below is an example TXT
record for a server with IP address 1.2.3.4 and domain
example.com. The IDT is set to expire after a TTL of
1
λ = 120 seconds.

1-2-3-4.example.com. IN 120 TXT idt=48F10

The name server is configured to support dynamic DNS
(DDNS) [14] in order for the TXT records to be automatically
updated.

2) Server: The server has three components to support the
stealth service, namely: a firewall provides dynamic access
control, a PKP server authorizes clients with verified packets,
and an IDT publisher. At a rate λ, the IDT publisher generates
a new IDT, and updates the TXT record in zone file via
DDNS. One method of generating IDTs is to use time based
one-time passwords (TOTP) [15]. The PKP server is notified
of the new IDT, so authentication reflects the update. The
PKP server continuously monitors incoming traffic, if a packet
contains a valid AT, the firewall is modified to accept the
packet, otherwise the packet is dropped and the server appears
to be hidden (i.e., the scanner in Figure 1). In the case of
virtual servers, where multiple domains can be associated with
a single IP address, IDTs are generated and published for each
domain, and the PKP server is configured to verify all IDTs.

3) Client: The client requires two components to access a
stealth service, an IDT subscriber, and a PKP client. When a
network request with a domain name is made, its IP address
is first resolved. Next, the IDT subscriber sends a TXT query
to the subdomain equal to the formatted IP address to obtain
the IDT. In order to fulfill the confidential identity property,
DNS traffic can be encrypted. The PKP client takes as input
the IDT, performs a transformation to create the AT. The AT
is inserted into the packet header and sent to the server.

IV. ANALYSIS

In this section we analyze a PKPs resistance to brute
force attacks. The brute force attack tries all possible AT



Fig. 1: Overview of PKP+DNS implementation of PROVIDE.

combinations until the correct one is guessed. We investigate
the expected time for the attack to succeed for various 2k

size search spaces and different attack rates µ. Based on the
findings we are able to reason about the AT length and the
rate λ the IDT is updated in PKP+DNS.

We assume ATs are k-bit strings, randomly sampled from
a uniform distribution. To model a brute force attack, we first
select an AT from the N = 2k possibilities, and then the
attacker randomly samples k-bit strings, without replacement,
until the AT is selected. We define the random variable X as
the number of attempts it takes to select the AT. Deriving the
expected number of attempts until success is straightforward,

E[X] =
1

N

N∑
i=1

i =
N + 1

2
(1)

while the expected time to brute force is E[X]/µ. We calculate
the expected time for various packet transmission rates and AT
lengths. Our analysis results are shown in Figure 2. To date,
the fastest reported network scanner is an enhanced version of
ZMap, scanning at 14.23 million packets per second (Mpps)
and scanning the IPv4 address space in 4m 29s [11]. For k =
16 (the number of bits to encode an AT in a destination port
number) it would take an expected 2.18ms to succeed in a
brute force attack at these speeds. Although this slowdown
would not deter a targeted attack, it would increase the time
of a single IPv4 horizontal scan to 97 days, if all end hosts
deployed this defense. Furthermore, in practice, this would
be a lower bound as the end host can rate limit requests. At
k = 64, targeted attacks are no longer feasible.

An increase in scanning time of this magnitude would
drastically reduce the effectiveness of horizontal scanning as
a means to identity vulnerable machines. Additionally, the
surge in traffic would be evidence of malicious activities. In
reaction, there may be an attempt to create an alternative rDNS
to lookup IDTs by IP address. As a moving target defense,
the update rate, λ, limits the time the IDTs could be shared.
Ideally 1

λ << t, for a scan time t, such that the IDT will be

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0
Transmission rate (Mpps)

2-9
2-4
21
26

211
216
221
226
231
236
241
246
251
256
261

Ex
pe

ct
ed

 b
ru

te
 fo

rc
e 

tim
e 

(s
ec

on
ds

)

k=16
k=32
k=64

Fig. 2: Expected seconds to brute force AT for a given
transmission rate in million packets per second (Mpps).

stale before scanned. However if λ is too high it will put strain
on the name server.

V. DISCUSSION

A. Deployment

Many challenges arise for global adoption of stealth services
and the development of a standard. This work has addressed
the key distribution problem, providing a solution for all
services accessed by domain name, regardless of protocol.
However, perhaps a more significant obstacle, is a standardized
method for encoding ATs in packet headers and client side
support. Previous literature [16] [17] has proposed several
methods for encoding ATs in a packet headers. The closest
we’ve come to a standard is a recent RFC information draft
for TCP Stealth, documenting a method to send an AT as
the initial sequence number (ISN) [8]. We believe an ideal
encoding scheme should have the following properties,
• As soon as possible (ASAP) verification: Unauthorized

packets should be rejected as early as possible to reduce
attack surface and decrease server side processing.

• Protocol agnostic: The encoding scheme should not be
limited to a specific protocol whether UDP or TCP.

• Authentication for each packet: Each packet received
from a client should be authenticated.

• Scalable: As network speeds and transmission rates in-
crease, so should the strength of the AT.

• Low overhead: The processing required to verify the AT
should be minimal and not introduce a denial of service
(DoS) vector.

• Preserved during transit: Routers, and middleboxes
shall not modify the AT.

However TCP Stealth [8] fails to fulfill the first four prop-
erties. It is exclusive to TCP, and the ISN encoding prohibits
each packet from being authenticated, as subsequent sequence
numbers for the connection are derived from the ISN and
the bytes transferred [18]. IP options satisfy the majority of
these properties, with the exception of being preserved during
transit. IPv4 options provides up to 40 bytes for the AT [19]
and an arbitrary size with the introduction of extension headers



in IPv6 [20]. However as past literature has discovered [21],
approximately half of the Internet routes drop packets with
options. One explanation for this behavior is that processing
IP options is an expensive task and is susceptible to a DoS
attack [22].

Although the aforementioned challenges may delay adop-
tion of stealth service in the open Internet, enterprise networks
do not suffer from these limitations. Enterprise networks have
full control over their internal network infrastructure, and
client software. They can take immediate advantage of the
PKP+DNS PROVIDEs implementation to add a transparent
defense from insider threats locating valuable network re-
sources.

B. Adversarial Reaction

In our analysis we found that even using an AT of 16-
bits would cause Internet scanning to be impractical for
the opportunistic attacker. However the adversary is adaptive
and there will always exist persistent threats. As previously
mentioned, there could be an attempt to create an alternative
rDNS service. To add a record, the IDT and IP address would
need to be identified by either brute forcing the AT for each IP
addresses or enumerating domain names and make a forward
DNS query for the IDT TXT record.

A brute force approach may be taken to enumerate the fully
qualified domain name space. Alternatively, they may choose
a more strategic approach, for example, extracting domain
names from zone files which can be obtained in bulk from the
Centralized Zone Data Service (CZDS)2 for participating Top
Level Domains. Furthermore, the adversary may narrow their
scope, targeting for example the one million most popular web
services. Amazon offers an Alexa Web Information Service,3

an API interacting with Alexa’s data repository, which can
provide domain names matching such criteria. A PKP+DNS
implementation of PROVIDEs will impact next generation
scanners in the following ways,
• Increase time: The scanner must make a DNS query

to obtain the IP and IDT. The name server is a point
of control, having the ability to delay and rate limit
TXT queries. Additionally the IDTs are moving targets,
repeated scans will need to re-query for the IDT when
expired.

• Increase complexity: As scan times increase the task
is more likely to be parallelized resulting in additional
infrastructure similar to cooperative scanning techniques
used by botnets [23].

• Increase cost: An increase in time and complexity
equates to an increase in cost. The cost may be expressed
as a likelihood of detection or operational costs.

Although PKP+DNS will not eliminate an advanced per-
sistent threat (APT) from scanning by domain names, it will
impose many challenges to deter an economically conscious
opportunistic attacker and significantly reduce the global
threat.

2Centralized Zone Data Service (CZDS), https://czds.icann.org/
3Alexa Web Information Service https://aws.amazon.com/awis/

C. Future Work

We are currently in the processes of implementing the token
publisher, and token subscriber to support PKP+DNS and will
deploy it in the Massachusetts Open Cloud (MOC) [24]. Our
goal is to work with enterprise network administrators and
other researchers to create stealth services using PKP+DNS
and identify any challenges that it may introduce.

As part of this development, a performance evaluation
will be conducted to determine how the clients and servers
are impacted. We recognize network scanners are a valuable
tool for network administrators to debug issues, and identify
connected devices and running services on their network.
How stealth services will affect network administration in an
enterprise setting still needs to be explored.

This paper has proposed PROVIDE as a protocol to hide a
server from a network scanner. However, not all network scans
have malicious intent. They are commonly used by researchers
as a measurement tool, yet these scans raise many ethical
considerations [25]. It has been discussed in the work on
ZMap [4], that it is impossible to request advance permission
to scan a particular host. Currently, there is no equivalent to a
robots.txt file to indicate the host should not be scanned
[26]. We respectfully disagree. We propose that DNS PTR
records be used as a signaling mechanism to allow an IP
address to opt-out of being scanned. If a PTR record is set
to a domain containing the label donotscan the scanner
should skip the IP address. We have acquired the domain
donotscan.info for others to freely use. Our intention
is to work with the creators of NMap, ZMap and Masscan to
integrate this signaling mechanism, and analyze the overhead
it will impose on DNS.

VI. RELATED WORK

The concept of port knocking dates back to 2001 in a
Linux User Group Mailing List [27]. A method was proposed
requiring a client to first access a sequence of ports before
the SSH port would become visible. Three techniques were
proposed by [17] to conceal services from non-authorized
users. A formal security model for port knocking was proposed
by [7] which is contingent on the act of port knocking
remaining undetectable. Recently, an informational RFC draft
for TCP Stealth has been released documenting a PKP [8].

Alternatively, IP hopping solutions have been proposed to
defend against network scanners in enterprise networks. The
threat model considers an attacker performing vulnerability
scans to create a “hitlist” of victim IP addresses. These
defenses frequently change the host IP addresses so they
become stale by the time they are revisited by the attacker.
Network Address Space Randomization (NASR) provides
a solution using DHCP to update host IP addresses [28].
However, this was disruptive to active connections. OpenFlow
Random Host Mutation (OF-RHM) addressed usability issues
creating a transparent experience for the end user while also
increasing the IP search space to be scanned [29]. Despite
improvements, this defense is limited to software defined



networks (SDN). Furthermore, neither solution is scalable to
Internet size networks.

DNS(SEC) has been proposed as a key distribution in many
situations. Public keys have been distributed for users [30],
DomainKeys Identified Mail (DKIM) [31], and opportunistic
encryption [32]. Jones et al. [33] proposed the Internet Key
Service (IKS) to overcome some barriers associated with
key distribution in DNS. Their solution uses DNS(SEC) to
discover IKS servers which handle key queries directly rather
than DNS itself.

Proofs of knowledge have been around for some time allow-
ing a prover to convince a verifier they poses some knowledge.
Zero knowledge proofs are a variant in which the prover can
convince the verifier a statement is true without revealing
the knowledge to do so [34], which can be used, for exam-
ple, to prove an identity [35]. Authentication protocols [36],
used to prove identities, include password-based, one-time
passwords [15], and challenge-response authentication. Fur-
thermore, in computer networks, the identification protocols
(Indent) allows the identity of a user to be determined from a
TCP connection [37].

VII. CONCLUSION

In response to our observation that horizontal network
scanners are unaware of the targets identity, we present the
PROVIDE protocol that allows a prover (client) to convince
a verifier (service) they are knowledgeable of the verifier’s
identity. We then presented PKP+DNS, a PROVIDE imple-
mentation using DNS for IDT distribution and a PKP for
proof verification and authentication, as a method to hide from
network scanners. Up until now, PKPs have been constricted
to private services due to the key distribution problem. Our
solution allows any service accessed by domain name, not
reliant on rDNS, to be converted to a stealth service. Malicious
IP-based network scans continue to be a problem, while the
increase in scanning speeds, and convenience make matters
worse. Fortunately, PKP+DNS has the ability to put an end
to this threat. However challenges still arise in developing a
unified standard for the PKP. Our objective is to work with
the community in an effort to establish standards to create
stealth services. We believe PKP+DNS provides a step in that
direction.

ACKNOWLEDGMENT

This work has been supported by the National Sci-
ence Foundation (NSF) awards #1430145, #1414119, and
#1012798.

REFERENCES

[1] “Threat feeds,” http://www.dshield.org/threatfeed.html.
[2] “Meet the cryptoworm, the future of ransomware,” https://threatpost.

com/meet-the-cryptoworm-the-future-of-ransomware/117330/.
[3] A. Dainotti, A. King, F. Papale, A. Pescape et al., “Analysis of a /0

stealth scan from a botnet,” in Proceedings of the 2012 ACM conference
on Internet measurement conference. ACM, 2012, pp. 1–14.

[4] Z. Durumeric, E. Wustrow, and J. A. Halderman, “ZMap: Fast Internet-
wide scanning and its security applications,” in Proceedings of the 22nd
USENIX Security Symposium, Aug. 2013.

[5] R. D. Graham, “Masscan: Mass ip port scanner,” URL: https://github.
com/robertdavidgraham/masscan, 2014.

[6] Z. Durumeric, M. Bailey, and J. A. Halderman, “An internet-wide
view of internet-wide scanning,” in 23rd USENIX Security Symposium
(USENIX Security 14), 2014, pp. 65–78.

[7] E. Y. Vasserman, N. Hopper, and J. Tyra, “Silentknock: practical, prov-
ably undetectable authentication,” International Journal of Information
Security, vol. 8, no. 2, pp. 121–135, 2009.

[8] J. A. H. K. J. Kirsch, C. Grothoff, “Tcp stealth,” accessed: 2016-05-17.
[9] “Port knocking implemenations,” http://portknocking.org/view/

implementations.
[10] G. F. Lyon, Nmap network scanning: The official Nmap project guide

to network discovery and security scanning. Insecure, 2009.
[11] D. Adrian, Z. Durumeric, G. Singh, and J. A. Halderman, “Zippier

zmap: internet-wide scanning at 10 gbps,” in 8th USENIX Workshop
on Offensive Technologies (WOOT 14), 2014.

[12] R. Rosenbaum, “Using the domain name system to store arbitrary string
attributes,” 1993.

[13] M. Wong and W. Schlitt, “Sender policy framework (spf) for authorizing
use of domains in e-mail, version 1,” RFC 4408, april, Tech. Rep., 2006.

[14] J. Bound and Y. Rekhter, “Dynamic updates in the domain name system
(dns update),” 1997.

[15] D. MRaihi, S. Machani, M. Pei, and J. Rydell, “Totp: Time-based one-
time password algorithm,” Internet Request for Comments, 2011.

[16] M. Rash, “Single packet authorization with fwknop,” login: The USENIX
Magazine, vol. 31, no. 1, pp. 63–69, 2006.

[17] P. Barham, S. Hand, R. Isaacs, P. Jardetzky, R. Mortier, and T. Roscoe,
“Techniques for lightweight concealment and authentication in ip net-
works,” Intel Research Berkeley. July, 2002.

[18] J. Postel, “Transmission control protocol,” 1981.
[19] ——, “Internet protocol,” 1981.
[20] S. E. Deering, “Internet protocol, version 6 (ipv6) specification,” 1998.
[21] R. Fonseca, G. Porter, R. Katz, S. Shenker, and I. Stoica, “Ip options

are not an option,” 2005.
[22] “Cisco 10000 series router software configuration guide,” Tech. Rep.,

2010.
[23] C. C. Zou, D. Towsley, and W. Gong, “On the performance of internet

worm scanning strategies,” Performance Evaluation, vol. 63, no. 7, pp.
700–723, 2006.

[24] “Massachusetts open cloud,” http://info.massopencloud.org/.
[25] S. Jamieson, “The ethics and legality of port scanning,” SANS Institute,

2001.
[26] M. Koster, A standard for robot exclusion. NEXOR., 1994.
[27] C. Borss, “Drop/deny vs. reject,” Listserv post to Braunschweiger

Linux User Group (lug-bs@ lk. etc. tu-bs. de). Available at:
http://web.archive.org/web/20060618092902/http://www.lk.etc.tu-bs.
de/ lists/archiv/ lug-bs/2001/msg05734.html, 2001.

[28] S. Antonatos, P. Akritidis, E. P. Markatos, and K. G. Anagnostakis,
“Defending against hitlist worms using network address space random-
ization,” Computer Networks, vol. 51, no. 12, pp. 3471–3490, 2007.

[29] J. H. Jafarian, E. Al-Shaer, and Q. Duan, “Openflow random host
mutation: transparent moving target defense using software defined
networking,” in Proceedings of the first workshop on Hot topics in
software defined networks. ACM, 2012, pp. 127–132.

[30] J. M. Galvin, “Public key distribution with secure dns.” in USENIX
Security, 1996.

[31] E. Allman, J. Callas, M. Delany, M. Libbey, J. Fenton, and M. Thomas,
“Domainkeys identified mail (dkim) signatures,” RFC 4871, May, Tech.
Rep., 2007.

[32] M. Richardson and D. Redelmeier, “Opportunistic encryption using the
internet key exchange (ike),” Tech. Rep., 2005.

[33] J. P. Jones, D. F. Berger, and C. V. Ravishankar, “Layering public key
distribution over secure dns using authenticated delegation,” in Computer
Security Applications Conference, 21st Annual. IEEE, 2005, pp. 10–pp.

[34] S. Goldwasser, S. Micali, and C. Rackoff, “The knowledge complexity
of interactive proof systems,” SIAM Journal on computing, vol. 18, no. 1,
pp. 186–208, 1989.

[35] U. Feige, A. Fiat, and A. Shamir, “Zero-knowledge proofs of identity,”
Journal of cryptology, vol. 1, no. 2, pp. 77–94, 1988.

[36] J. Clark and J. Jacob, “A survey of authentication protocol literature:
Version 1.0,” 1997.

[37] M. S. Johns, “Identification protocol,” 1993.


