
Abstract� In this paper� we describe our experience in developing
parallel implementations for the Bin Packing problem� Bin packing
algorithms are studied to understand various resource allocation issues
and the impact of the di�erent packing heuristics on the packing ef�
�ciency� The seemingly serial nature of the bin packing simulation
has prohibited previous experimentations from going beyond sizes of
several thousands bins� We show that by adopting fairly simple data
parallel algorithms a linear speedup is possible� Sizes of up to hundreds
of thousands of bins have been simulated for di�erent parameters and
heuristics� In our experiments� we focussed on the well known �rst��t
heuristic� We have also considered another potentially superior heuris�
tic which we have called k�delayed best �t�

� This work was supported by DARPA N���������C������

� Introduction

New� increasingly complex hardware con�gurations require soft�
ware developers to implement the same software system on a
multitude of platforms� thus making the software development
process even more challenging� Our approach to this problem
is based on the knowledge�based software development approach
��� in which programs are speci�ed at a very high level� and� via
transformations� e�cient implementations are developed for each
hardware con�guration� In this paper� we describe our experi�
ence in developing parallel implementations for the Bin Packing
problem on massively parallel systems ��� 	 namely the Connec�
tion Machine
CM� ��� 	 using this approach�

Bin packing is studied to understand various resource allo�
cation issues� Of particular interest is the impact of packing
heuristics on packing e�ciency� In this respect� the asymptotic
behavior of the di
erent heuristics is considered as a major cri�
terion in comparing their relative performance� The seemingly

serial nature of the bin packing simulation has prohibited pre�
vious experimentations from going beyond sizes of several thou�
sands bins� In this paper� we show that by adopting a fairly
simple data parallel algorithm ��� a linear speedup over straight�
forward serial implementation is possible allowing us to simulate
the packing of hundreds of thousands of bins� We begin the pa�
per by introducing the Bin Packing problem through a sequence
of abstract implementations� We follow that with a description
and comparison of the di
erent algorithms we tried on the CM�
Next� we brie�y present our simulation results for the well known
First Fit heuristic and the potentially superior k�delayed Best Fit
heuristic� We end the paper with a summary of open questions
and conclusions�

� Bin Packing

Bin packing is the study of packing a series of requests
or weights�
into a number of �xed size resources
or bins�� The requests
usually follow a speci�c distribution� For a given number of
such requests� Optimal �t is the arrangement of values that uses
the fewest number of bins� Finding this optimal arrangement
is known to be exponentially di�cult ���� and therefore online
heuristics to approximate this optimal performance have to be
used
an online heuristic must sequentially service the requests
as they arrive with no relocation of weights�� One such heuris�
tic is the well�known First Fit approximation where the bins are
inspected sequentially and the newly arriving weight is placed in
the �rst bin that has enough room for it� Another heuristic is
Best �t which places the weight in the bin that will leave the
smallest possible un�lled space� For many practical distributions
the performance of these heuristics is acceptable� An interesting
question� however� is where� and how well� do these heuristics
approximate optimal �tting�

We adopt the expected�case model which assumes that re�
quests follow a uniform distribution over the interval
a� b�� for
� � a � b � �� To judge the goodness of a given packing 	 that
is� how dense the packing is 	 we use the Bin Ratio
BR� mea�
sure ��� ��� The BR is the ratio between the available space and
the used space� Obviously� we would like this ratio to approach
unity� in which case we have a Perfect Packing� The BR mea�
sures how full the bins are rather than how optimal the packing
is� It measures the �badness� of the packing by comparing the
total available slack with a theoretic lower bound that might be
impossible to achieve� It has been shown that a perfect packing

��e� a packing that results in a BR of �� exists in an expected�
case model when a � �� b � �� n��� Generally speaking� it is
possible to show that if the interval
a� b� can be partitioned into
units each symmetric around ��k� for any set of integers k � ��
then as n � � a perfect packing is possible� For a given value
of a �� �� values of b that satis�es this condition can be enumer�
ated� It is easy to prove that this makes a perfect packing always
possible whenever a � ��

A packing heuristic is termed optimal if it results in a BR of
� as n��� In order to demonstrate the non�optimality of a bin
packing heuristic� it is su�cient to show that for a distribution
of weights for which a perfect packing exists� the empty space for
that heuristic is �
n�
that is the BR approaches some constant
greater that ��� Since a perfect packing exists whenever a �
�� it follows that if the BR achievable using a heuristic does
not approach � when a � �� then the heuristic is not optimal�
McGeoch and Tygar ��� demonstrated that� for b � ����� First
Fit is not optimal for value of � � a � b� a �� ����� That is�
although optimal for a � �� b � �� First Fit is not optimal for
a � �� b � ����� Their proof is extended to the Best Fit heuristic
as well�

An interesting problem is the characterization of First Fit

or any other heuristic� for arbitrary values of a and b� Although

theoretical analyses like those done by McGeoch and Tygar are
useful� they do not provide precise answers to questions con�
cerning optimality for arbitrary values of a� b� The solution is
therefore to simulate the behavior of these heuristics as n � �
for any possible value of a and b� Such a simulation provides
us with an integrated �picture� of the performance of di
erent
heuristics under di
erent distribution� This picture might help
to establish a hypothesis as to a closed form representation
or
approximation� for the value of the BR� The problem� however�
is that the convergence of the BR is slow making it necessary to
use very large numbers of bins in the simulation� Experiments
with n as large as ��� ��� have been tried ��� to compute the pack�
ing densities achievable by First Fit� Results have con�rmed the
aforementioned anomaly around b � ����
the value of a being
�xed to ��� Moreover� results have shown that the BR function
is smooth in the neighborhood of b � ����� Using the CM we
were able to simulate the bin packing for sizes up to ���� ��� for
uniform distributions of values over the open interval
a� b� where
��� � a � b � ����

� Program Models for Bin Packing

Under the knowledge�based software development approach� sys�
tem implementors do not develop platform customized programs�
Rather� they produce a family of very high level programs� to�
gether with one or more formal plans for its realization as a con�
crete system� A plan is a structured description of the mechani�
cal steps needed to re�ne a program model by applying program
transformations� The transformations may either be developed
by the implementor or they may be drawn from a knowledge�base
of rules whose validity has been certi�ed and whose domains of
e
ectiveness are well documented� Knowledge�based software de�
velopment increases productivity and reliability without dimin�

ishing the e�ciency of systems that can be produced�
In this section� we brie�y present a scenario for the develop�

ment of program models for the Bin�Packing problem� We shall
proceed by describing some nodes of interest in an acyclic graph
of abstract implementations� The graph edges signify the trans�
formations necessary to travel between the nodes� We start by
considering the typical abstraction for the sequential case�

B�� BinPack	Bins
Result�
begin

repeat
ChooseWeight	Weight�
InsertBin	Bins
Weight�
if FailInsert then exit

end

Each time through the loop a weight is chosen� then it is in�
serted in some available bin according to the packing heuristic� If
the insertion fails the loop is exited� No other weight is generated
until the current weight �nds a repository�

An obvious candidate implementation for massively parallel
systems is the Pipelined Request approach
see section ����� Here�
a sequence of weights traverses the pipeline of bins each of which
decides� locally� whether to accept the weight or not� Upon ac�
ceptance a weight is removed from the sequence� Thus� a bin sees
a weight only if all its predecessors have rejected it� An abstract
implementation to accommodate this solution generalizes from
one weight insertion to a sequence of weights insertion and uses
UpdateWeights� an abstraction which manages the sequence of
weights�

B�� BinPack	Bins
Result�
begin

repeat
UpdateWeights	Weights�
InsertBin	Bins
Weights�
if FailInsert then exit

end

Program B� is a �specialization� of B� if the sequence of
weights is constrained to a unit length�

To accommodate algorithms which consider only a subset of
all the bins at any given time� we introduce the following abstract
implementation�

B�� BinPack	Bins
Result�
begin

repeat
UpdateWeights	Weights�
ChooseBinSubsequence	Bins
RestrictedBins�
InsertBin	RestrictedBins
Weights�
if FailInsert then exit

end

For the Candidate set parallel algorithm
see section �����
ChooseBinSubsequence will be re�ned to produce the subset of
active bins� i�e those containing some weights� plus the next
available empty bin�

To �esh out various heuristics
e�g� First�Fit� Best�Fit�� we
need to re�ne InsertBin� the function that inserts a sequence of
weights in a sequence of bins�

InsertBin	Bins
Weight�
begin

SelectBins	Bins
Pred	Weight�
GoodBins�
If EmptyGoodBins then exit
ChooseBin	GoodBins
Bin
Weight�
Putweight	Weights
Bin�

end

In the above abstraction� a re�nement of B��s InsertBin�
the function SelectBins selects GoodBins� a subset of all the
bins that satisfy the predicate Pred� In the case of First�Fit�
Pred chooses all the bins which can accept the current weight�
whereas in the case of Best�Fit only the bins that can minimally
accept the weight are preferred� Finally� the bin selected for
insertion is chosen by the function ChooseBin�

Next� we use program models B��B� in course of developing
implementations for the CM
����� a �nely grained� massively
parallel system�

� First�Fit Bin Packing Simulation

The inherently sequential nature of the bin packing simulation is
evident from the observation that� �To take any actions or deci�
sions on behalf of a request� all the previous requests should have
been processed�� Since at least one step would be required to be
able to service a request� and the steps for the N requests are
necessarily sequential� it follows that a lower bound on any de�
terministic algorithm for bin packing is o
N�� This lower bound
holds for any underlying computational model
SISD� SIMD� or
MIMD�� To achieve this bound� the amount of processing per
request should be independent of the size of the problem�

��� A Hand�Waving parallel algorithm

The main idea of this algorithm is to make all the bins observe
the new request as it is generated� and then each of them
in
parallel� decides whether it can accept it� If it can� it remains
active� The central control is then used as an arbitrator to decide
who will get the generated weight� In terms of program models�
we re�ne B� by choosing a sequence of weights of length � and
by making ChooseBinSubsequence the identity function�

Initially� we assign an empty bin to each processing element

PE�� The PEs are indexed and thus the bins are totally ordered�
At each iteration� the front�end generates a new request by draw�
ing from the uniform distribution
a� b� a new weight w� Next� it
broadcasts this value to all the bins� Next� in parallel� each bin
tests whether it has enough space to hold the new weight� If it
does� the bin remains active� Next� the front�end� through a re�

duction operation� picks from among the set of active bins the one
that comes �rst in the aforementioned total order
this entails a
re�nement of the predicate Pred in the abstract implementation
of InsertBin� and informs it to add the newly generated weight
to its local contents� This process repeats until a failure is en�
countered� that is� until a new weight is generated that cannot
�t in any bin� Knowing the total number of bins
initially al�
located�� and by keeping track of the total of all the generated
weights� the front�end can now compute the BR function� By re�
peating the experiment� the average BR as well as the standard
deviation of the measurements can be estimated�

The reduction step required to pick up the bin that receives
the new weight is implemented by taking the minimum over the
indices of all the selected PEs� The cost of this operation is
approximately log�r� where r is the number of active PEs� Un�
fortunately� this number can be extremely large especially at the
beginning when almost all the bins are still empty�

��� A Candidate set parallel algorithm

When trying to pack a new weight� we already know that it is
going to land in one of the active bins
��e� non�empty bins� or
otherwise it would have to be packed in the next fresh
empty�
bin� Thus� there is no point in looking at all the other empty bins

since they cannot be chosen anyway�� Hence� to reduce the total
number of selected bins we should focus our attention on the set
of non�empty bins as well as the �rst empty bin� It is important to
realize that although we have eliminated the �unnecessary� bins�
we also added the overhead of keeping track of the �candidates
set��

��� A Pipelined Request parallel algorithm

Instead of making all the PEs see the newly generated request
at the same time� we only allow a PE to see a request if all its
predecessors have rejected that request� The rationale here is to
make the weight acceptance decision a local one� That is� if a PE
decides to accept a weight� this decision is �nal� An interesting
feature of this technique is that it eliminates totally the reduction
step required in the aforementioned �Hand�Waving� approaches�
This is replaced with a regular communication pattern between
the PEs which always takes a constant time�

In terms of program models� we use B� in which a sequence
of weights is inserted in a sequence of bins� Naively� each weight
and�or bin can be assigned to a di
erent PE� However� guided
by the bin insertion process� a more e�cient data mapping tech�
nique is used which merges the sequences of bins and weights and
assigns a bin�weight per PE�

Initially� each PE is assigned an empty bin and is responsi�
ble for one stage of the pipeline which is originally empty� At
each cycle of the computation� the central control �injects� a
new request
weight� to the pipeline� Next� each PE
in par�
allel� checks its stage of the pipeline� If a weight is found� the
PE checks whether it has enough space to accept it� If so� the
�weight� drops from the pipeline into the bin� Otherwise� the
weight is passed to the next stage of the pipeline� This process
continue until a weight propagates through the whole pipeline
without being accepted anywhere� This indicates a failure to
accept that request and signals the termination of the simula�
tion� It is important to note� however� that the state of the bins
at this point cannot be used to measure the BR since the PEs
might have accepted requests that were generated after the failed
request� This can be remedied by propagating through the pipe�
along with each request� the cumulative total weight up to that
request� Therefore� when a request fails� we can get the total of

the previously generated requests� which have been necessarily
accepted
since the request in hand is the �rst one to fail��

��� Comparisons

All the three approaches presented in the previous section re�
quire a constant number of steps for each new request� Thus we
might expect the required run�time for each to be of the form
k�N � where N is the number of requests and k is a constant
that depends on the number of steps per request as well as the
number of cycles required to execute each of these steps� The
Pipelined�Requests approach requires a deterministic number of
cycles to process each weight� wherea both Hand�Waving and
Candidate set approaches use a reduction operation which uses
the router and hence might use an undeterministic
although
bounded� number of cycles� The Candidate Set approach aims
at reducing the cycles spent in reduction� by restricting itself to
a smaller set of candidates�

When we �rst looked at the Pipelined Request algorithm� we
were convinced that it should outperform the other techniques�
since it completely eliminates the need for any reductions� How�
ever� despite its �apparent� elegance� this technique proved to be
very ine�cient� The main reason being the inability to predict

without walking through the pipe� whether a generated weight
will be accepted� This resulted in delaying the decision to stop
the simulation and compute the BR for n iterations� Another
weakness is that at the start of the simulation� the whole pipe is
empty� and therefore� no useful work is being done by the ma�
jority of the PEs� Note that this is also true for Hand�Waving�
However� the amount of work done by the PEs is far less�

Our attention was thus focussed on comparing the Hand�
Waving and Candidate set approaches� This comparison led to
some interesting conclusions� First we found that the Candi�
date set approach outperformed the Hand�Waving approach only

when the size of the problem was extremely large 	 over about
������� bins� The Hand�Waving approach was decisively better
for sizes up to ������� The performance was comparable for sizes
around �������� This behavior is expected� and can be explained
as follows� In the Candidate set approach� the price we pay to
reduce the number of selected PEs before doing a reduction is
constant� For smaller problem sizes� this constant overhead ac�
tually becomes a burden� since the amount of contention in the
router is not that large� Moreover� as we have explained earlier�
the router cycle time is far less than the PEs cycle time ��� 	 thus
even with a mediocre router performance� the performance is still
comparable� However� with sizes over ������� bins� it seems that
the constant overhead of the Candidate set begins to pay�o
�

� Simulation Results

In the following sections we brie�y describe the di
erent experi�
ments we have done� For detailed results we refer the interested
reader to ����

��� First Fit performance

We have simulated the First Fit bin packing process for �������
bins for di
erent values of a and b� Figures � and � show the
BR function for a � � and a � ���� respectively� These results
con�rm the anomalies reported in ���� The complete BR surface
we obtained is shown in Figure �� The dominant feature of this
surface is a cascade of canopies which exhibit a preponderance
of �holes� of size ��k for k � � � � ��� The �worst� case is in the
��� canopy� There is also a ��� canopy caused� for instance� by
values in the range
���� ��� � ��� The height of canopy ��k is
bounded by k�
k � ��� Another feature of the BR surface is an
oscillation caused by the introduction of new bins� Each new bin

Figure �� First Fit BR for a � ��� and a � b � �
������� bins�

suddenly increases the value of BR� by as much as ��n� Several
values may then be inserted before the next bin is allocated� The
consequence is that sampling after N weights are packed is noisy
by approximately ��n� On the other hand getting smooth data
by sampling just before a new bin is allocated causes produces
optimistic results�

We have also studied the convergence of the BR function as
the number of bins increases� The maximum number of bins we
tried is ������� and the results were obtained at ��� di
erent
points� For the
�� �� interval� our results show a general trend
towards a BR of �� thus supporting the thesis that First Fit bin�
packing is optimal for the interval
�� ��� We repeated the same
experiment for the interval
���� ����� considered by McGeoch
and Tygar in ����� The results we obtained con�rmed their con�
jecture that the BR function approaches a constant value greater
than �
we found it to be about �������� This means that for

Figure �� First Fit BR for a � ��� and a � b � �
������� bins�

Figure �� First Fit BR surface for � � a � b � �
������� bins�

this distribution� First Fit is non�optimal� We repeated the ex�
periment for di
erent values of b around ���� The results we
obtained suggest that First Fit is non�optimal in a region rather
than a unique point� The worst performance
according to our
experiments� is around b � �����

��� K�delayed Best Fit

We have modi�ed the aforementioned First Fit algorithms to
simulate the Best Fit heuristic� Results of the simulation showed
that the performance of Best Fit was no better than that of First
Fit�

We have also considered a new packing heuristic� which we
termed K�delayed Best�Fit� Using this heuristic� requests are not
necessarily serviced in order� However� once packed a weight
cannot be removed� The idea of this heuristic is to maintain
a �xed�size bu
er� where new requests are kept until serviced�
Whenever the number of pending requests reaches the size of
the bu
er� we select one of these requests and put it into one
of the bins� The request we select is the one that achieves the
best �Best�Fit�� The Best Fit heuristic is a special case of the
�K�delayed Best�Fit�� where K � ��

Initial experimentation has shown that for relatively small
bu
er sizes
������ this heuristic outperforms both First Fit and
Best Fit� The optimum bu
er size to be selected is an interesting
point to be addressed� We have noticed from our preliminary ex�
periments that increasing the bu
er size from � to � resulted in
a noticeable performance gain� A further increase of the bu
er
size to �� resulted in even better performance� Bu
er sizes larger
that �� did not seem to provide any better responses� This sug�
gests the existence of a certain threshold� We suspect that this
threshold relates to the shape of the candidate bins �lter
see
����� Further experiments are needed to support this claim�

� Conclusion

We have considered the issue of developing implementations of
the bin packing problem for di
erent platforms� but especially
for massively parallel systems� The approached consisted in a
sequence of re�nements rooted in a space of abstract implemen�
tations� In the quest of e�ciency� we had to make choices both in
terms of process mapping and data mapping� In the �nal analy�
sis� we found that our serial intuition did not always serve us well
in parallel contexts� Our own transition from serial to parallel
thinkers is far from complete� Thus it is important to provide
means for explicit control over both processes
see ����

References

��Batcher
 �Design of Massively Parallel Processor�
 IEEE transac�
tion on computers� C���
 September �����

��A� Bestavros
 W� McKeeman
 �Parallel bin packing using �rst �t
and k�delayed best��t heuristics�� TR������� CS Dept�� Harvard
University� August �����

��T� Cheatham
 D� Stefanescu
 �Knowledge�based software develop�
ment�
 Unpublished notes� CS Dept�
 Harvard University�

��Bouknight
 Denenberg
 McIntyre
 Randall
 Sameh
 Slotnick
 �The
ILLIAC IV system�
 Proc� IEEE� ��
 �
 April �����

��W� Hillis
 G� Steele
 �Data Parallel Algorithms�
CACM� Dec �����

��V� Kathail
 D� Stefanescu
 �A Data Mapping Parallel Language�

TR������� CS Dept�
 Harvard University
 December �����

��C�McGeoch
 J� Tygar
 �When are Best Fit and First Fit Optimal��

Technical Report� CS Dept�
 Carnegie Mellon
 October ����� Also
in ���� SIAM Conference of Discrete Mathematics�

��B� O�Farell
 �Instruction timing on the Connection Machine�
 Par�
allel Computing NEWS ���	� NPAC
 Syracuse Univ�
 April �����

��The Connection Machine Parallel Instruction Set
 Ver ���
 Think�
ing Machines Corporation�

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

