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Abstract

The speci�cation of a real�time system is often the
result of a process� whereby a conceptual control sys�
tem is �eshed out as a computer program� To be accu�
rate� this process must preserve important causal and
structural properties of the control system� For ex�
ample� if the control system has multiple functional
components operating concurrently� then the process
of mapping these components into a computer pro�
gram executing on a single processor� must ensure
that these components do not interact in ways that
are physically impossible� In this paper we review our
work on CLEOPATRA� an object oriented speci�cation
and programming language that restricts expressive�
ness in a way that allows the speci�cation of only re�
active� spontaneous� and causal computation� Unre�
alistic systems�possessing properties such as in�nite
capacities or perfect timing�cannot even be speci�ed�
We argue that this �ounce of prevention� at the speci��
cation level is likely to spare a lot of time and energy in
the development cycle�not to mention the elimination
of potential hazards that would have gone� otherwise�
unnoticed�

� Introduction
A computing system is embedded if it is a component of
a larger system whose primary purpose is to monitor
and control an environment� The leaping advances in
computing technologies that the last few decades have
witnessed have resulted in an explosion in the extent
and variety of such systems� This trend is expected to
continue in the future�

Usually� embedded systems are associated with crit�
ical applications� in which human lives or expen�
sive machineries are at stake� Their missions are
long�lived and uninterruptible� making maintenance
or recon�guration di�cult� Examples include com�
mand and control systems� nuclear reactors� process�
control plants� robotics� avionics� switching circuits
and telephony� data�acquisition systems� and real�time
databases� just to name a few� The sustained demands
of the environments in which such systems operate
pose relatively rigid and urgent performance require�
ments� Often� these requirements are stated as tim�
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ing constraints on their behaviors� Wirth ���� singled
out this aspect as the one aspect that di	erentiates
real�time from other sequential and parallel systems�
This led to a body of research on real�time computing�
which encompasses issues of speci�cation techniques�
validation and prototyping� formal veri�cation� fault�
tolerance� safety analysis� programming languages� de�
velopment tools� scheduling� and operating systems�

The absence of a uni�ed suitable formal frame�
work that addresses the aforementioned issues severely
limits the usefulness of these studies� This situation
is further exacerbated considering the range of dis�
ciplines employed in developing the various compo�
nents of an embedded application� For example� in
a simple sensory�motor robotic application �
��� algo�
rithms from various disciplines like low�level imaging�
active vision� tactile sensing� path planning� compli�
ant motion control� and non�linear dynamics may be
utilized �
��� Not only are these disciplines di	erent
in their abstractions and programming styles� but also
they di	er in their computational requirements� which
range from single�board dedicated processors to mas�
sively parallel general�purpose computers�

In this paper we propose CLEOPATRA�� a program�
ming environment that recognizes the unique require�
ments of responsive embedded systems� CLEOPATRA

features a C�like imperative syntax for the descrip�
tion of computation� which makes it easier to incor�
porate in applications already using C� It is event�
driven� and thus appropriate for embedded process
control applications� In particular� rather than de�
scribing behaviors using control structures� it de�
scribes behaviors using time�constrained causal struc�
tures� CLEOPATRA is object�oriented and compo�
sitional� thus advocating modularity and reusability�
CLEOPATRA is semantically sound
 its objects can be
transformed� mechanically and unambiguously� into
formal automata for veri�cation purposes� Since 
����
an ancestor of CLEOPATRA has been in use as a
speci�cation and simulation language for embedded
time�critical robotic processes� Our experience con�
�rms CLEOPATRA�s suitability as a vehicle for the
speci�cation and validation of many embedded and
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time�critical applications� In particular� we used it
to simulate and analyze asynchronous digital circuits�
sensory�motor behavior of autonomous creatures� and
intelligent controllers ��� 

� ��� A compiler that al�
lows the execution of CLEOPATRA speci�cations has
been developed �
�� ��� and is available via FTP from
cs�bu�edu��bestavros�cleopatra��
CLEOPATRA is based on the Time�constrained Re�

active Automata �TRA� formalism ��� ��� Using the
TRA model� an embedded system is viewed as a set
of automata �TRAs�� each representing an autonomous
system entity� TRAs are reactive in that they abide by
Lynch�s input enabling property �
��
 they communi�
cate by signaling events on their output channels and
by reacting to events signaled on their input channels�
The behavior of a TRA is governed by time�constrained
causal relationships between computation�triggering
events� Using the TRA formalism� there is no concep�
tual distinction between a system and a property
 both
are speci�ed as formal objects� This reduces the veri��
cation process to that of establishing correspondences
� preservation and implementation � between such ob�
jects� The correspondence between CLEOPATRA and
the TRA formalism is straightforward� Every object in
CLEOPATRA corresponds to a TRA� In ���� the construc�
tion of a TRA� given a CLEOPATRA object� is detailed�

This paper is organized as follows� In Section �� we
describe the CLEOPATRA speci�cation�programming
language� along with an example that illustrates
our �ounce of prevention� thesis �
��� In Section
�� we present a compiler that allows the execution
of CLEOPATRA speci�cations for simulation�validation
purposes� In Section �� we describe an implementation
environment� in which CLEOPATRA was used to pro�
gram the motion controller for a robotics experiment�
In section �� we conclude with current and future re�
search directions�

� CLEOPATRA Speci�cations

In CLEOPATRA� systems are speci�ed as interconnec�
tions of TRA objects� Each TRA object has a set of state
variables and a set of channels� Time�constrained
causal relationships between events occuring on the
di	erent channels� and the computations �state tran�
sitions� that they trigger� are speci�ed using Time�
constrained Event�driven Transactions �TETs�� The
behavior of a TRA object is described using TETs�
TRA objects can be composed to specify more complex
TRAs�

��� Classes and Objects
A TRA object speci�cation in CLEOPATRA consists

of two components� a header and a body� An object�s
header speci�es its name� the parameters needed for
its instantiation� and its signature� An object�s body
speci�es its behavior� In its simplest form� this entails
the speci�cation of the TRA�s state space and its poten�
tially time�constrained set of reactions to the di	erent
events visible to it� More complex behaviors include
�among others� the speci�cation of� internal channels�
initialization code� and interconnection of local �com�
posed� objects� A partial BNF�like description of a
TRA object in CLEOPATRA is given in the Appendix�

In CLEOPATRA� TRAs are de�ned in classes� For ex�
ample� Figure 
 shows the CLEOPATRA speci�cation
of the class of integrators that use trapezoidal approx�
imation�

T+- ERR

time

TRA�class integrate�double TICK� TICK�ERROR�
in�double� �� out�double�

�
state�
double x� 	 �� x
 	 �� y 	 ��
act�
in�x
� �� �
�

init���out�� �� out�y��
within �TICK�TICK�ERROR
TICK�TICK�ERROR�
commit � y 	 y�TICK��x��x
���� x� 	 x
� �

�

Figure 
� Integration using the trapezoidal rule�

TRA classes are parametrized� For instance� the
speci�cation of integrate given in Figure � includes
the parameters TICK� and TICK ERROR� which have to
be speci�ed before instantiating an object from that
class�

The header of a TRA class determines its external
signature and signaling range function� For example�
any TRA from the class integrate speci�ed in Figure 

has a signature consisting of an input channel in and
an output channel out� Both in and out carry ac�
tions whose values are drawn from the set of reals� In
CLEOPATRA� the start channel of any given TRA�class is
called init� Start channels do not have to be explic�
itly included in the header of a TRA�class� For example�
in the de�nition of the integrate TRA�class given in
Figure 
� there is no mention of any init channels
in the external signature speci�ed in the header� yet�
init is used later in the body of integrate�

The body of a TRA class determines the behavior of
objects from that class� Such a behavior can be either
basic or composite� The description of a basic behavior
involves the speci�cation of a state space in the state�
section� the speci�cation of an initialization of that
space in the init� section� and the speci�cation of a
set of Time�constrained Event�driven Transactions in
the act� section� The behavior of an object belonging
to the TRA�class integrate shown in Figure 
 is an
example of a basic behavior� Composite behaviors� on
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Figure �� CLEOPATRA speci�cation of a ramp gener�
ator�

the other hand� are speci�ed by composing previously
de�ned� simpler TRA�classes together in the include�
section� For example� in Figure �� the class ramp is
de�ned by composing the integrate and constant�

classes together�

��� TET Speci�cation

In CLEOPATRA� time�constrained causal relation�
ships between events on di	erent channels of a TRA�
class� and the computations �state transitions� that
they trigger� are speci�ed using Time�constrained
Event�driven Transactions �TET�� A TET describes
the reaction of a TRA to a subset of events� Such a
reaction might involve responding to triggers and�or
�ring action�s�� Figure � explains the relation between
the triggering and �ring of actions using TETs�

The description of a TET consists of two parts� a
header and a body� The header of a TET speci�es a
set of triggering channels �trigger section� and a con�
trolled channel ��re section�� The trigger section spec�
i�es the e	ect of the triggering actions on the state of
the TRA� It speci�es at most one state variable �per
triggering channel� where the value of a trigger on that
channel is to be recorded� A TET with no triggering
section is triggered every time an action is signaled on
any channel of the TRA
 its trigger set is considered
to be the same as the TRA�s signature� The �re sec�
tion speci�es the action value to be signaled on the
controlled channel as a result of �ring the TET� An
absent expression means that a random value from the
signaling range of the controlled channel is to be sig�
naled� The body of a TET describes possible reactions
to the TET triggers� Each reaction is associated with
a disabling condition� a time constraint� and a state
transformation schema�

�The behavior of an object from the constant class is to
signal the value VAL on its only output channel out every TICK

� TICK ERROR units of time�
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Figure �� Time�constrained Event�driven Transaction�

The �rst TET of the integrate class shown in Fig�
ure 
 is an example of a transaction with only a trigger
section� Every time an action is signaled on the input
channel in� its value is stored in the state variable x��
The second TET of the integrate class is an example
of a transaction with both a trigger section and a �re
section� Every time an action is signaled on one of the
triggering channels �init or out� an output action is
�red on out after a delay of TICK � TICK ERROR units
of time elapses�

Each reaction in the body of a TET is associated
with three pieces of information� A disabling condi�
tion� a time constraint� and a state transformation
schema� The disabling condition �unless clause� is
a boolean expression �predicate� on the state of the
TRA�� In order to be committed� a reaction�s disabling
condition has to remain false from when the reaction
is triggered until it commits� In other words� an in�
tended reaction is aborted if at any point in time after
its triggering �scheduling�� the disabling condition be�
comes true� The absence of a disabling condition in
a reaction implies that� once scheduled� it cannot be
disabled� The time constraint �within clause�� deter�
mines a lower and upper bound for the real�time de�
lay between scheduling a reaction and committing it�
Only constant expressions are allowed to be used in the
speci�cation of time bounds� Open� closed� and semi�
closed time intervals can be used provided they specify
an interval of time from the set D�� The absence of a
time constraint from a TET speci�cation implies that
the causal relationship between the trigger and its ef�
fect is unconstrained in time� A lower bound of � and
an upper bound of � is assumed in such cases� The
state transformation schema �commit clause� speci�es
a method for computing the next state of the TRA once
a reaction is committed� We adopt a C�like syntax

�No side e	ects are permitted in the evaluation of this
condition�

�Current CLEOPATRA processors accept only dense inter�
vals of three forms
 ��� Tu�� �Tl���� or �Tl� Tu
� where Tu �

Tl � �� These are introduced using the before� after� and
within clauses� respectively�



for the speci�cation of TET methods� Statements in
a TET method are executed sequentially� The state
transition caused by the execution of a TET method is
assumed to be atomic and instantaneous� An absent
commit clause implies that committing the reaction
does not cause any state changes�

��� An Example
Figure � shows the speci�cation of a �nite FIFO

element in CLEOPATRA� Values fed into the FIFO
element are delayed for some amount of time before
being produced as outputs�

TRA�class fifo�int N�
in�float� �� out�float�� overflow��� ack��

�
state�
float y�N��
int i� j�
bool f�
act�
init�� �� ack���
before DLY�MIN
commit �
i 	 �� j 	 �� f 	 FALSE�

�
in�y�i�� �� ack���
before DLY�MIN
commit �
i 	 �i�
��N � if �i		j� f 	 TRUE �

�
in�� �� out�y�j���
unless �f�
within �DLY�MIN
DLY�MAX�
commit �
j 	 �j�
��N �

�
in�� �� overflow���
unless ��f�
within �DLY�MIN
DLY�MAX�
�

�

Figure �� CLEOPATRA speci�cation of a �nite FIFO
delay element�

The header of the fifo TRA�class identi�es the
channel in as input� and the channels out� ack and
overflow as outputs� Although not explicitly speci�
�ed as such� the channel init �the start channel� is as�
sumed to be an input channel� The signaling range for
channels in and out is the set of �oating point num�
bers� whereas the signaling range for channels ack and
overflow consists of only one value� The body of the
fifo TRA�class contains two sections� In the state�
section� the state space of a fifo object is described
by four state variables� a vector y�� of N �oating point
values� two integer values i and j� and a boolean value
f� In the act� section� the behavior of a fifo object
is described by four TETs� each of which underscores
a causal relationship between the events triggering its
execution and those resulting from its execution��

�In other words� between input and output transitions�

The �rst TET in the body of the FIFO establishes
a causal relationship between events signaled on init
and and those signaled on ack� In particular� �ring
an action on init �the trigger� causes the �ring of
an action on ack �the result� after a a delay of at
most DLY MIN� The second TET establishes a similar
causal relationship between events signaled on in and
ack� The third TET establishes a causal relationship
between events signaled on in and out� In particular�
�ring an action action on in causes the �ring of an
action on out after a delay of at least DLY MIN and
at most DLY MAX elapses� provided that the FIFO did
not over�ow as of the last initialization� The causal
relationship that the fourth TET establishes can be
explained similarly�

Each TET in a TRA�class speci�es up to two possi�
ble state transitions� Consider� for example� the sec�
ond TET in the FIFO speci�cation given in Figure ��
In response to a trigger on in� the value of the trig�
gering signal is stored in the state variable y�i�� thus
resulting in a possible state change� Notice that this
transition cannot be blocked or delayed
 it is an in�
put transition� The second state transition� an output
transition� occurs with the �ring of an action on ack�
resulting in the adjustment of the values of the state
variables i and f� Notice that the value of the ac�
tion signaled on a local �output or internal� channel
does not re�ect the state change associated with it�
For instance� in the fourth TET of Figure �� the value
signaled on the out channel� namely y�j�� does not
re�ect the changes introduced in the commit clause�
namely advancing the pointer j�

��� Case and Point�
It is important to realize that fifo objects will be�

have as expected only if inputs from the environment
meet certain conditions� In particular� the value of
the index i is not incremented as a result of an input
on the channel in until at least DLY MIN units of time
elapse following the signaling of that input� Thus� an
erroneous behavior will result if two or more events
are signaled on the channel in in a duration of time
shorter than DLY MIN� To avoid such malignant behav�
iors� the environment must wait for an acknowledg�
ment ack���� or else wait for at least DLY MIN before
issuing a new input� Such safety conditions can be
veri�ed using TRA�based veri�cation techniques ����

We argue that any �nite implementation of a
discrete�event delay element must have a �nite capac�
ity� which must not be exceeded for a correct behavior�
Using CLEOPATRA� it is impossible to specify a fifo
class that behaves correctly independent of its environ�
ment�s behavior� This is a direct result of our abidance
by the causality and spontaneity principles� which are
preserved by the TRA model� As we mentioned at the
outset of this paper� it is our thesis that preventing
the speci�cation of physically�impossible objects is de�
sired� At the least it spares system developers from
trying to implement the impossible�

An indirect result of CLEOPATRA�s limited expres�
sivity is to force system speci�cations to be spelled out
at a �lower� level� For example� in CLEOPATRA one

�An ack�� event is signaled after the input is processed�



cannot specify a clock that does not drift� This implies
that the consequences of this drift could not be sim�
ply discounted as �implementation details�� Lowering
the level at which speci�cations are expressed advo�
cates a functional speci�cation approach� In contrast
to the black box approach� the operational approach
calls for problem speci�cation by formulating a system
to solve it� The formulated system is given in terms of
implementation�independent structures that� once im�
plemented� would generate the required behavior ��
��

� CLEOPATRA�based Validation

We have developed a compiler that transforms
CLEOPATRA speci�cations into an event�driven sim�
ulator for validation purposes� We have used the
CLEOPATRA compiler to simulate a variety of systems�
In particular� we used it extensively to specify and an�
alyze sensory�motor robotics applications �

� and to
simulate complex behaviors of autonomous creatures
���� Figure � shows the di	erent stages involved in the
compilation and execution of speci�cations written in
CLEOPATRA�

.cleo

.cleo

.cleo

C
le

op
at

ra
 P

re
pr

oc
es

so
r

.cleo

.c

.h

.s

C
  C

om
pi

le
r

.h

.out

Specification Compilation Simulation

     System-defined
 TRA-classes, types,
debugging tools, ... etc.

Figure �� Compilation � simulation of CLEOPATRA�

At the heart of this process is a one�pass pre�
processor� written in C� which parses user�de�ned
CLEOPATRA speci�cations� augmented with system�
de�ned TRA classes�� and generates an equivalent C
simulator� This C simulator consists of three compo�
nents� The �rst is a header ��h� �le� which includes
type de�nitions for the state space of the various TRA
classes in the speci�cation� The second is a schema
��s� �le� which includes de�nitions for the state tran�
sition functions of the various TETs� The third is the

�System�de�nedTRA classes are mainly for i�o and debugging
purposes�

code ��c� �le� which includes the simulator initializa�
tion and control structure along with the instantia�
tion code for the various TRA classes� including main�
The �nal step of this process involves the invocation
of the C compiler to produce an executable simula�
tor� Figure � illustrates a typical session� in which
the CLEOPATRA compiler ccleo is invoked to process
the �le process�ctrl�cleo containing the speci�ca�
tion of the stand�alone process control system shown
in Figures � and ��

+
-

World

User Control Plant

Monitor Monitor

Main

x y z

Figure �� A stand�alone process control system�

In CLEOPATRA� any TRA�class with no input chan�
nels represents a stand�alone �closed� system whose
behavior is independent from the outside world
 it is
a world of its own� One such TRA�class� namely main�
is singled out by CLEOPATRA to represent the entire
system being speci�ed� For embedded systems� a typ�
ical main TRA�class will simply be the composition of
a programmed system� representing the control sys�
tem� and an external interface� representing the envi�
ronment� For example� the main TRA�class shown in
Figure � represents the CLEOPATRA speci�cation of
the closed process control system shown in Figure ��
The execution of a CLEOPATRA stand�alone system is
started by instantiating an object from the TRA�class
main at time� � and� thereafter� committing only the
legal transitions dictated by the system speci�cation
and the semantics of the TRA model� Figure � shows
the values signaled on the x and z channels over time�

A library of system�de�ned TRA�classes is available
for debugging and performing I�O in CLEOPATRA�
For example� in the speci�cation of the TRA�class
main given in Figure �� the TRA�class fmonitor is
used to record the action values signaled on the x
and z channels in �les x�dat and z�dat respectively�
System�de�ned TRA�classes are themselves speci�ed in
CLEOPATRA� They are di	erent from user�de�ned TRA�
classes in that they have access to global information
known only to the simulator� For instance� fmonitor
objects have access to the simulator�s perfect clock�

�The start time of the simulation can be explicitly speci�ed�



�include �sysTRA�cleo�

�define TAU 

�define DLY �

TRA�class user�double EPOCH�
�� x�double�

�
act�
init���x�� �� x�random���
���
within �����EPOCH

���EPOCH�
�

�

TRA�class plant�double GAIN�
y�double� �� z�double�

�
state�
double drive 	 �� val 	 � �

act�
y�drive� �� �
�

init��� z�� �� z�val��
within �����DLY

�
�DLY�
commit �
val 	 val � GAIN�drive �

�
�

TRA�class world��
y�double� �� x�double�� z�double�

�
include�
user����� �� x�� �
plant�
��� y�� �� z�� �

�

TRA�class control��
x�double�� z�double� �� y�double�

�
state�
double s 	 �� f 	 ��

act�
x�s�� z�f� �� y�s�f��
within ������TAU

����TAU�
�

�

TRA�class main�� ��
�
internal�
�� x�double��y�double��z�double�
include�
world y�� �� x��� z�� �
control x��� z�� �� y�� �
fmonitor��x�dat�� x�� �� �
fmonitor��z�dat�� z�� �� �

�

Figure �� The main TRA�class�

� ccleo process�ctrl
TRA�class fmonitor�string FILENAME�
init�unit�� signal�double� �� �

TRA�class user�double EPOCH�
init�unit� �� x�double� �

TRA�class plant�double GAIN�
init�unit�� y�double� �� z�double� �

TRA�class world��
init�unit�� y�double� �� x�double�� z�double� �

TRA�class control��
init�unit�� x�double�� z�double� �� y�double� �

TRA�class main��
init�unit� �� �z�double��� �y�double��� �x�double�� �

Cleopatra preprocessing completed�
C compilation completed�

� process�ctrl
CPU time 	 
����
� usec
� of events 	 � ��
SEPS 	  �
 �����

Figure �� A typical CLEOPATRA compilation and
execution session�

clk� whereas user�de�ned TRA�classes have to main�
tain their own locally perceived clocks� if needed�

C functions can be called fromwithin a CLEOPATRA
speci�cation� To maintain the semantics of the TRA
formalism� however� only functions with no side e	ects
should be used� In other words� C function should
be restricted to act as pure operations on the state
variables of an object� It should not reach beyond the
boundaries of the state space of that object� Also�
it should not alter the structure of the state space of
the object in any way� An example of the use of a
C�function is illustrated in the description of the user
TRA�class of Figure � where the function random�� is
called periodically to generate a random set value�

Most of the C preprocessor utilities are available
in CLEOPATRA� This includes simple and parame�
terized macro de�nition and invocation� constant def�
inition� and nested �le inclusion�� For example� in
the CLEOPATRA speci�cation of the stand�alone pro�
cess control system shown in Figure �� system�de�ned
TRA classes are included using the 	include directive�
and constants are de�ned using the 	define directive�

The simulator has proven to be quite e�cient� This
is due primarily to the causal and compositional na�
ture of the TRA model� which tends to localize the
computation triggered by the occurrence of an event
within the boundaries of few TETs� The number
of simulated events per second �seps� depends on a
number of factors� the average channel fan�out� the
average number of TETs per TRA� and the complex�
ity of the event�driven computation� It does not de�
pend� however� on the size of the state space or on
the amount of TRA nesting� For an application with
a fan�out of 
 and an average of ��� TETs per TRA�
and an O�
� event�driven computational complexity�

�Current CLEOPATRA processors do not admit conditional
compilation�
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Figure �� Simulated behavior of an underdamped pro�
cess control system�

the compiled CLEOPATRA speci�cations executed at
a rate of almost 
����� seps��	 The performance of
a simulator for the same application hand coded di�
rectly in C performed only slightly better� Namely�
it executed at a rate of almost ������ seps� The per�
formance of the simulator degrades considerably when
extensive I�O and tracing operations are performed���

� CLEOPATRA�based Implementation
To close the gap between formality and practicality�
the development cycle of embedded applications has
to be supported in its entirety� This requires that
system implementation � and not only speci�cation�
validation and veri�cation � be addressed� In this sec�
tion� we describe on�going and future research in that
direction�

For software processes� the distinction between
an executable speci�cation and an implementation is
vague� This suggests that speci�cation languages can
themselves be used as programming languages� For
real�time applications� this is true only if programs
can be compiled to execute in real�time rather than in
simulated time� Currently� we are developing a com�
piler for real�time programs written in CLEOPATRA�

Figure 
� illustrates the various component of
a CLEOPATRA�based implementation environment�
The target machine for the compiler is a distributed

�	All simulations were performed on a SPARCstation
SLCTMworkstation�

��This is the case in the simulation shown in Figure �� where
an almost ��fold decrease in e�ciency can be attributed to the
use of the fmonitor TRA�class�

VME�based dedicated shared�memory ����� single�
board computers running real�time operating system
kernels��� CLEOPATRA program development� debug�
ging� and monitoring is to be done using a standard
Unix�based workstation environment linked to that
target�

CLEOPATRA   Programs
&  Application  Libraries

Dedicated  68030-based 
Single-board  Computer

Posix-compliant  RT O.S.

D/A and A/D  Converters,
Shared RAM on VMEbus

CLEOPATRA   Real-Time
compilation & verification

Unix - based
Development
Environment

 Dedicated   VME - based 
distributed target machine

Shared RAM
& peripherals

SPARC & 68030-based
Embedded  Processors

VME bus

Figure 
�� Components of a CLEOPATRA�based im�
plementation environment

Compilers for real�time languages like CLEOPATRA

are complicated by the fact that they are required to
verify the feasibility of the compilation process� In
other words� in addition to checking syntax and se�
mantics� such compilers have to establish that� given
a speci�c hardware con�guration� the compiled code
will observe all the timing constraints speci�ed in the
source code� A simpler approach to address that prob�
lem would be to generate code that raises exceptions
whenever a violation of a speci�ed time constraint is
detected during execution� This is similar to raising
exceptions as a result of run�time errors in conven�
tional �non�real�time� languages� Due to its simplicity�
we have elected to follow the latter approach in our
initial implementation� Meanwhile� we intend to in�
vestigate and develop e�cient veri�cation algorithms
that would potentially lead to the adoption of the for�
mer approach�

��� A Robotics Testbed
In order for a language to be instrumental in im�

plementing practical systems� it must be geared to�
wards a speci�c application through the development
of appropriate libraries and veri�cation tools� Our
intention is for CLEOPATRA to target robotic appli�
cations� Robotics applications are good representa�
tives for �real� embedded systems� The tasks involved
therein are diverse�� �vision� motion control� high�
level planning� ���etc�� and make use of very di	er�
ent resources �special purpose image processors� tai�
lor made controllers and drivers� tightly� and loosely�
coupled computer networks� massively parallel archi�
tectures� ���etc�� In addition� the interaction between
these tasks is non�trivial and highly time�constrained�
Being able to model� and even implement� such com�
plex systems in a single framework is both challenging
and attractive�

A robot system will typically have associated with
it a number of sensing subsystems� If these sensing

��Possibilities include the LynxTM and VxWorksTM operating
systems�

��Refer to Figure �� for a typical experiment�
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� Set�up for a sensori�motor activity coordi�
nation experiment

subsystems are active�� they will each be issuing motor
requests related to the sensory processing algorithm
that they are performing� In a general robot� however�
the manipulative systems will also be required to per�
form duties not related to the acquisition of sensory
information� but aimed at in�uencing the robot�s envi�
ronment in a purposive manner� Thus� both of these
sensory and manipulatory subsystems� will be com�
peting for a limited resource� that of the positional
degrees of freedom of the robot� Such a competition
has to be managed�

As an example of competing requests management�
consider a robot whose active perception system re�
quires it to move around a block in order to see what
it occludes� and whose manipulative system requires
it to stand still so that it can grasp a nearby object�
which would be� otherwise� out of reach� It can be
seen by this simple example that one cannot decouple
the motor activities requested by the active perception
system from the motor activities requested by the ma�
nipulative system� Thus any system that is developed
for controlling motor activities in a robot must take
into account both the perceptual goals and the ma�
nipulative goals of the machine and produce motions
which address these goals in an integrated and orderly
manner�

Another crucial problem in sensory�motor robotics
activities is that of coordination� For example� a vision
system might be required to synchronize its sampling
with the robot motion� In particular� it might require
the robot to remain stand still at a given coordinate

��Active perception implies usage of the robots manipulative
systems to move about and interact with the environment in
ways that serve the sensory processes ��� �� �
�

for a speci�c period of time in the future to grab a
frame�

One can think of the motor units of the robot as
a limited resource that must be shared between the
active perception and manipulative systems� The mo�
tion control operating system must arbitrate and�or
coordinate between the con�icting requirements of
these two systems in a way which allows the goals of
the two systems to be attained� In �

�� we suggested a
methodology based on the TRA model that allows one
to schedule the motor commands sent to the various
actuators in the robot in a manner appropriate to the
robot goals�

In �
��� an experiment that adopts the TRA frame�
work was proposed� The experiment involves the
coordination of motor requests to perform manip�
ulative tasks using directed�vision feedback� The
testbed for the experiment �Figure 

� consists of a
six�degrees of freedom �American Cim�ex� industrial
robot connected to a dedicated �Merlin� controller�
The controller consists of six parallel MC���� proces�
sors �slaves�� each controlling one of the robot�s ac�
tuators� A single board ������based computer VM��
�master� is responsible for driving these processors in
real�time� The backbone of the Merlin controller is
a VERSAbus which is connected via a Synergist�II
VMEbus�VERSAbus translator and a BIT�� VME�
VME adaptor to the bus extender of a SUN�� work�
station �MIPS�� On the same bus extender� another
������based single�board computer �REAL
� is run�
ning VxWorks� a real�time operating system kernel�
The Unix�based �MIPS� workstation provides an en�
vironment for developing and debugging robotics ap�
plications� whereas REAL
 is used to run these ap�
plications in real�time� In addition� MIPS acts as a
Local Area Network gateway to the other comput�
ing facilities in the robotics lab� This includes the
MASPAR massively parallel computer� and the data�
cube special�purpose array processor for image pro�
cessing� A video�camera connected to the data�cube
is mounted on the American Cim�ex robot arm�

The VM�� master computer of the Merlin con�
troller runs a High Speed Host Interface �HSHI� pro�
gram that allows it to receive commands at a rate of
up to ��� commands per second � a � milliseconds
latency � to remotely control the robot from a host
computer� In ��� we described an interface that we de�
signed and implemented to allow a SUN workstation
to communicate with HSHI via a dual�ported shared
memory piggy�backed on the Bit�� VME�VME adap�
tor� A drawback of that connection was our reliance on
UNIX� a non�real�time operating system� Recently� we
have successfully modi�ed our interface to work from
REAL
 under the VxWorks real�time operating sys�
tem� This allowed us to execute time�sensitive tasks
safely�

��� A Simple Motion Controller
We used CLEOPATRA to write a motion control al�

gorithm for Merlin �the six�degrees of freedom Ameri�
can Cim�ex industrial robot�� The algorithm allowed
the robot arm to mimic the motion of a human arm
as seen through the vision system in a real�time man�



ner� A simpli�ed version of this algorithm is shown in
�gure 
� and is explained below�

The controller accepts � inputs from the envi�
ronment over � channels� i pos��� c pos��� and
ctrl ack��� The i pos�� channel is the interface be�
tween the vision subsystem and the controller� An
action on the i pos�� channel carries a vector of �
numbers representing the perceived position �X� Y�
and Z coordinates� and orientation �roll� pitch� and
yaw angles� of the human arm� The c pos�� chan�
nel is the feedback signal from the Merlin controller�
An action on the i pos�� channel carries a vector of
� numbers representing the current position and ori�
entation of the robot arm� The ctrl ack�� channel
carries acknowledgements from the robot arm actua�
tor� An action on the ctrl ack�� channel implies that
the actuator is done with the previous motion request
and is ready for the next one�

The controller produces � outputs to the environ�
ment over � channels� ctrl�� and alarm��� The
ctrl�� channel carries the command signal to the
robot arm actuator� An action on the ctrl�� chan�
nel carries a vector of � numbers representing the next
�requested� position and orientation of the robot arm�
The alarm�� channel provides an exception signal to
higher�level controllers in the system� An action on
the alarm�� channel signi�es the failure of the con�
troller to meet a timing constraint �alarm condition

� �� and �� or to keep the error between the posi�
tion�orientation of the robot and human arms within
a safe margin �alarm condition ���

In addition to its external input and output
channels� the controller has an internal channel�
safety check��� which is used to trigger periodically
a test on the error between the position�orientation
of the robot arm and the human arm� This periodic
behavior illustrates how synchronous reactions could
be speci�ed in CLEOPATRA�

The reaction of the controller to its inputs is simply
to latch the latest requested positions signaled on the
i pos�� channel and the latest feedback signaled on
the c pos��� If these actions are not processed within
LATCH DLY and FEED DLY units of time� respectively�
then appropriate exceptions are raised on the alarm
channel�

The output behavior of the controller is such as
to produce an action on the ctrl�� channel and
then wait for an acknowledgement on the ctrl ack��
channel before issuing a new ctrl action� If the
ctrl ack�� action is not received within ACK DLY
units of time� then an alarm�� exception is signaled�
The relationship between actions on the ctrl���
ctrl ack�� channels illustrates how asynchronous re�
actions could be speci�ed in CLEOPATRA�

Notice that the controller in �gure 
� continues
to operate even after an exception is raised by �r�
ing an action on the alarm channel� Our implemen�
tation enabled more complex behaviors �speci�ed in
CLEOPATRA and running concurrently� to deal with
these exceptions� This methodology is in line with
the subsumption architecture �
��� which empowers a
module from a higher layer to overwrite the output of
a module from a lower layer� The higher layer is called

TRA�class mimic�double CHECK�DLY� CNTRL�DLY�
LATCH�DLY� FEED�DLY�
ACK�DLY� TICK�

i�pos�double����� c�pos�double����� ctrl�ack��
�� ctrl�double����� alarm�int�

�
state�
double old�pos���� req�pos��� �
bool ready 	 FALSE �

internal�
�� safety�check�� �

act�
init�� �� safety�check��� ctrl�req�pos� �
commit �
initialize�req�pos�old�pos� �
ready 	 TRUE �
toggle 	 � �

�

safety�check�� �� safety�check���
within �CHECK�DLY
CHECK�DLY�TICK�
�

safety�check�� �� alarm����
unless �safe�req�pos� old�pos��
before CHECK�DLY
�

i�pos�req�pos� �� alarm�
��
unless �ready�
before LATCH�DLY
commit �
ready 	 FALSE �

�

c�pos�old�pos� �� �
before TICK
commit �
feed�toggle 	 
 � feed�toggle �

�
�

c�pos�� �� alarm����
within �FEED�DLY
FEED�DLY�TICK�
unless�� stable�feed�toggle��
�

ctrl�ack�� �� ctrl�req�pos��
before TICK
commit �
ready 	 TRUE �
ack�toggle 	 
 � ack�toggle �

�

ctrl�ack�� �� alarm����
within �ACK�DLY
ACK�DLY�TICK�
unless�� stable�ack�toggle��
�

�

Figure 
�� Simple controller for American Cim�ex�



a dominant behavior� whereas the lower layer is called
an inferior behavior� Subsumption allows control sys�
tems to be patched up by allowing smarter �or higher
priority� behaviors to take over from default behaviors
whenever appropriate�

� Conclusion
Predictability can be enhanced in a variety of ways�
It can be enhanced by restricting expressiveness as
was done in Real�Time Euclid �
��� by sacri�cing ac�
curacy as was done in the Flex system �
��� or by
abstracting segmented resources as was done in the
Spring kernel �
��� The TRA�development methodol�
ogy we are advocating in this paper introduces one
more way of improving predictability� that of allow�
ing only physically�sound speci�cations� Pursuing the
ideas presented in this paper will undoubtedly pro�
vide us with one more handle in our persistent quest
for predictable systems� An interesting question to
be addressed in the future would be whether this and
other handles can be combined in any useful way to
guarantee predictability�

In this paper� we have portrayed CLEOPATRA as a
language suitable for the validation and implementa�
tion of embedded real�time systems� In that respect�
CLEOPATRA possesses a number of features that make
it attractive� It features a C�like imperative syntax for
the description of computation� which makes it eas�
ier to incorporate in real applications already using
C� It is object�oriented� thus advocating modularity�
reusability� and o	�the�shelf hierarchical programming
of embedded systems� Finally� it is event�driven and�
as such� distinguishes clearly between causality and
dependency� Our experience with CLEOPATRA in the
design� simulation� and analysis of asynchronous dig�
ital circuits� sensory�motor autonomous systems� and
intelligent controllers has con�rmed the value of these
features�
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Appendix� CLEOPATRA Partial BNF Syntax


tra�object� �� 
tra�header� 
�� 
tra�body� 
��

tra�header� �� 
TRA�class� 
tra�name� �
�� 
tra�params�spec� 
��� 
signature�

tra�params�spec� �� �
type� 
param�id� �
�� 
tra�params�spec���

signature� �� �
ch�list�spec�� 
��� �
ch�list�spec��

ch�list�spec� �� 
ch�id� � 
type� � �
�� 
ch�list�spec��

type� �� 
int� � 
double� � 
bool� � ���

tra�body� �� �
declarations�� �
init�� �
transactions��

declarations� �� �
state�� �
internal�� �
included��

state� �� 
state�� 
state�var�def�

state�var�def� �� 
type� 
var�list�def� 
�� �
statevar�def��

var�list�def� �� 
var�id� �
�� 
constant�exp�� �
�� 
var�list�def��

internal� �� 
internal�� 
signature�

included� �� 
included�� 
included�objects�

included�objects� �� 
tra�instantiation� 
�� �
included�objects��

tra�instantiation� �� 
tra�name� �
�� 
actual�param�list� 
��� 
ext�binding�

actual�param�list� �� 
constant�exp� �
�� 
actual�param�list��

ext�binding� �� �
ch�list�� 
��� �
ch�list��

ch�list� �� 
ch�id� �
�� 
ch�list��

init� �� 
code�

transactions� �� �
xact� �
transactions���

xact� �� 
xact�header� 
�� 
xact�body�

xact�header� �� �
trigger�list�� 
��� 
out�sig�spec�

trigger�list� �� 
in�sig�spec� �
�� 
trigger�list��

in�sig�spec� �� 
ch�id� 
�� �
var�id�� 
��

out�sig�spec� �� 
ch�id� 
�� �
exp�� 
��

xact�body� �� 
act� � 
�� 
acts� 
��

acts� �� 
act� �
acts��

act� �� 
computation� � �
condframe�� 
fire�acts� � �
timeframe�� 
fire�acts�

computation� �� 
commit� 
�� 
code� 
�� � 
do� 
�� 
code� 
��

condframe� �� 
unless� 
��
cond�
�� � 
while� 
��
cond�
��

timeframe� �� 
closed�timeframe� � 
open�timeframe�

closed�timeframe� �� 
within� 
��
constant�exp�
��
constant�exp�
��

open�timeframe� �� 
before� 
constant�exp� � 
after� 
constant�exp�
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