
Reduction of Quality (RoQ) Attacks on
Internet End-Systems †

MINA GUIRGUIS AZER BESTAVROS IBRAHIM MATTA YUTING ZHANG
{msg, best, matta, danazh}@cs.bu.edu

Computer Science Department
Boston University

Boston, MA 02215, USA

Abstract— Current computing systems depend on adaptation
mechanisms to ensure that they remain in quiescent operating
regions. These regions are often defined using efficiency, fairness,
and stability properties. To that end, traditional research works
in scalable server architectures and protocols have focused on
promoting these properties by proposing even more sophisti-
cated adaptation mechanisms, without the proper attention to
security implications. In this paper, we exemplify such security
implications by exposing the vulnerabilities of admission control
mechanisms that are widely deployed in Internet end systems
to Reduction of Quality (RoQ) attacks. RoQ attacks target the
transients of a system’s adaptive behavior as opposed to its
limited steady-state capacity. We show that a well orchestrated
RoQ attack on an end-system admission control policy could
introduce significant inefficiencies that could potentially deprive
an Internet end-system from much of its capacity, or significantly
reduce its service quality, while evading detection by consuming
an unsuspicious, small fraction of that system’s hijacked capacity.
We develop a control theoretic model for assessing the impact
of RoQ attacks on an end-system’s admission controller. We
quantify the damage inflicted by an attacker through deriving
appropriate metrics. We validate our findings through real
Internet experiments performed in our lab.

Index Terms— Security; Denial of Service; Scalable Web Ser-
vices; Adaptive Resource Management; Performance Evaluation.

I. INTRODUCTION

End-system computing systems and networks (such as web
servers and content delivery networks) have emerged as crucial
building blocks of our current Internet infrastructure with
profound impact on our economy and society. Due to the
open nature of access to these end-systems, the designs of
such systems have grown to be quite sophisticated to enable
them to adapt adequately in response to the often erratic load
offered by legitimate requests. However, as the complexity
in these adaption mechanisms increases, it becomes harder
to understand their dynamic behavior. Specifically, they may
exhibit elaborate dynamic behaviors due to resource manage-
ment strategies in general (as in scheduling, load balancing,
caching, etc.) and system adaptation strategies in particular (as
in admission control, congestion control, etc.). These dynamics
are quite hard to capture analytically or even empirically. As a
result, our models of computing system components often tend

† This work was supported in part by NSF grants ANI-0095988, ANI-9986397,
EIA-0202067 and ITR ANI-0205294.

to abstract away such dynamics and focus instead on static
properties obtained through aggregations over time scales that
are long enough to hide the transients of adaptation; metrics
used to monitor and evaluate a system’s performance (such
as utilization, delay, jitter, and admission rates) are typically
expressed as shapeless mean values, which do not give us
insights into the inefficiencies caused by transients over time
scales shorter than those used in measuring such metrics. Such
relatively little attention by computing system designers and
practitioners to system dynamics stands in sharp contrast to
how other engineered systems, such as electric and mechanical
systems, are evaluated. For such systems, the characterization
of system dynamics is front and center to protect against
oscillatory behaviors and instabilities.

Traditionally, system dynamics are “safely ignored” (or
abstracted out as we like to say in Computer Science), if one
can ensure that such dynamics will not interfere, or that they
will have negligible impact on the overall performance of the
system, which is typically measured using metrics that gauge
efficiency and responsiveness. Such assurances are warranted
for closed systems with predictable, non-adversarial work-
loads. However, for open systems, system dynamics cannot
be “safely ignored” as they could be exploited by adversaries.
Indeed, the main goal of this paper is to show that such
exploits are not only plausible, but that their impact could be
significant. Notice that while system dynamics could be shown
not to interfere with, or significantly impact the fidelity of an
end-system under non-adversarial (even if bursty or erratic)
workloads, the same could not be said for adversarially-
engineered workloads. In this paper we show that a determined
adversary could bleed a system’s capacity or significantly
reduce its service quality by subjecting it to a fairly low-
intensity (but well orchestrated and timed) request stream that
causes the system to become very inefficient, or unstable.
While in [1] we gave an example of such attacks—which we
termed Reduction of Quality (RoQ; as in “rock”) attacks—
on Internet resources employing Active Queue Management
(AQM) schemes, in this paper, we focus on RoQ exploits of
adaptation strategies that are widely deployed in Internet end-
systems.
An Illustrative RoQ Exploit: Current adversarial strategies
for Denial of Service (DoS) are brute force [2]. An attacker
may render a system, say a Web server, useless by subjecting
that system to a sustained attack workload (e.g., syn attack)

that far exceeds that system’s capacity. The result is that
legitimate requests experience a much degraded response from
a persistently overloaded system—or even are denied access
to that system altogether. Could an attacker achieve similar
outcomes without overloading the system in a persistent man-
ner? The answer is yes. To explain why this is the case, we
give a simple illustrative example.

Consider an admission controller that sets its admission rate
of incoming requests as a function of the utilization of its back-
end system [3], [4], [5]. Now, consider a point in time when
the offered load is low enough for the admission controller to
allow a large percentage of all requests to go through. At this
point, a surge in demand (e.g., a large number of requests) in a
very short period of time would push the system into overload.
This, in turn, would result in the admission controller shutting
off subsequent legitimate requests for a long time—given the
fact that under overloaded conditions, the system operates in
an inefficient region (e.g., due to thrashing). Once the system
“recovers” from the ill-effects of this unsuspected surge in
demand, an attacker would simply repeat the process. Albeit
simplistic, this attack illustrates how adaptation strategies may
be exploited by adversaries to reduce system’s fidelity.
Paper Outline: Section II summarizes the premise and the
definition of RoQ attacks with a focus on the notion of attack
potency to quantify the impact of RoQ attacks. We also present
an analytical model whereby the transients of adaptation are
simply the result of an optimization process which forces an
end-system to converge to a stable operating point. Under such
model, one could view a RoQ attack as an persistent attempt
to regularly knock the system off its stable (or quiescent)
operating point. In Section III, we present a more detailed
analytical model for an admission controller employed in an
end-system web server. We derive closed formulas to quantify
the damage inflicted by an attacker. In Section IV, we present
results from Web server experiments we have conducted,
which confirm the feasibility of RoQ attacks and provide
further validation of the insights we gained from analysis and
simulations. In Section V, we briefly discuss related work,
noting that throughout this paper, we point to various pieces
of research work as appropriate. We conclude in Section VI
with a summary and with future directions.

II. ROQ ATTACK PREMISE AND DEFINITION

This paper leverages some of the models and analysis of
RoQ attacks presented in earlier work of ours [1]. In this
section, we briefly review the premise of RoQ attacks, em-
phasizing its novel conception of the attacker’s goal: namely
to maximize damage per unit attack load (or cost). We then
illustrate the general framework whereby the transients of
adaptation are the result of an optimization process which
forces the system’s operation into a stable regime.

A. Attack Goal and Definition

We consider a RoQ attack comprising a burst of M requests
sent to a system element at the rate of δ requests per second
over a short period of time τ , where M = δτ . This process
is repeated every T units of time. We call M the magnitude

of the attack, δ the amplitude of the attack, τ the duration of
the attack, and T the period of the attack.

For the above RoQ attack, we define Π, the attack potency,
to be the ratio between the damage caused by that attack and
the cost of mounting such an attack. Clearly, an attacker would
be interested in maximizing the damage per unit cost—i.e.,
maximizing the attack potency.

Potency = Π =
Damage

Cost
1
Ω

(1)

The Potency definition given by equation 1 does not spec-
ify what constitutes “damage” and “cost”. Clearly, one may
consider various instantiations of these metrics. For example,
for an attacker aiming to minimize a web server availability, a
natural metric of “damage” would be the difference between
the total number of requests admitted before and after the
attack (excluding the attacker’s requests). If the attacker aims
to maximize the jitter in the users’ observed response time,
then a natural metric of “damage” would be the difference
between the standard deviation of the time it takes to process
a request before and after the attack. Similarly, there could
be a number of different metrics for what constitutes “cost”.
Examples include the effective attack request-rate (i.e., M/T),
the attack amplitude δ, the attack duration τ , etc.

The Potency definition given by equation 1 uses a parameter
Ω to model the aggressiveness of the attacker. A large Ω
reflects the highest level of aggression, i.e., an attacker bent on
inflicting the most damage and for whom cost is not a concern.
Mounting a DoS attack is an example of such behavior. A
small Ω reflects an attacker whose goal is to maximize damage
with minimal exposure. Throughout this paper, we take Ω to
be 1.

B. Adaptation as an Optimization Process

We consider a system subjected to multiple request streams,
each of which offers a load characterized by a rate xr of
requests. In a web server setting, xr would represent the
request rate for a particular service r (e.g., in hits/sec). The
value of xr is adapted based on feedback received from the
system (equivalently, prices). In a web server setting, that
pricing feedback would be the request response time, which
is a function of resources consumed (e.g. CPU, disk and
memory.)1

The adaptation of xr would typically follow differential
equations 2 where I(.) and D(.) represent the increase and
decrease functions, which depend on the rates x(t) and the
function pl(.) reflecting the prices/costs fed back to the source
as the input load on the resources l used by stream r varies.

d

dt
xr(t) = I(x(t), pl(x(t)))−D(x(t), pl(x(t))) (2)

In analyzing the convergence of such system to steady-state
rates x∗r , we resort to optimal control theory to show that the
evolution of the system leads to optimizing some objective

1While we give an example of what constitutes a price in a specific setting,
other pricing functions are certainly possible.

function, called the system’s Lyapunov function [6]. The basic
idea is to find such Lyapunov function U(x) of the system
state x that is positive, continuous and strictly concave, such
that d

dtU(x(t)) > 0 if xr(t) �= x∗r and equals zero when
xr(t) = x∗r for all r.

Lyapunov function U(x) is generally of the form in equation
3, where the first term represents the gain in request rates and
the second term represents the associated costs (prices). Thus
by optimizing U(x) the system optimizes its net gain.

U(x) =
∑

r

G(xr)−
∑

l

C(pl(x)) (3)

Load

P
ric

e

Capacity

During
Attack

Without
Attack

Fig. 1. An example of a web server pricing function as the load on the system
varies. RoQ attacks, effectively, will keep the pricing function changing.

Time

R
a

te

Fig. 2. Effect of a RoQ attack pattern on the request rate (xr(t)). RoQ
attacks will hinder convergence to steady state points.

Given that the system converges to a fixed point x∗r , one
would be interested in the rate of convergence as this will de-
termine the speed with which transients subside. An optimized
RoQ exploit would leverage such transients of adaptation to
knock the system off whenever it is about to stabilize. Let µ
determines the rate of convergence of the system—a higher
value indicates faster convergence. Notice that for a linearized
system, in the form of ẏ = Ly where L is a matrix and y
is a vector of state variables, the smallest eigen value of L
determines the rate of convergence, µ.

The analysis we have conducted so far could be used to
provide insights into the effect of adversarial attacks that aim
to exploit the optimization process that leads the system to
converge to steady-state rates x∗r . We do so next.

Assume that the system had already stabilized to its steady-
state x∗r values. Since a resource is used to its almost maximum
capacity, the additional attack load is likely to push the
resource towards saturation where the fed-back prices are
extremely high—see Figure 1. Since the RoQ attack involves

a sustained rate of δ for τ units of time, the system will be
pushed to a new stable point, say (x′)∗r . Let µ′ refer to the
new rate of convergence to the new stable point (i.e., from
x∗r to (x′)∗r). Since the capacity of the attacked resource is
effectively reduced during the attack duration τ , the resource
pricing function is pushed to the left, as shown in Figure 1.
Such higher prices result in faster convergence (i.e., higher µ′)
and lower (x′)∗r .

As soon as the system stabilizes to (x′)∗r , an optimized
RoQ exploit would cease, allowing the system to return to
its original state x∗r . This pattern then repeats as illustrated
in Figure 2, in effect forcing the system to spend its time
oscillating between different states, due to the presence and
absence of the attack traffic. Note that in general, the attack
traffic may destroy the “contractive” mapping property of the
pricing function and so the system may not converge to a fixed
point while under attack.

Having defined the RoQ exploit, we now turn our attention
to assessing its potency as defined in Equation 1. With respect
to our analytical model parameters, one may capture the
“damage” caused by the attack using the expression δ(1

µ′ + 1
µ).

Intuitively, this expression represents the wasted capacity (or
other service qualities such as delay and rate jitter, as we
discuss later) during instability. Also, one may capture the
“cost” of the attack by (δ/(1

µ′ + 1
µ)). Intuitively, the cost

increases with increasing the attacker’s peak rate and decreases
with longer attack period. Again, we emphasize that the
definition of potency allows for many other instantiations of
“damage” and “cost” (which may be more meaningful as we
will do later in the paper) and that our specific choices above
are for illustrative purposes.

Accordingly, we calculate potency using equation 4, where
Ω reflects the relative values that an attacker attributes to
“damage” versus “cost”, or equivalently the desired level of
aggression.

Π =
δ(1

µ′ + 1
µ)(

δ/(1
µ′ + 1

µ)
)1/Ω

= δ1−
1
Ω (

1
µ′ +

1
µ
)1+

1
Ω (4)

In the next section, we will consider a more elaborate
analytical model to gain further insights into more complicated
adaptation dynamics of specific systems that we could not
cast in the generic optimization process we relied upon in this
section.

III. ROQ ATTACKS ON END-HOSTS

Adaptation Through Admission Control: Admission
controllers—a common fixture of computing systems and
networks—are used to protect against overload conditions by
rejecting (or postponing) requests (or offered load) that would
push a system beyond a quiescent operating point. Admission
control strategies are employed in operating systems, database
servers, real-time and multimedia servers, among many others.
As the example in Section I illustrated, admission controllers

may be targets of RoQ exploits. In this section, we instantiate
from the general model we presented in Section II, a detailed
model for studying the vulnerabilities of admission controllers.

A. Model Derivation

The operation of a server (say a web server) whose load
is regulated by an admission controller is modeled by three
components: the admission controller, the server, and the
feedback monitor.

The admission controller determines the percentage of re-
quests that should be accepted (i.e., admitted) for service. This
admission rate is based on the deviation of the server’s state
(utilization) from a desirable set value. In this paper, we use
a PI controller [6] to translate the error signal (deviation
in utilization from a set value) to an admission rate. The
impact of using other forms of controllers can also be studied
using this same framework. For instance, one can think of an
Additive-Increase Multiplicative-Decrease (AIMD) admission
controller. AIMD admission control would shut off admission
rate (when system gets to overload) exponentially but would
only increase it, when the system is under-loaded, linearly.
Admitted requests are then processed by the server. The
feedback monitor periodically measures the server’s utilization
and reports back a value thereof (e.g., average over a time
interval or EWMA) to the admission controller. This feedback
control system is depicted in Figure 3.

Table I summarizes the notation and the description of the
parameters used in our model.

Parameter Description
α(.) Admission ratio
ρ(.) Server utilization
n(.) Number of requests pending inside the system
λ(.) Rate of arrival of requests
m(). Number of requests admitted
K PI controller constant
ρ∗ Target server utilization

A, B, C, D, N Constants describing load/utilization curve
ρo Server utilization beyond which the server thrashes
ω Thrashing index

µmax Maximum service rate
µmin Minimum service rate

δ Attack rate
τ Attack duration
T Attack period

TABLE I

PARAMETERS OF THE LINEARIZED MODEL USED TO ANALYZE POTENCY

OF ROQ EXPLOITS OF PI ADMISSION CONTROL.

Instantiating our general model of Section II, the pricing
function of the admission controller is given by the relation-
ship between the admission ratio of web requests α(.) and
the utilization of the server ρ(.). The latter is a function
of the current total number of requests pending inside the
system n(.), which in turn evolves as a function of both the
admission rates of requests m(.) and the service rate of the
web server. Figure 4 shows two specific (simple) examples of
the relationships between n(.) and ρ(.), and between ρ(.) and
the web server (plant) service rate.

A natural goal of a RoQ exploit on an admission controller
is to maximize the damage caused by a periodic adversar-
ial attack of magnitude M , where damage constitutes the
reduction in the number of legitimate requests admitted to
the system per attack period, or equivalently the difference
between the admission rate under normal conditions and that
achieved when the exploit is mounted. Let Rw denote the
number of rejected requests due to a single periodic attack
with parameters M = δ × τ , over an attack period, T . Thus,
the attack potency Π = Rw/M .

As in the generic analytical model of Section II, the attack
traffic can effectively reduce the service rate of the resource
by pushing the system into high utilization, leaving the system
in a “thrashing” mode of operation where it takes a long time
to recover.

Considering a discrete-time model, equation 5 represents
a PI controller, where the admission ratio, α(i), at time i, is
updated based on the error signal between the target utilization,
ρ∗, and the current utilization, ρ(i). K is the PI controller’s
constant, which plays an important role in how aggressive the
controller reacts to the error signal. In particular, a higher value
of K will tend to cause the admission controller to react more
aggressively to the error signal, but possibly causing transients
in the utilization to be reflected in the admission ratio. A lower
value of K will tend to achieve higher stability margins, but
possibly causing the admission controller to be less responsive
to sudden changes in utilization.

α(i) = K × (ρ∗ − ρ(i)) + α(i− 1) (5)

Equation 6 represents the utilization, ρ(.) as a function of
the number of requests pending inside the system. N , A, B ,
C and D are constants.2

ρ(i) =
{

A n(i) +B n(i) < N
min[Cn(i) +D, 1] Otherwise (6)

Notice that ρ(.) has a lower bound of B, which represents
the utilization when the offered load is zero, reflecting the
utilization of the system due to background operating-system
services, etc. When n(i) < N , the server operates efficiently;
its utilization increases slowly in proportion to n(i) as dictated
by the (small) constant A. Beyond N , utilization increases
quickly in proportion to n(i) as dictated by the constant C >
A, until it reaches its upper bound of 1.

Given the admission rate α(i) and arrivals λ(i) at time
i, the number of requests admitted at time i is given by
m(i) = α(i) × λ(i). Notice that this adaptation of m(.)
represents a Multiplicative-Increase Multiplication-Decrease
(MIMD) policy since λ(.) is simply multiplied by the price
α(.). This leads us to equation 7 for the evolution of the
number of pending requests n(.)

n(i) = n(i− 1) +m(i)
−(µmax − I(ρ(i) > ρo)× ω(ρ(i)− ρo)) (7)

2Since ρ(.) is continuous, three constants suffice to describe equation (6),
but to simplify the notation, we use four constants (A, B, C and D).

Admitted

Rejects

- Controller Gate
Web Server

(Plant)

Monitor
(Feedback)

Error
Signal

 Admission
Ratio

Target
Utilization

Departures

Utilization

Arrivals

Observed Utilization

Admission Controller

+
-

Request
Flow

Control
Flow

Fig. 3. Block diagram showing the various components of the admission control feedback loop for a web server (as an example of an Internet end-system).

1.0

Utilization

Service Rate

0.8 1.0Pending
Requests

10075 0.7

Target
Utilization

p*

0.7

0.4

0.2

u = 70
min

u = 90
max

p*

Utilization

n p
p
o

N

p u

Fig. 4. Instances of (linearized) pricing functions showing the relationships often observed between load and utilization (left) and utilization and thrashing
expressed as degradation in service rate (right).

where I(x) is the indicator function that equals 1 if condition x
is true, and ω is the thrashing index, a constant that represents
the severity of degradation in service rate as ρ(.) increases
beyond ρo. Equation 7 implies that as long as ρ(.) is less than
ρo, the system is operating at its rated capacity. However, once
it gets into overload, its capacity is reduced.

We assess the vulnerabilities of the above-modeled admis-
sion controller to a RoQ exploit comprising periodic bursts of
δ requests/sec sent over a short duration τ , with a period T .
For simplicity, we assume that τ = 1.

Let α(0) denote the admission rate for a steady-state (con-
stant) arrival rate of λ prior to an attack starting at time 0.
Assuming that δ is of a high-enough value to force ρ(.) to
reach unity, we get a constant error signal of ρ∗−1. Thus the PI
controller (cf. equation 5) will start decreasing the admission
rate in fixed steps of K(ρ∗ − 1). One can easily see that at
time i, α(i) = K(ρ∗ − 1)i + α(0). Clearly, ρ(.) will remain
at one until the load is low enough to decrease ρ to a value
lower than unity. Let’s denote by θ the period of time during
which ρ(.) remains at one.

During θ, the total number of requests admitted to the
system will include whatever was admitted from the attack
traffic, plus whatever was admitted from regular arrivals,
based on the changing values of the PI controller—namely,
δα(0)+λ(α(0)+α(1)...+α(θ)). During that time, since ρ is
stuck at one, the departure rate is equal to µmax − ω(1− ρo)

which we denote by µmin—the minimum departure rate. Thus
θ can be expressed as:

θ =
δα(0) + λ(

∑θ
i=0 α(i))

µmin
(8)

Notice that the summation
∑θ

i=0 α(i) is equal to:

θ∑
i=0

α(i) = (θ + 1)α(0) +K(ρ∗ − 1)
θ

2
(θ + 1) (9)

This allows us to derive a second-order equation which can
be solved for (the positive value of) θ and is given by:(

λK(1 − ρ∗)
2

)
θ2 −

(
λα(0) − K(1 − ρ∗)

2
− µmin

)
θ

− (λ + δ)α(0) = 0 (10)

Since K(1−ρ∗)
2 is typically relatively small compared to

µmin and λα(0), one could approximate the above equation
by:3 (

λK(1 − ρ∗)
2

)
θ2 − (λα(0) − µmin) θ

− (λ + δ)α(0) = 0 (11)

3The numerical solution in the absence of this approximation matches very
closely the closed-form solution given in equation 11.

Notice that the attacker’s traffic δ only appears in the
constant coefficient of the above second-order equation. This
means that as the attacker’s traffic increases, the positive root
of the above equation will be larger, resulting in a larger value
of θ, implying a longer time for the server to fully react to the
attack. This can be easily seen when we solve for the roots
of the second-order equation of the form aθ2 + bθ + c = 0;
the term b2 − 4ac is always positive since c is negative and it
gets larger as the magnitude of c gets larger, so the value of
the positive root increases.

During θ, and as the system reacts to the overload caused
by the burst of attack traffic, the admission controller would
have rejected Rθ (legitimate) requests. The value of Rθ can
be easily derived using equation 9:

Rθ = λ{(α(0)− α(1)) + (α(0)− α(2)) + · · ·
+ (α(0)− α(θ))}

= λ

(
θα(0)−

θ∑
i=1

α(i)

)

= λ

(
K(1− ρ∗)

θ(θ + 1)
2

)
(12)

Beyond θ, ρ decreases precipitously as a result of the
admission controller’s reaction to the overload caused by the
RoQ exploit. Eventually, this will cause the PI controller to
reverse course by increasing the admission rate so that ρ can
reach ρ∗. This increase in ρ will span two epochs of time
φ1 and φ2, corresponding to whether the number of pending
requests is less than N or larger than N , respectively. Thus,
after time θ + φ1 + φ2, the admission rate will once again
reach α(0), which represents the initial condition before the
attack was waged.

Next, we derive how long it takes the system to again get
its admission rate close enough to α(0). This period is divided
into two regions as dictated by the piecewise linear function of
load on utilization. We start by calculating the admission rate
starting from α(θ). At time θ+1, the admission rate α(θ+1)
is given by:

α(θ + 1) = Ke(θ) + α(θ)
= K(ρ∗ − ρ(θ)) + α(θ)
= K(ρ∗ − (An(θ) +B)) + α(θ)
= K(ρ∗ − (Aα(θ)λ+B)) + α(θ)
= K(ρ∗ −B) + α(θ)(1−KAλ)
= K1 +K2α(θ) (13)

where e(θ) = ρ∗− ρ(θ) is the error signal to the PI controller
and K1 and K2 are given by K(ρ∗ − B) and (1 − KAλ),
respectively. In the above derivation steps of equation 13,
since the attack had subsided and the admission ratio is at
its lowest value, whatever requests get admitted in one time
step are served by the end of this time step; thus the number
of pending requests n(.) is simply given by the number of
admitted requests m(.) = α(.)λ.

Thus, at any time i after θ, the admission rate is given by:

α(θ + i) = K1
1−Ki

2

1−K2
+Ki

2α(θ)

=
K1

1−K2
+Ki

2

(
α(θ)− K1

1−K2

)
(14)

Let φ1 denote the time it takes for the admission rate to
recover to some value α̂(0), which is the point in time when
utilization switches functions based on N . Solving for φ1:

φ1 = logK2
(
α̂(0)(1−K2)−K1

α(θ)(1−K2)−K1
) (15)

Once the number of pending requests exceeds N , at time
φ1, the admission rate α(θ + φ1 + 1) is given by:

α(θ + φ1 + 1) = Ke(θ + φ1) + α(θ + φ1)
= K3 +K4α(θ + φ1) (16)

Similarly, it can be easily shown that K3 and K4 are given by
K(ρ∗ −D) and (1 −KCλ), respectively. Let φ2 denote the
time it takes for the admission rate to recover to some value
ᾱ(0), which is close to α(0), starting from α̂(0). Solving for
φ2

φ2 = logK4
(
ᾱ(0)(1−K4)−K3

α̂(0)(1−K4)−K3
) (17)

We are now ready to compute the number of (legitimate)
requests which are rejected as a result of the RoQ attack (in
a single period T). The total number of rejected requests are
those rejected during θ + φ1 + φ2. During the period φ1, the
total number of rejected requests Rφ1 is given by:

Rφ1 = λ{(α(0) − α(θ + 1)) + · · · + (α(0) − α(θ + φ1))}

= λ{φ1α(0) −
φ1∑
i=1

α(θ + i)}

= λ{φ1α(0) −
φ1∑
i=1

{ K1

1 − K2
+ Ki

2{α(θ) − K1

1 − K2
}}}

= λ{φ1α(0) − φ1K1

1 − K2
−

φ1∑
i=1

{Ki
2{α(θ) − K1

1 − K2
}}}

= λ{φ1α(0) − φ1K1

1 − K2
− {α(θ) − K1

1 − K2
}

φ1∑
i=1

Ki
2}

= λ{φ1α(0) − φ1K1

1 − K2
− {(α(0) − K(1 − ρ∗)θ)

− K1

1 − K2
}{K2

1 − Kφ1
2

1 − K2
}} (18)

Similarly, during φ2, the total number of rejected requests
Rφ2 is given by:

Rφ2 = λ{φ2α(0) − φ2K3

1 − K4

− {N

λ
− K3

1 − K4
}{K4

1 − Kφ2
4

1 − K4
}} (19)

The above results can be used to calculate the potency of
the attack, which is given by:

π =
Rθ +Rφ1 +Rφ2

M
(20)

B. Numerical Solution

We numerically solve the above system. We assume that
legitimate requests arrive at a rate λ of 100 requests per unit
time. The number of pending requests n(.) drives ρ(.) as
shown in Figure 4(left), with constants A = 0.00267, B = 0.2,
C = 0.024, D = −1.4, K = 0.01 and N = 75. The service
rate µ(.) is driven by ρ(.) as shown in Figure 4(right), with
µmax = 90, µmin = 70, ρo = 0.8, and ω = 70. Figure
5(left) shows the results we obtained. It shows the admission
rate as well as the utilization of the back-end system over
time. Clearly, within 50 time units of operation, the system
converges to an efficient operating region with admission rate
at 0.875 and utilization is around its target value of 0.7. The
RoQ attack starts at time 150 for a duration of τ=1 second
and is repeated every T=50 seconds, producing a potency of
over 100, i.e., one request from the attacker results in over
100 legitimate requests being denied service. Figure 5(middle)
takes a closer look at the period of time between 100 and 200.
It is clear that the admission ratio drops to below 0.6 from its
steady-state value of 0.875.

Clearly, potency depends largely on the choice of the
admission controller parameter, K, as well as the degradation
in the service rate, µmin. Figure 5(right) show this dependence
by showing the attack potency as a function of K for different
values of ω. These plots were obtained using equation 20
and the closed-form solutions for Rθ (from equation 12),
Rφ1 (from equation 18) and Rφ2 (from equation 19). Clearly,
the value of K is critical as it reflects the sensitivity of the
PI controller to the error signal. Notice that the model we
adopted in this section does not capture some other important
adaptation parameters. For instance, it assumed a feedback
delay of unit value—i.e., the utilization at time i drives the
admission decision at time i + 1. In a practical setting, this
feedback delay will slow the controller’s reaction making it
even more vulnerable. The effect of feedback delay will be
illustrated in Section IV.

C. Discussion

Measurement-Based On-Line Tuning of RoQ attacks: In
the above numerical analysis, we assumed that the attacker
knows exactly when the system will recover from the attack
so the attacker can correctly time its next burst. In a real
setting, the attacker wouldn’t know exactly when the system
had recovered. A promising approach to correctly time the
attack traffic is to use measurements to probe the state of
the admission controller. In particular, it is reasonable to
assume that the attacker can send few requests and estimate
the admission ratio based on its own requests. This will enable
the attacker to effectively figure out whether the admission
controller has recovered or not and more importantly when is
the best time to repeat its attack.
Detection and Trace-back: An adversary mounting a RoQ
attack does not have to overwhelm the web server constantly
in order for its attack to be effective. Moreover, the transients
induced by the attack are not much different from those
that are possible under normal operation (except that they
do not subside). These dimensions of RoQ attacks make it

challenging for a network resource to even realize that it is
under attack. Notice that tracing back the perpetrators and
taking counter measures is challenging since the attacker could
be launching its attack through zombie clients, with different
IP addresses. This adds to the complexity of detection and
trace-back.
Tradeoffs Between Efficiency and Tolerance to RoQ Ex-
ploits: Tuning an admission controller parameters to achieve
the best performance may lead to settings that would make the
system quite vulnerable to RoQ exploits. On the other hand,
selecting parameters that may minimize the damage from RoQ
exploits may lead to very inefficient “normal” operation. For
example, as Figure 5(right) suggests, a larger value of K
will lower the potency of a given attack. However, a large
value of K implies that the system will react swiftly to minor
changes in its workload. Under normal operations, this is quite
undesirable as it compromises stability. For instance, it may
be advantageous for the settings of an adaptation mechanism
(e.g., the values of K and µmin) to be adjusted on-line, based
on whether or not the system is suspected to be under a RoQ
exploit.
Load Balancing and Profiling as Targets of RoQ Exploits:
End-hosts employ other forms of adaptations to ensure scala-
bility [7], [8], [9], [10], [11], [12], [13], [14]. Load balancing
is just another form of an adaptation policy that could be
exploited using RoQ attacks. There are many approaches to
load balancing. However, they all share some commonalities
between them (e.g., an inherent feedback delay). Thus, it is
possible to cast the load balancing as an optimization process
subject to pricing functions (as we have done earlier), which
would be vulnerable to RoQ exploits as well.

IV. INTERNET EXPERIMENTS

In this section, we assess the impact of RoQ attacks on an
admission controller that lies in front of a Linux web server
through real experiments performed in our lab. We conduct
a series of experiments to investigate the effect of different
values of the control parameter K in the presence and absence
of feedback delay. Due to the wide deployment of web servers
in the current Internet, we used a web server as an example
of an end-system functionality that is subject to admission
control. We could have instead used an application server
or a database server.4 In our experiments and similar to our
analysis, we used a simple PI controller to derive the admission
ratio. Other controllers, such as AIMD controller, could have
been used as potential targets for RoQ attacks.

Notice that our main goal in this section is to give evidence
that such attacks could be carried out, as opposed to fully
characterizing the possible damage that could be inflicted. A
full characterization for the damage is hard to assess due to
the following two limitations:

(1) When faced with severe thrashing, Linux, on which the
web server in our experiments runs, starts killing threads

4Indeed, such systems would be much more vulnerable to RoQ attacks by
virtue of the more granular nature of their services, and hence their ability to
recover from overload conditions.

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

Time (units)

Admission Rate
RHO

100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

Time (units)

Admission Rate
RHO

0 0.02 0.04 0.06 0.08 0.1
0

20

40

60

80

100

120

K

P
ot

en
cy

Thrashing Index 75
Thrashing Index 50

Fig. 5. Assessment of vulnerability to RoQ attacks: Results from the numerical model (left and center) and the effect of K on the Potency (right)

to get itself out of thrashing. This behavior, while accept-
able for simple HTTP transactions (such as file transfer)
is not acceptable in other more realistic and prevalent
scenarios—e.g., when HTTP sessions are involved, and
when backend system state could be compromised. This
is precisely why the analytical model we used in the pre-
vious section assumed that the admission controller is the
only entity that is responsible for admitting and rejecting
requests and that it doesn’t “kill” threads if the system
is thrashing. This is important to ensure threads integrity
in many scenarios. For example, a database server with
too many admitted transactions, cannot simply kill web
server threads to get rid of thrashing. This may result in a
violation of the system’s integrity which, in return, could
impose longer periods for recovery.5

Linux’ interference with our admission controller (by
imposing its own admission control) makes it impossible
for us to assess the true impact of a RoQ attack once
Linux starts its own thrashing prevention measures. Thus
our experiments were only carried out under moderate
load levels—i.e., at thrashing levels that did not trigger
Linux’s thread killing measures. This naturally puts an
upper-limit on the achievable potency values that we are
able to observe and reliably measure in our laboratory
experiments. In other words, the results we show should
be viewed as lower bounds on the achievable potencies.
Indeed, they will tend to be lower than those predicted
analytically, since our models did not account for the ex-
istence of an outside mechanism (namely Linux’ behavior
in overloads) that “clears” thrashing.

(2) Httperf [15], which we use to generate HTTP requests,
is not a perfect open-loop load generator. In particular, a
client cannot open new connections when there are more
than 1,024 requests pending (this is an operating-system
limitation on the number of open file descriptors). Having
more machines to generate requests could indeed simulate
a “more open-loop” system. In our experiments, we used
4 machines to generate requests.

Given the above two limitations, the potency values calculated
here are lower than those obtained analytically.

5In database end-systems, recovery could be very costly in terms of CPU
cycles as well as I/O, due to rolling back uncommitted transactions to insure
database integrity.

C1

C2

C3 S

C4

Other Lab traffic
share this link

Fig. 6. Experimental setup used in our empirical evaluation.

Experimental Setup: Figure 6 depicts the experimental setup
we used in running our experiments. It consists of a server
machine (S) running Minihttpd [16] web service and four
client machines (C1, C2, C3 and C4) generating web traffic.
We have implemented an admission controller to the web
server, where requests from the clients are admitted to the
server based on a dynamically adjusted admission ratio. The
clients and the server are connected through a 2-hop switched
LAN with 100 Mbps link capacities. All machines run Linux
2.4.20. The clients use Httperf [15] to generate their web
traffic.

A client (Ci) is configured to send cgi requests to the server
(S) through HTTP 1.0. Upon an arrival of a request, the
server admits or rejects the request based on the admission
ratio. For each admitted request, the server forks a new thread,
which executes a cgi script. Each cgi script accesses 1 Mbit of
memory and returns 4 Kbit of data back to the client. Under
normal conditions, it takes around 20 msec to respond to a
single request.6 If the server doesn’t have additional resources
to fork a new thread, the request is queued and the server
would postpone forking a new thread until a later time, when
resources become available.
RoQ Exploit of the Admission Controller: Our first set of
experiments demonstrates the impact of RoQ attacks on the PI
admission controller outlined in Section III. We have instanti-
ated the target of the PI controller to be the memory utilization,

6While accessing 1 Mbit of memory may seem a lot of memory for a
simple web request, existing services such as back-end database servers and
transaction web services could easily require more that figure of memory
access to handle one request.

measured as the ratio between used (physical) memory and
total (physical) memory. When memory utilization is very
high, frequent paging activities cause the system to thrash
and as a result the service rate will dramatically decline. RoQ
attacks then would push the system into thrashing, causing a
decline in the admission ratio and hence a denial of service
to legitimate requests for a long period of time until thrashing
clears up). This process would repeat once the system recovers.

0 200 400 600 800 1000 1200 1400
0

0.2

0.4

0.6

0.8

1

Time(units)

Admission Rate
RHO

Fig. 7. Admission Ratio and Memory utilization Metric

Figure 7 illustrates the evolution of the admission ratio as
a function of time. Under normal workload conditions (i.e.,
no overloading), the memory utilization is fairly low, and the
admission ratio is about 1. At time 120, 800 requests are
injected as a RoQ attack is initiated. As a result, the system
is pushed into thrashing causing high memory utilization and
associated paging activities. This inefficient period lasts for
more than 200sec, until around time 500 when the admission
controller recovers to admitting all legitimate requests. At
time 740, another 800 requests are injected causing the same
scenario to repeat. When K was chosen to be 0.01, the RoQ
attacks achieved a potency of 8, i.e., a single attack request
caused denial of service for 8 legitimate requests.

0 0.02 0.04 0.06 0.08 0.1 0.12
0

1

2

3

4

5

6

7

8

9

K

P
ot

en
cy

Fig. 8. Potency for different K values

Figure 8 shows the effect of different K values on potency.
As K gets larger, the potency decreases. Notice the resem-
blance in the trend between Figure 7 and Figure 5(left and
middle) (obtained analytically), and also between Figure 8 and
Figure 5(right) (also obtained analytically).

Impact of Feedback Delay: In the experiments above, the
effect of feedback delay was ignored. In these experiments,
we assess RoQ exploits when the effect of feedback delay
is taken into consideration. Feedback delay could arise from
possibly several non-exclusive scenarios. First, feedback delay
may arise from delay in measurements due to averaging for
example. Methods like Exponential Weighted Moving Average
(EWMA) for instance, tend to use a smoother value for control
that is different from what is instantaneously experienced
by the system. Second, the effect of feedback delay could
be inherent in the design/architecture of the system. For
instance, the measurement component could be located on
a machine different from the one where control is applied.
We modified our control rules to keep a short history of
past utilization measurements, and applied the control rules
on past values rather than the latest. Figure 9 shows how
the potency increases as feedback delay increases. When the
feedback delay is around 60 seconds, the potency is higher
than 18! Intuitively, long feedback delays have the effect of
admitting more requests at the beginning since the admission
controller does not know about the system state and whether
it is thrashing. This confirms the known impact of feedback
delay on the stability of control systems by causing them to
become unstable, and in our case here, more vulnerable to
RoQ exploits.

0 10 20 30 40 50 60
0

5

10

15

20

Delay(s)

P
ot

en
cy

Fig. 9. Potency for different feedback delay

Admission Control versus Concurrency Control: One of
the main reasons that makes the admission controller behind
Minihttpd [16] susceptible to RoQ exploits, is that it blindly
keeps forking threads as requests keep arriving and the system
is left at the mercy of its admission controller. Some other web
servers, such as Apache [17], maintain a fixed thread pool
to prevent operating in an overload or a thrashing regime.
A Request is only processed when a thread is available.
Effectively, this approach limits the level of concurrency (or
multiprogramming level) in the system.

Having a fixed thread pool, indeed reduces the impact of
RoQ attacks, but this comes at a cost—there is a serious
risk that the web-server might become underutilized. Since
requests could have very different characteristics, in terms of
resources they require, having a fixed pool of threads, and
assuming the worst-case scenario, would prevent the web-
server from adapting to different mixtures of requests. In fact,

this has prompted research studies into how the thread pool
size may be adjusted dynamically based on current requests’
profiles [18], [19].

Having a dynamically-adjusted thread pool size is simply
another paradigm for implementing admission control. Indeed,
thread pool size adaptation could be exploited through RoQ
attacks by forcing the thread pool size to oscillate between
its two extremes (for example, by alternately subjecting the
system to short requests, that don’t take a lot of resources and
long requests that would consume a lot of resources, which
will cause the pool size to keep changing). Such tradeoff is
very important to highlight. Do we want systems that are
more resilient to attacks but less efficient, or systems that are
efficient but susceptible to attacks?
Admission Control versus Buffering: In our analysis and ex-
periments, we have assumed that upon the onset of thrashing,
requests are “rejected”. An alternative approach would have
been to simply delay (or buffer) the admission of such requests
to the system. Buffering of requests is akin to smoothing the
burstiness of the workload. Thus, assuming that the long-term
average of the offered load (including that of the attack traffic)
is below the capacity of the system to efficiently service that
workload, buffering (i.e., delayed service as opposed to denial
of service) could be an effective defense against RoQ exploits.
This is true, but only if the delays that result from buffering
could be tolerated. For many applications, such delays may not
be acceptable, or may induce unintended consequences (e.g.,
triggering timeouts at other layers, which will effectively result
in a denial of service). Buffering (as a defense mechanism
against RoQ exploits) simply changes the nature of damage—
from a reduction in the capacity of the system to service
requests to a reduction in the fidelity (response time jitter)
of the system. Incidentally, using response time jitter as the
damage due to a RoQ attack exploit could well be the goal of
the adversary in the first place (e.g., for interactive or real-time
applications, including gaming, on-line bidding, etc.)

V. RELATED WORK

To our knowledge, the work presented in this paper is the
first to expose vulnerabilities in the dynamics of adaptation
mechanisms employed in an end-system using a control the-
oretic framework. That said, the work presented in this paper
relates to a fairly large body of literature. We briefly exemplify
the different dimensions of this body of work below.
Adaptation through Admission Control: Admission control
strategies are employed in operating systems (by suspending
or terminating processes) to ensure that virtual memory perfor-
mance is not compromised as a result of excessive swapping
[4], [18]. They are employed in real-time and multimedia
systems to ensure that the Quality of Service (QoS) of admitted
tasks is not compromised when additional tasks are admitted
into the system [20], [21], [22], [23]. They are employed
in web/media server designs to ensure that a maximum re-
sponse time is not exceeded [13], [24], [25], [26], [27], [28].
Other examples are abound [29], [30], [31]. These techniques,
however, did not investigate the adversarial exploitation of
the adaptation dynamics for the purpose of reducing one or

more aspects of service quality, or of efficiency. Rather, they
focused mostly on tuning the admission controller to ensure
the quiescent operation of the end-system behind it.
Control-Theoretic Modelling and Analysis: Marshaling
techniques from control and optimization theory has been a
fruitful direction as evidenced by the works in [32], [33], [34],
[35], [36], [19]. In that respect, we single out the works in
[32], [33], which investigated the use of a PI controller to
adjust the admission ratio for an Apache Web server in order
to operate in a stable manner. In [34], a feedback control
loop was incorporated in an Apache web server in order to
adjust the relative delays for different classes through dynamic
scheduling. In [36], Q-PID, a new admission control mecha-
nism, was introduced. The idea is to adjust the admission ratio
in order to guarantee a bounded response time for the users.
In [35], nonlinear optimization theory was used to optimize
the performance of web servers through breaking sessions
into stages and performing admission control with an eye
on maximizing an application-specific reward function. Again,
these studies did not focus on the adversarial aspect we con-
sidered in this paper, but rather on controlling and optimizing
the web server behavior. Indeed, they did not even recognize
or consider the adaptation strategies that they advocated as
potential vulnerabilities worthy of characterization.
RoQ Versus other Attacks: DoS attacks [37], [38] and its
many variants [2] could be characterized as targeting one di-
mension of a system’s service quality–namely, its availability.
There are a number of papers that classify various forms of
DoS attacks; examples include [39], [40], [41]. Using our
model, DoS attacks could be classified as RoQ attacks with
an infinite aggressiveness index (defined in Section II), which
imply that the attacker’s ultimate goal is to maximize the
damage at any cost. In this paper, we have focused on attacks
whose perpetrators are not focused on denying access (i.e.,
targeting availability), but rather they are focused on bleeding
the system of its capacity, or simply pushing it to operate in
inefficient operating regions to reduce some aspect of service
quality. More importantly, in this paper, we have focused on
the harder-to-detect, low-intensity attacks, i.e., with modest
aggressiveness compared to the aggressiveness required for
DoS attacks. On the other hand, the “shrew” attack proposed
in [42] is an example of a low-intensity, harder to detect
attack which targets a set of flows to cause them to timeout.
Clearly, the scope of shrew attacks are limited to targeting
TCP flows only and those who employ the timeout mechanism.
RoQ attacks have much broader scope for targeting adaptation
mechanisms that can be found in modern computing systems.

VI. CONCLUSION

In this paper, we exposed a variant of RoQ attacks that
target end-systems through exploiting the transients of their
adaptation mechanisms. RoQ attacks are identified as those
attempting to maximize the marginal utility of the attacker’s
workload. We have shown that RoQ attacks can indeed
introduce significant inefficiencies in an end-system, while
evading detection by consuming a small portion of the hi-
jacked capacity over long-time scales. This is achieved through

exploiting the transients of the underlying system adaptation
mechanism. Using a control-theoretic model for an admission
controller employed in a web server setting, we derived closed
formulas to assess the impact of a RoQ attack through the
“potency” metric. We confirmed our findings through real
Internet experiments performed in our lab. We believe that
it is very important to develop a general understanding of
the design principles that could be adopted to protect against
RoQ exploits. In particular, the tradeoff between performance
under normal operation and resiliency against RoQ exploits is
important to highlight.

We believe that with the proper understanding of the dy-
namics involved, one can choose between different adaptation
strategies based on risks and rewards behind each of them.

REFERENCES

[1] M. Guirguis, A. Bestavros, and I. Matta, “Exploiting the Transients of
Adaptation for RoQ Attacks on Internet Resources,” in Proceedings of
the 12th IEEE International Conference on Network Protocols (ICNP),
Oct 2004.

[2] CERT Coordination Center, “Trends in Denial of Service Attack Tech-
nology - October 2001,” http://www.cert.org/archive/pdf/DoS trends.pdf.

[3] M. Welsh and D. Culler, “Adaptive Overload Control for Busy Internet
Servers,” in Proceedings of the 4th USENIX Conference on Internet
Technologies and Systems (USITS), March 2003.

[4] M. Welsh, D. E. Culler, and E. A. Brewer, “SEDA: An Architecture
for Well-Conditioned, Scalable Internet Services,” in Symposium on
Operating Systems Principles, 2001, pp. 230–243.

[5] A. Bestavros, N. Katagai, and J. Londono, “Admission Control and
Scheduling for High Performance World Wide Web Servers,” Tech. Rep.
BUCS-TR-1997-015, Boston University, Computer Science Department,
August 1997.

[6] K. Ogata, “Modern Control Engineering, 4th Ed.,” Prentice Hall, 2002.
[7] L. Cherkasova, “FLEX: Load Balancing and Management Strategy for

Scalable Web Hosting Service,” in Proceedings of the Fifth International
Symposium on Computers and Communications (ISCC’00), July 2000,
pp. 8–13.

[8] M. Aron, P. Druschel, and W. Zwaenepoel, “Cluster Reserves: A Mech-
anism for Resource Management in Cluster-based Network Servers,” in
Proceedings of Measurement and Modeling of Computer Systems, 2000,
pp. 90–101.

[9] A. Fox, S. Gribble, Y. Chawathe, E. Brewer, and P. Gauthier, “Extensible
Cluster-Based Scalable Network Services,” in Proceedings of the 16th
ACM Symposium on Operating Systems Principles (SOSP-16), St. Malo,
France, October 1997.

[10] S. D. Gribble, M. Welsh, J. R. V. Behren, E. A. Brewer, D. E. Culler,
N. Borisov, S. E. Czerwinski, R. Gummadi, J. R. Hill, A. D. Joseph,
R. H. Katz, Z. M. Mao, S. Ross, and B. Y. Zhao, “The Ninja architecture
for robust Internet-scale systems and services,” Computer Networks, vol.
35, no. 4, pp. 473–497, 2001.

[11] V. V. Panteleenko and V. W. Freeh, “Instantaneous Offloading of Tran-
sient Web Server Load,” Proceedings of Sixth International Workshop
on Web Caching and Content Distribution (WCW ’01), June 2001.

[12] J. Chuang, “Distributed Network Storage Service with Quality-of-
Service Guarantees,” in Proceedings of Internet Society INET’99, San
Jose, CA, June 1999.

[13] T. F. Abdelzaher and N. Bhatti, “Web Content Adaptation to Improve
Server Overload Behavior,” Computer Networks, vol. 31, no. 11–16, pp.
1563–1577, 1999.

[14] Y. Lu, T. Abdelzaher, C. Lu, L. Sha, and X. Liu, “Feedback Control
with Queueing-Theoretic Prediction for Relative Delay Guarantees in
Web Servers,” in Proceedings of Real-Time and Embedded Technology
and Applications Symposium, Toronto, Canada, May 2003.

[15] D. Mosberger and T. Jin, “Httperf: a tool for measuring web server
performance,” in Proceedings of the First workshop on Internet Server
Performance (WISP ’98), Madison, WI, June 1998.

[16] “mini httpd: small HTTP server,” http://www.acme.com/software/mini httpd.
[17] “Apache HTTP Server,” http://httpd.apache.org.
[18] M. Welsh and D. Culler, “Overload management as a Fundamental

Service Design Primitive,” in Proceedings of the Tenth ACM SIGOPS
European Workshop, Saint-Emilion, France, September 2002.

[19] Y. Diao, N. Gandhi, S. Parekh, J. Hellerstein, and D. Tilbury, “Using
mimo feedback control to enforce policies for interrelated metrics with
application to the apache web server,” in Proceedings of the Network
Operations and Management Symposium 2002, Florence, Italy, April
2002.

[20] E. Knightly and N. Shroff, “Admission Control for Statistical QoS:
Theory and Practice,” IEEE Network, vol. 13, no. 2, pp. 20–29, 1999.

[21] S. Chatterjee and J. K. Strosnider, “A Generalized Admissions Control
Strategy for Heterogeneous, Distributed Multimedia Systems,” ACM
Multimedia, pp. 345–356, 1995.

[22] T. Chiueh and M. Vernick, “An Empirical Study of Admission Control
Strategies in Video Servers,” in Proceedings of the 1998 International
Conference on Parallel Processing, Minneapolis, MN, August 1998, pp.
313–320.

[23] S. Son and K. Kang, “QoS Management in Web-based Real-Time Data
Services,” in Proceedings of the Fourth IEEE International Workshop on
Advanced Issues of E-Commerce and Web-Based Information Systems
(WECWIS’02), Newport Beach, California, June 2002.

[24] X. Jiang and P. Mohapatra, “An Aggressive Admission Control
Algorithms for Multimedia Servers,” in Proceedings of International
Conference on Multimedia Computing and Systems, 1997, pp. 620–621.

[25] T. Voigt, “Overload Behaviour and Protection of Event-driven Web
Servers,” in Proceedings of International Workshop on Web Engineering
(in conjunction with Networking 2002), Pisa, Italy, May 2002.

[26] L. Cherkasova and P. Phaal, “Session Based Admission Control: a
Mechanism for Improving the Performance of an Overloaded Web
Server,” Tech. Rep. HPL-98-119, HP Labs, June 1998.

[27] L. Cherkasova and P. Phaal, “Predictive Admission Control Strategy for
Overloaded Commercial Web Server,” in Proceedings of 8th Interna-
tional Symposium on Modeling, Analysis and Simulation of Computer
and Telecommunication Systems (MASCOTS), August 2000.

[28] T. Voigt and P. Gunningberg, “Handling Multiple Bottlenecks in Web
Servers Using Adaptive Inbound Controls,” in Proceedings of Protocols
for High-Speed Networks, 2002, pp. 50–68.

[29] B. Urgaonkar, P. Shenoy, and T. Roscoe, “Resource Overbooking and
Application Profiling in Shared Hosting Platforms,” in Proceedings of
the 5th symposium on Operating Systems Design and Implementation
(OSDI), Boston, MA, December 2002.

[30] S. Jamin and S. J. Shenker, “Measurement-based Admission Control
Algorithms for Controlled-load Service: A Structural Examination,”
Tech. Rep. CSE-TR-333-97, University of Michigan, April 1997.

[31] Z. Tur, A. Veres, and A. Ol, “A Family of Measurement-based
Admission Control Algorithms,” in Proceedings of Performance of
Information and Communication Systems, Lund, Sweden, May 1998.

[32] M. Andersson, M. Kihl, and A. Robertsson, “Modelling and Design
of Admission Control Mechanisms for Web Servers using Non-linear
Control Theory,” in Proceedings of ITCom, September 2003.

[33] A. Robertsson, B. Wittenmark, and M. Kihl, “Analysis and Design of
Admission Control Systems in Web-server Systems,” in Proceedings of
American Control Conference (ACC), June 2003.

[34] T. Abdelzaher and C. Lu, “Modeling and Performance Control of
Internet Servers,” in Proceedings of the 39th IEEE Conference on
Decision and Control (ICDC), Sydney, Australia, December 2000.

[35] J. Carlstrom and R. Rom, “Application-aware Admission Control and
Scheduling in Web Servers,” in Proceedings of Infocom, 2002.

[36] S. Lim, C. Lee, C. Ahn, C. Lee, and K. Park, “An Adaptive Ad-
mission Control Mechanism for a Cluster-Based Web Server System,”
in Proceedings of International Parallel and Distributed Processing
Symposium (IPDPS), Fort Lauderdale, Florida, April 2002.

[37] CERT Coordination Center, “Denial of Service Attacks,”
http://www.cert.org/tech tips/denial of service.html.

[38] CERT Coordination Center, “CERT Advisory CA-1996-21 TCP SYN
Flooding and IP Spoofing Attacks,” http://www.cert.org/advisories/CA-
1996-21.html, Original issue date: September 19, 1996.

[39] A. Hussain, J. Heidemann, and C. Papadopoulos, “A framework for
classifying denial of service attacks,” in Proceedings of the 2003
Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communications. 2003, pp. 99–110, ACM Press.

[40] J. Mirkovic, J. Martin, and P. Reiher, “A Taxonomy of DDoS Attacks
and DDoS Defense Mechanisms,” Tech. Rep. 020018, Computer Science
Department, University of California, Los Angeles.

[41] C. Meadows, “A Formal Framework and Evaluation Method for
Network Denial of Service,” in Proceedings of the 12th IEEE Computer
Security Foundations Workshop, June 1999.

[42] A. Kuzmanovic and E. Knightly, “Low-Rate TCP-Targeted Denial
of Service Attacks (The Shrew vs. the Mice and Elephants),” in
Proceedings ACM SIGCOMM’03, karlsruhe, Germany, August 2003.

