
Abstract� In this paper� we describe our experience in developing
parallel implementations for the Bin Packing problem� Bin packing
algorithms are studied to understand various resource allocation issues
and the impact of the di�erent packing heuristics on the packing ef�
�ciency� The seemingly serial nature of the bin packing simulation
has prohibited previous experimentations from going beyond sizes of
several thousands bins� We show that by adopting fairly simple data
parallel algorithms a linear speedup is possible� Sizes of up to hundreds
of thousands of bins have been simulated for di�erent parameters and
heuristics� In our experiments� we focussed on the well known �rst��t
heuristic� We have also considered another potentially superior heuris�
tic which we have called k�delayed best �t�

� This work was supported by DARPA N���������C������

� Introduction

New� increasingly complex hardware con�gurations require soft�
ware developers to implement the same software system on a
multitude of platforms� thus making the software development
process even more challenging� Our approach to this problem
is based on the knowledge�based software development approach
��� in which programs are speci�ed at a very high level� and� via
transformations� e�cient implementations are developed for each
hardware con�guration� In this paper� we describe our experi�
ence in developing parallel implementations for the Bin Packing
problem on massively parallel systems ��� 	 namely the Connec�
tion Machine 
CM� ��� 	 using this approach�

Bin packing is studied to understand various resource allo�
cation issues� Of particular interest is the impact of packing
heuristics on packing e�ciency� In this respect� the asymptotic
behavior of the di
erent heuristics is considered as a major cri�
terion in comparing their relative performance� The seemingly



serial nature of the bin packing simulation has prohibited pre�
vious experimentations from going beyond sizes of several thou�
sands bins� In this paper� we show that by adopting a fairly
simple data parallel algorithm ��� a linear speedup over straight�
forward serial implementation is possible allowing us to simulate
the packing of hundreds of thousands of bins� We begin the pa�
per by introducing the Bin Packing problem through a sequence
of abstract implementations� We follow that with a description
and comparison of the di
erent algorithms we tried on the CM�
Next� we brie�y present our simulation results for the well known
First Fit heuristic and the potentially superior k�delayed Best Fit
heuristic� We end the paper with a summary of open questions
and conclusions�

� Bin Packing

Bin packing is the study of packing a series of requests 
or weights�
into a number of �xed size resources 
or bins�� The requests
usually follow a speci�c distribution� For a given number of
such requests� Optimal �t is the arrangement of values that uses
the fewest number of bins� Finding this optimal arrangement
is known to be exponentially di�cult ���� and therefore online
heuristics to approximate this optimal performance have to be
used 
an online heuristic must sequentially service the requests
as they arrive with no relocation of weights�� One such heuris�
tic is the well�known First Fit approximation where the bins are
inspected sequentially and the newly arriving weight is placed in
the �rst bin that has enough room for it� Another heuristic is
Best �t which places the weight in the bin that will leave the
smallest possible un�lled space� For many practical distributions
the performance of these heuristics is acceptable� An interesting
question� however� is where� and how well� do these heuristics
approximate optimal �tting�



We adopt the expected�case model which assumes that re�
quests follow a uniform distribution over the interval 
a� b�� for
� � a � b � �� To judge the goodness of a given packing 	 that
is� how dense the packing is 	 we use the Bin Ratio 
BR� mea�
sure ��� ��� The BR is the ratio between the available space and
the used space� Obviously� we would like this ratio to approach
unity� in which case we have a Perfect Packing� The BR mea�
sures how full the bins are rather than how optimal the packing
is� It measures the �badness� of the packing by comparing the
total available slack with a theoretic lower bound that might be
impossible to achieve� It has been shown that a perfect packing

��e� a packing that results in a BR of �� exists in an expected�
case model when a � �� b � �� n��� Generally speaking� it is
possible to show that if the interval 
a� b� can be partitioned into
units each symmetric around ��k� for any set of integers k � ��
then as n � � a perfect packing is possible� For a given value
of a �� �� values of b that satis�es this condition can be enumer�
ated� It is easy to prove that this makes a perfect packing always
possible whenever a � ��

A packing heuristic is termed optimal if it results in a BR of
� as n��� In order to demonstrate the non�optimality of a bin
packing heuristic� it is su�cient to show that for a distribution
of weights for which a perfect packing exists� the empty space for
that heuristic is �
n� 
that is the BR approaches some constant
greater that ��� Since a perfect packing exists whenever a �
�� it follows that if the BR achievable using a heuristic does
not approach � when a � �� then the heuristic is not optimal�
McGeoch and Tygar ��� demonstrated that� for b � ����� First
Fit is not optimal for value of � � a � b� a �� ����� That is�
although optimal for a � �� b � �� First Fit is not optimal for
a � �� b � ����� Their proof is extended to the Best Fit heuristic
as well�

An interesting problem is the characterization of First Fit

or any other heuristic� for arbitrary values of a and b� Although



theoretical analyses like those done by McGeoch and Tygar are
useful� they do not provide precise answers to questions con�
cerning optimality for arbitrary values of a� b� The solution is
therefore to simulate the behavior of these heuristics as n � �
for any possible value of a and b� Such a simulation provides
us with an integrated �picture� of the performance of di
erent
heuristics under di
erent distribution� This picture might help
to establish a hypothesis as to a closed form representation 
or
approximation� for the value of the BR� The problem� however�
is that the convergence of the BR is slow making it necessary to
use very large numbers of bins in the simulation� Experiments
with n as large as ��� ��� have been tried ��� to compute the pack�
ing densities achievable by First Fit� Results have con�rmed the
aforementioned anomaly around b � ���� 
the value of a being
�xed to ��� Moreover� results have shown that the BR function
is smooth in the neighborhood of b � ����� Using the CM we
were able to simulate the bin packing for sizes up to ���� ��� for
uniform distributions of values over the open interval 
a� b� where
��� � a � b � ����

� Program Models for Bin Packing

Under the knowledge�based software development approach� sys�
tem implementors do not develop platform customized programs�
Rather� they produce a family of very high level programs� to�
gether with one or more formal plans for its realization as a con�
crete system� A plan is a structured description of the mechani�
cal steps needed to re�ne a program model by applying program
transformations� The transformations may either be developed
by the implementor or they may be drawn from a knowledge�base
of rules whose validity has been certi�ed and whose domains of
e
ectiveness are well documented� Knowledge�based software de�
velopment increases productivity and reliability without dimin�



ishing the e�ciency of systems that can be produced�
In this section� we brie�y present a scenario for the develop�

ment of program models for the Bin�Packing problem� We shall
proceed by describing some nodes of interest in an acyclic graph
of abstract implementations� The graph edges signify the trans�
formations necessary to travel between the nodes� We start by
considering the typical abstraction for the sequential case�

B�� BinPack	Bins
Result�
begin

repeat
ChooseWeight	Weight�
InsertBin	Bins
Weight�
if FailInsert then exit

end

Each time through the loop a weight is chosen� then it is in�
serted in some available bin according to the packing heuristic� If
the insertion fails the loop is exited� No other weight is generated
until the current weight �nds a repository�

An obvious candidate implementation for massively parallel
systems is the Pipelined Request approach 
see section ����� Here�
a sequence of weights traverses the pipeline of bins each of which
decides� locally� whether to accept the weight or not� Upon ac�
ceptance a weight is removed from the sequence� Thus� a bin sees
a weight only if all its predecessors have rejected it� An abstract
implementation to accommodate this solution generalizes from
one weight insertion to a sequence of weights insertion and uses
UpdateWeights� an abstraction which manages the sequence of
weights�

B�� BinPack	Bins
Result�
begin

repeat
UpdateWeights	Weights�
InsertBin	Bins
Weights�
if FailInsert then exit

end



Program B� is a �specialization� of B� if the sequence of
weights is constrained to a unit length�

To accommodate algorithms which consider only a subset of
all the bins at any given time� we introduce the following abstract
implementation�

B�� BinPack	Bins
Result�
begin

repeat
UpdateWeights	Weights�
ChooseBinSubsequence	Bins
RestrictedBins�
InsertBin	RestrictedBins
Weights�
if FailInsert then exit

end

For the Candidate set parallel algorithm 
see section �����
ChooseBinSubsequence will be re�ned to produce the subset of
active bins� i�e those containing some weights� plus the next
available empty bin�

To �esh out various heuristics 
e�g� First�Fit� Best�Fit�� we
need to re�ne InsertBin� the function that inserts a sequence of
weights in a sequence of bins�

InsertBin	Bins
Weight�
begin

SelectBins	Bins
Pred	Weight�
GoodBins�
If EmptyGoodBins then exit
ChooseBin	GoodBins
Bin
Weight�
Putweight	Weights
Bin�

end

In the above abstraction� a re�nement of B��s InsertBin�
the function SelectBins selects GoodBins� a subset of all the
bins that satisfy the predicate Pred� In the case of First�Fit�
Pred chooses all the bins which can accept the current weight�
whereas in the case of Best�Fit only the bins that can minimally
accept the weight are preferred� Finally� the bin selected for
insertion is chosen by the function ChooseBin�



Next� we use program models B��B� in course of developing
implementations for the CM 
����� a �nely grained� massively
parallel system�

� First�Fit Bin Packing Simulation

The inherently sequential nature of the bin packing simulation is
evident from the observation that� �To take any actions or deci�
sions on behalf of a request� all the previous requests should have
been processed�� Since at least one step would be required to be
able to service a request� and the steps for the N requests are
necessarily sequential� it follows that a lower bound on any de�
terministic algorithm for bin packing is o
N�� This lower bound
holds for any underlying computational model 
SISD� SIMD� or
MIMD�� To achieve this bound� the amount of processing per
request should be independent of the size of the problem�

��� A Hand�Waving parallel algorithm

The main idea of this algorithm is to make all the bins observe
the new request as it is generated� and then each of them 
in
parallel� decides whether it can accept it� If it can� it remains
active� The central control is then used as an arbitrator to decide
who will get the generated weight� In terms of program models�
we re�ne B� by choosing a sequence of weights of length � and
by making ChooseBinSubsequence the identity function�

Initially� we assign an empty bin to each processing element

PE�� The PEs are indexed and thus the bins are totally ordered�
At each iteration� the front�end generates a new request by draw�
ing from the uniform distribution 
a� b� a new weight w� Next� it
broadcasts this value to all the bins� Next� in parallel� each bin
tests whether it has enough space to hold the new weight� If it
does� the bin remains active� Next� the front�end� through a re�



duction operation� picks from among the set of active bins the one
that comes �rst in the aforementioned total order 
this entails a
re�nement of the predicate Pred in the abstract implementation
of InsertBin� and informs it to add the newly generated weight
to its local contents� This process repeats until a failure is en�
countered� that is� until a new weight is generated that cannot
�t in any bin� Knowing the total number of bins 
initially al�
located�� and by keeping track of the total of all the generated
weights� the front�end can now compute the BR function� By re�
peating the experiment� the average BR as well as the standard
deviation of the measurements can be estimated�

The reduction step required to pick up the bin that receives
the new weight is implemented by taking the minimum over the
indices of all the selected PEs� The cost of this operation is
approximately log�r� where r is the number of active PEs� Un�
fortunately� this number can be extremely large especially at the
beginning when almost all the bins are still empty�

��� A Candidate set parallel algorithm

When trying to pack a new weight� we already know that it is
going to land in one of the active bins 
��e� non�empty bins� or
otherwise it would have to be packed in the next fresh 
empty�
bin� Thus� there is no point in looking at all the other empty bins

since they cannot be chosen anyway�� Hence� to reduce the total
number of selected bins we should focus our attention on the set
of non�empty bins as well as the �rst empty bin� It is important to
realize that although we have eliminated the �unnecessary� bins�
we also added the overhead of keeping track of the �candidates
set��



��� A Pipelined Request parallel algorithm

Instead of making all the PEs see the newly generated request
at the same time� we only allow a PE to see a request if all its
predecessors have rejected that request� The rationale here is to
make the weight acceptance decision a local one� That is� if a PE
decides to accept a weight� this decision is �nal� An interesting
feature of this technique is that it eliminates totally the reduction
step required in the aforementioned �Hand�Waving� approaches�
This is replaced with a regular communication pattern between
the PEs which always takes a constant time�

In terms of program models� we use B� in which a sequence
of weights is inserted in a sequence of bins� Naively� each weight
and�or bin can be assigned to a di
erent PE� However� guided
by the bin insertion process� a more e�cient data mapping tech�
nique is used which merges the sequences of bins and weights and
assigns a bin�weight per PE�

Initially� each PE is assigned an empty bin and is responsi�
ble for one stage of the pipeline which is originally empty� At
each cycle of the computation� the central control �injects� a
new request 
weight� to the pipeline� Next� each PE 
in par�
allel� checks its stage of the pipeline� If a weight is found� the
PE checks whether it has enough space to accept it� If so� the
�weight� drops from the pipeline into the bin� Otherwise� the
weight is passed to the next stage of the pipeline� This process
continue until a weight propagates through the whole pipeline
without being accepted anywhere� This indicates a failure to
accept that request and signals the termination of the simula�
tion� It is important to note� however� that the state of the bins
at this point cannot be used to measure the BR since the PEs
might have accepted requests that were generated after the failed
request� This can be remedied by propagating through the pipe�
along with each request� the cumulative total weight up to that
request� Therefore� when a request fails� we can get the total of



the previously generated requests� which have been necessarily
accepted 
since the request in hand is the �rst one to fail��

��� Comparisons

All the three approaches presented in the previous section re�
quire a constant number of steps for each new request� Thus we
might expect the required run�time for each to be of the form
k�N � where N is the number of requests and k is a constant
that depends on the number of steps per request as well as the
number of cycles required to execute each of these steps� The
Pipelined�Requests approach requires a deterministic number of
cycles to process each weight� wherea both Hand�Waving and
Candidate set approaches use a reduction operation which uses
the router and hence might use an undeterministic 
although
bounded� number of cycles� The Candidate Set approach aims
at reducing the cycles spent in reduction� by restricting itself to
a smaller set of candidates�

When we �rst looked at the Pipelined Request algorithm� we
were convinced that it should outperform the other techniques�
since it completely eliminates the need for any reductions� How�
ever� despite its �apparent� elegance� this technique proved to be
very ine�cient� The main reason being the inability to predict

without walking through the pipe� whether a generated weight
will be accepted� This resulted in delaying the decision to stop
the simulation and compute the BR for n iterations� Another
weakness is that at the start of the simulation� the whole pipe is
empty� and therefore� no useful work is being done by the ma�
jority of the PEs� Note that this is also true for Hand�Waving�
However� the amount of work done by the PEs is far less�

Our attention was thus focussed on comparing the Hand�
Waving and Candidate set approaches� This comparison led to
some interesting conclusions� First we found that the Candi�
date set approach outperformed the Hand�Waving approach only



when the size of the problem was extremely large 	 over about
������� bins� The Hand�Waving approach was decisively better
for sizes up to ������� The performance was comparable for sizes
around �������� This behavior is expected� and can be explained
as follows� In the Candidate set approach� the price we pay to
reduce the number of selected PEs before doing a reduction is
constant� For smaller problem sizes� this constant overhead ac�
tually becomes a burden� since the amount of contention in the
router is not that large� Moreover� as we have explained earlier�
the router cycle time is far less than the PEs cycle time ��� 	 thus
even with a mediocre router performance� the performance is still
comparable� However� with sizes over ������� bins� it seems that
the constant overhead of the Candidate set begins to pay�o
�

� Simulation Results

In the following sections we brie�y describe the di
erent experi�
ments we have done� For detailed results we refer the interested
reader to ����

��� First Fit performance

We have simulated the First Fit bin packing process for �������
bins for di
erent values of a and b� Figures � and � show the
BR function for a � � and a � ���� respectively� These results
con�rm the anomalies reported in ���� The complete BR surface
we obtained is shown in Figure �� The dominant feature of this
surface is a cascade of canopies which exhibit a preponderance
of �holes� of size ��k for k � � � � ��� The �worst� case is in the
��� canopy� There is also a ��� canopy caused� for instance� by
values in the range 
���� ��� � ��� The height of canopy ��k is
bounded by k�
k � ��� Another feature of the BR surface is an
oscillation caused by the introduction of new bins� Each new bin



Figure �� First Fit BR for a � ��� and a � b � � 
������� bins�

suddenly increases the value of BR� by as much as ��n� Several
values may then be inserted before the next bin is allocated� The
consequence is that sampling after N weights are packed is noisy
by approximately ��n� On the other hand getting smooth data
by sampling just before a new bin is allocated causes produces
optimistic results�

We have also studied the convergence of the BR function as
the number of bins increases� The maximum number of bins we
tried is ������� and the results were obtained at ��� di
erent
points� For the 
�� �� interval� our results show a general trend
towards a BR of �� thus supporting the thesis that First Fit bin�
packing is optimal for the interval 
�� ��� We repeated the same
experiment for the interval 
���� ����� considered by McGeoch
and Tygar in ����� The results we obtained con�rmed their con�
jecture that the BR function approaches a constant value greater
than � 
we found it to be about �������� This means that for



Figure �� First Fit BR for a � ��� and a � b � � 
������� bins�

Figure �� First Fit BR surface for � � a � b � � 
������� bins�



this distribution� First Fit is non�optimal� We repeated the ex�
periment for di
erent values of b around ���� The results we
obtained suggest that First Fit is non�optimal in a region rather
than a unique point� The worst performance 
according to our
experiments� is around b � �����

��� K�delayed Best Fit

We have modi�ed the aforementioned First Fit algorithms to
simulate the Best Fit heuristic� Results of the simulation showed
that the performance of Best Fit was no better than that of First
Fit�

We have also considered a new packing heuristic� which we
termed K�delayed Best�Fit� Using this heuristic� requests are not
necessarily serviced in order� However� once packed a weight
cannot be removed� The idea of this heuristic is to maintain
a �xed�size bu
er� where new requests are kept until serviced�
Whenever the number of pending requests reaches the size of
the bu
er� we select one of these requests and put it into one
of the bins� The request we select is the one that achieves the
best �Best�Fit�� The Best Fit heuristic is a special case of the
�K�delayed Best�Fit�� where K � ��

Initial experimentation has shown that for relatively small
bu
er sizes 
������ this heuristic outperforms both First Fit and
Best Fit� The optimum bu
er size to be selected is an interesting
point to be addressed� We have noticed from our preliminary ex�
periments that increasing the bu
er size from � to � resulted in
a noticeable performance gain� A further increase of the bu
er
size to �� resulted in even better performance� Bu
er sizes larger
that �� did not seem to provide any better responses� This sug�
gests the existence of a certain threshold� We suspect that this
threshold relates to the shape of the candidate bins �lter 
see
����� Further experiments are needed to support this claim�



� Conclusion

We have considered the issue of developing implementations of
the bin packing problem for di
erent platforms� but especially
for massively parallel systems� The approached consisted in a
sequence of re�nements rooted in a space of abstract implemen�
tations� In the quest of e�ciency� we had to make choices both in
terms of process mapping and data mapping� In the �nal analy�
sis� we found that our serial intuition did not always serve us well
in parallel contexts� Our own transition from serial to parallel
thinkers is far from complete� Thus it is important to provide
means for explicit control over both processes 
see ����
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