Abstract: In this paper, we describe our experience in developing
parallel implementations for the Bin Packing problem. Bin packing
algorithms are studied to understand various resource allocation issues
and the impact of the different packing heuristics on the packing ef-
ficiency. The seemingly serial nature of the bin packing simulation
has prohibited previous experimentations from going beyond sizes of
several thousands bins. We show that by adopting fairly simple data
parallel algorithms a linear speedup is possible. Sizes of up to hundreds
of thousands of bins have been simulated for different parameters and
heuristics. In our experiments, we focussed on the well known first-fit
heuristic. We have also considered another potentially superior heuris-
tic which we have called k-delayed best fit.

* This work was supported by DARPA N00039-88-C-0163.

1 Introduction

New, increasingly complex hardware configurations require soft-
ware developers to implement the same software system on a
multitude of platforms, thus making the software development
process even more challenging. Our approach to this problem
is based on the knowledge-based software development approach
[3] in which programs are specified at a very high level, and, via
transformations, efficient implementations are developed for each
hardware configuration. In this paper, we describe our experi-
ence in developing parallel implementations for the Bin Packing
problem on massively parallel systems [1] — namely the Connec-
tion Machine (CM) [9] — using this approach.

Bin packing is studied to understand various resource allo-
cation issues. Of particular interest is the impact of packing
heuristics on packing efficiency. In this respect, the asymptotic
behavior of the different heuristics is considered as a major cri-
terion in comparing their relative performance. The seemingly



serial nature of the bin packing simulation has prohibited pre-
vious experimentations from going beyond sizes of several thou-
sands bins. In this paper, we show that by adopting a fairly
simple data parallel algorithm [5] a linear speedup over straight-
forward serial implementation is possible allowing us to simulate
the packing of hundreds of thousands of bins. We begin the pa-
per by introducing the Bin Packing problem through a sequence
of abstract implementations. We follow that with a description
and comparison of the different algorithms we tried on the CM.
Next, we briefly present our simulation results for the well known
First Fit heuristic and the potentially superior k-delayed Best Fit
heuristic. We end the paper with a summary of open questions
and conclusions.

2 Bin Packing

Bin packing is the study of packing a series of requests (or weights)
into a number of fixed size resources (or bins). The requests
usually follow a specific distribution. For a given number of
such requests, Optimal fit is the arrangement of values that uses
the fewest number of bins. Finding this optimal arrangement
is known to be exponentially difficult [7], and therefore online
heuristics to approximate this optimal performance have to be
used (an online heuristic must sequentially service the requests
as they arrive with no relocation of weights). One such heuris-
tic is the well-known First Fit approximation where the bins are
inspected sequentially and the newly arriving weight is placed in
the first bin that has enough room for it. Another heuristic is
Best fit which places the weight in the bin that will leave the
smallest possible unfilled space. For many practical distributions
the performance of these heuristics is acceptable. An interesting
question, however, is where, and how well, do these heuristics
approximate optimal fitting.



We adopt the expected-case model which assumes that re-
quests follow a uniform distribution over the interval (a,b), for
0<a<b< 1. Tojudge the goodness of a given packing — that
is, how dense the packing is — we use the Bin Ratio (BR) mea-
sure [7, 2]. The BR is the ratio between the available space and
the used space. Obviously, we would like this ratio to approach
unity, in which case we have a Perfect Packing. The BR mea-
sures how full the bins are rather than how optimal the packing
is. It measures the “badness” of the packing by comparing the
total available slack with a theoretic lower bound that might be
impossible to achieve. It has been shown that a perfect packing
(r.e. a packing that results in a BR of 1) exists in an expected-
case model when @ = 0,5 = 1, » — oco. Generally speaking, it is
possible to show that if the interval (a,b) can be partitioned into
units each symmetric around 1/k, for any set of integers k > 1,
then as n — 0o a perfect packing is possible. For a given value
of a # 0, values of b that satisfies this condition can be enumer-
ated. It is easy to prove that this makes a perfect packing always
possible whenever a = 0.

A packing heuristic is termed optimal if it results in a BR, of
1 as n — oo. In order to demonstrate the non-optimality of a bin
packing heuristic, it is sufficient to show that for a distribution
of weights for which a perfect packing exists, the empty space for
that heuristic is Q(n) (that is the BR approaches some constant
greater that 1). Since a perfect packing exists whenever a =
0, it follows that if the BR achievable using a heuristic does
not approach 1 when @ = 0, then the heuristic is not optimal.
McGeoch and Tygar [7] demonstrated that: for b = 0.85, First
Fit is not optimal for value of 0 < a < b, @ # 0.15. That is,
although optimal for ¢ = 0, b = 1, First Fit is not optimal for
a = 0, b = 0.85. Their proof is extended to the Best Fit heuristic
as well.

An interesting problem is the characterization of First Fit
(or any other heuristic) for arbitrary values of @ and b. Although



theoretical analyses like those done by McGeoch and Tygar are
useful, they do not provide precise answers to questions con-
cerning optimality for arbitrary values of a,b. The solution is
therefore to simulate the behavior of these heuristics as n — oo
for any possible value of @ and b. Such a simulation provides
us with an integrated “picture” of the performance of different
heuristics under different distribution. This picture might help
to establish a hypothesis as to a closed form representation (or
approximation) for the value of the BR. The problem, however,
is that the convergence of the BR is slow making it necessary to
use very large numbers of bins in the simulation. Experiments
with n as large as 64, 000 have been tried [7] to compute the pack-
ing densities achievable by First Fit. Results have confirmed the
aforementioned anomaly around b = 0.85 (the value of ¢ being
fixed to 0). Moreover, results have shown that the BR function
is smooth in the neighborhood of b = 0.85. Using the CM we
were able to simulate the bin packing for sizes up to 512,000 for
uniform distributions of values over the open interval (a,b) where
0.0<a<b<1.0.

3 Program Models for Bin Packing

Under the knowledge-based software development approach, sys-
tem implementors do not develop platform customized programs.
Rather, they produce a family of very high level programs, to-
gether with one or more formal plans for its realization as a con-
crete system. A plan is a structured description of the mechani-
cal steps needed to refine a program model by applying program
transformations. The transformations may either be developed
by the implementor or they may be drawn from a knowledge-base
of rules whose validity has been certified and whose domains of
effectiveness are well documented. Knowledge-based software de-
velopment increases productivity and reliability without dimin-



ishing the efficiency of systems that can be produced.

In this section, we briefly present a scenario for the develop-
ment of program models for the Bin-Packing problem. We shall
proceed by describing some nodes of interest in an acyclic graph
of abstract implementations. The graph edges signify the trans-
formations necessary to travel between the nodes. We start by
considering the typical abstraction for the sequential case:

B1. BinPack(Bins,Result)
begin
repeat
ChooseWeight(Weight)
InsertBin(Bins, Weight)
if FailInsert then ezt
end

Each time through the loop a weight is chosen, then it is in-
serted in some available bin according to the packing heuristic. If
the insertion fails the loop is exited. No other weight is generated
until the current weight finds a repository.

An obvious candidate implementation for massively parallel
systems is the Pipelined Request approach (see section 4.3). Here,
a sequence of weights traverses the pipeline of bins each of which
decides, locally, whether to accept the weight or not. Upon ac-
ceptance a weight is removed from the sequence. Thus, a bin sees
a weight only if all its predecessors have rejected it. An abstract
implementation to accommodate this solution generalizes from
one weight insertion to a sequence of weights insertion and uses
UpdateWeights, an abstraction which manages the sequence of
weights:

B2. BinPack(Bins,Result)
begin
repeat
UpdateWeights(Weights)
InsertBin(Bins,Weights)
if FailInsert then ezt
end



Program B1 is a “specialization” of B2 if the sequence of
weights is constrained to a unit length.

To accommodate algorithms which consider only a subset of
all the bins at any given time, we introduce the following abstract
implementation:

B3. BinPack(Bins,Result)
begin
repeat
UpdateWeights(Weights)

ChooseBinSubsequence(Bins,RestrictedBins)

InsertBin(RestrictedBins, Weights)
if FailInsert then ezt
end

For the Candidate set parallel algorithm (see section 4.2),
ChooseBinSubsequence will be refined to produce the subset of
active bins, i.e those containing some weights, plus the next
available empty bin.

To flesh out various heuristics (e.g. First-Fit, Best-Fit), we
need to refine InsertBin, the function that inserts a sequence of
weights in a sequence of bins.

InsertBin(Bins, Weight)
begin
SelectBins(Bins,Pred(Weight),GoodBins)
If EmptyGoodBins then ezt
ChooseBin(GoodBins,Bin,Weight)
Putweight(Weights,Bin)
en

In the above abstraction, a refinement of B1’s InsertBin,
the function SelectBins selects GoodBins, a subset of all the
bins that satisfy the predicate Pred. In the case of First-Fit,
Pred chooses all the bins which can accept the current weight,
whereas in the case of Best-Fit only the bins that can minimally
accept the weight are preferred. Finally, the bin selected for
insertion is chosen by the function ChooseBin.



Next, we use program models B1-B3 in course of developing
implementations for the CM ([9]), a finely grained, massively
parallel system.

4 First-Fit Bin Packing Simulation

The inherently sequential nature of the bin packing simulation is
evident from the observation that: “To take any actions or deci-
sions on behalf of a request, all the previous requests should have
been processed”. Since at least one step would be required to be
able to service a request, and the steps for the N requests are
necessarily sequential, it follows that a lower bound on any de-
terministic algorithm for bin packing is o( N'). This lower bound
holds for any underlying computational model (SISD, SIMD, or
MIMD). To achieve this bound, the amount of processing per
request should be independent of the size of the problem.

4.1 A Hand-Waving parallel algorithm

The main idea of this algorithm is to make all the bins observe
the new request as it is generated, and then each of them (in
parallel) decides whether it can accept it. If it can, it remains
active. The central control is then used as an arbitrator to decide
who will get the generated weight. In terms of program models,
we refine B3 by choosing a sequence of weights of length 1 and
by making ChooseBinSubsequence the identity function.
Initially, we assign an empty bin to each processing element
(PE). The PEs are indexed and thus the bins are totally ordered.
At each iteration, the front-end generates a new request by draw-
ing from the uniform distribution (a,b) a new weight w. Next, it
broadcasts this value to all the bins. Next, in parallel, each bin
tests whether it has enough space to hold the new weight. If it
does, the bin remains active. Next, the front-end, through a re-



duction operation, picks from among the set of active bins the one
that comes first in the aforementioned total order (this entails a
refinement of the predicate Pred in the abstract implementation
of InsertBin) and informs it to add the newly generated weight
to its local contents. This process repeats until a failure is en-
countered, that is, until a new weight is generated that cannot
fit in any bin. Knowing the total number of bins (initially al-
located), and by keeping track of the total of all the generated
weights, the front-end can now compute the BR function. By re-
peating the experiment, the average BR as well as the standard
deviation of the measurements can be estimated.

The reduction step required to pick up the bin that receives
the new weight is implemented by taking the minimum over the
indices of all the selected PEs. The cost of this operation is
approximately logor, where r is the number of active PEs. Un-
fortunately, this number can be extremely large especially at the
beginning when almost all the bins are still empty.

4.2 A Candidate set parallel algorithm

When trying to pack a new weight, we already know that it is
going to land in one of the active bins (1.e. non-empty bins) or
otherwise it would have to be packed in the next fresh (empty)
bin. Thus, there is no point in looking at all the other empty bins
(since they cannot be chosen anyway). Hence, to reduce the total
number of selected bins we should focus our attention on the set
of non-empty bins as well as the first empty bin. It is important to
realize that although we have eliminated the “unnecessary” bins,
we also added the overhead of keeping track of the “candidates
set”.



4.3 A Pipelined Request parallel algorithm

Instead of making all the PEs see the newly generated request
at the same time, we only allow a PE to see a request if all its
predecessors have rejected that request. The rationale here is to
make the weight acceptance decision a local one. That is, if a PE
decides to accept a weight, this decision is final. An interesting
feature of this technique is that it eliminates totally the reduction
step required in the aforementioned “Hand-Waving” approaches.
This is replaced with a regular communication pattern between
the PEs which always takes a constant time.

In terms of program models, we use B3 in which a sequence
of weights is inserted in a sequence of bins. Naively, each weight
and/or bin can be assigned to a different PE. However, guided
by the bin insertion process, a more efficient data mapping tech-
nique is used which merges the sequences of bins and weights and
assigns a bin/weight per PE.

Initially, each PE is assigned an empty bin and is responsi-
ble for one stage of the pipeline which is originally empty. At
each cycle of the computation, the central control “injects” a
new request (weight) to the pipeline. Next, each PE (in par-
allel) checks its stage of the pipeline. If a weight is found, the
PE checks whether it has enough space to accept it. If so, the
“weight” drops from the pipeline into the bin. Otherwise, the
weight is passed to the next stage of the pipeline. This process
continue until a weight propagates through the whole pipeline
without being accepted anywhere. This indicates a failure to
accept that request and signals the termination of the simula-
tion. It is important to note, however, that the state of the bins
at this point cannot be used to measure the BR since the PEs
might have accepted requests that were generated after the failed
request. This can be remedied by propagating through the pipe,
along with each request, the cumulative total weight up to that
request. Therefore, when a request fails, we can get the total of



the previously generated requests, which have been necessarily
accepted (since the request in hand is the first one to fail).

4.4 Comparisons

All the three approaches presented in the previous section re-
quire a constant number of steps for each new request. Thus we
might expect the required run-time for each to be of the form
k.N, where N is the number of requests and k is a constant
that depends on the number of steps per request as well as the
number of cycles required to execute each of these steps. The
Pipelined-Requests approach requires a deterministic number of
cycles to process each weight, wherea both Hand-Waving and
Candidate set approaches use a reduction operation which uses
the router and hence might use an undeterministic (although
bounded) number of cycles. The Candidate Set approach aims
at reducing the cycles spent in reduction, by restricting itself to
a smaller set of candidates.

When we first looked at the Pipelined Request algorithm, we
were convinced that it should outperform the other techniques,
since it completely eliminates the need for any reductions. How-
ever, despite its “apparent” elegance, this technique proved to be
very ineflicient. The main reason being the inability to predict
(without walking through the pipe) whether a generated weight
will be accepted. This resulted in delaying the decision to stop
the simulation and compute the BR for n iterations. Another
weakness is that at the start of the simulation, the whole pipe is
empty, and therefore, no useful work is being done by the ma-
jority of the PEs. Note that this is also true for Hand-Waving.
However, the amount of work done by the PEs is far less.

Our attention was thus focussed on comparing the Hand-
Waving and Candidate set approaches. This comparison led to
some interesting conclusions. First we found that the Candi-
date set approach outperformed the Hand-Waving approach only



when the size of the problem was extremely large — over about
512,000 bins. The Hand-Waving approach was decisively better
for sizes up to 64,000. The performance was comparable for sizes
around 128,000. This behavior is expected, and can be explained
as follows. In the Candidate set approach, the price we pay to
reduce the number of selected PEs before doing a reduction is
constant. For smaller problem sizes, this constant overhead ac-
tually becomes a burden, since the amount of contention in the
router is not that large. Moreover, as we have explained earlier,
the router cycle time is far less than the PEs cycle time [8] — thus
even with a mediocre router performance, the performance is still
comparable. However, with sizes over 512,000 bins, it seems that
the constant overhead of the Candidate set begins to pay-off.

5 Simulation Results

In the following sections we briefly describe the different experi-
ments we have done. For detailed results we refer the interested
reader to [2].

5.1 First Fit performance

We have simulated the First Fit bin packing process for 128,000
bins for different values of ¢ and b. Figures 1 and 2 show the
BR function for @ = 0 and ¢ = 0.2, respectively. These results
confirm the anomalies reported in [7]. The complete BR surface
we obtained is shown in Figure 3. The dominant feature of this
surface is a cascade of canopies which exhibit a preponderance
of “holes” of size 1/k for k = 2...00. The “worst” case is in the
1/2 canopy. There is also a 1/3 canopy caused, for instance, by
values in the range (1/3,1/3 4 ¢). The height of canopy 1/k is
bounded by k/(k —1). Another feature of the BR surface is an
oscillation caused by the introduction of new bins. Each new bin



Figure 1: First Fit BR for ¢ = 0.0 and a < b < 1 (128,000 bins)

suddenly increases the value of BR, by as much as 1/n. Several
values may then be inserted before the next bin is allocated. The
consequence is that sampling after N weights are packed is noisy
by approximately 1/n. On the other hand getting smooth data
by sampling just before a new bin is allocated causes produces
optimistic results.

We have also studied the convergence of the BR function as
the number of bins increases. The maximum number of bins we
tried is 512,000 and the results were obtained at 512 different
points. For the (0,1) interval, our results show a general trend
towards a BR of 1, thus supporting the thesis that First Fit bin-
packing is optimal for the interval (0,1). We repeated the same
experiment for the interval (0.0,0.85) considered by McGeoch
and Tygar in [7]). The results we obtained confirmed their con-
jecture that the BR function approaches a constant value greater
than 1 (we found it to be about 1.0166). This means that for



Figure 2: First Fit BR for ¢« = 0.2 and a < b < 1 (128,000 bins)

Figure 3: First Fit BR surface for 0 < @ < b < 1 (128,000 bins)



this distribution, First Fit is non-optimal. We repeated the ex-
periment for different values of b around 0.8. The results we
obtained suggest that First Fit is non-optimal in a region rather
than a unique point. The worst performance (according to our
experiments) is around b = 0.79.

5.2 K-delayed Best Fit

We have modified the aforementioned First Fit algorithms to
simulate the Best Fit heuristic. Results of the simulation showed
that the performance of Best Fit was no better than that of First
Fit.

We have also considered a new packing heuristic, which we
termed K-delayed Best-Fit. Using this heuristic, requests are not
necessarily serviced in order. However, once packed a weight
cannot be removed. The idea of this heuristic is to maintain
a fixed-size buffer, where new requests are kept until serviced.
Whenever the number of pending requests reaches the size of
the buffer, we select one of these requests and put it into one
of the bins. The request we select is the one that achieves the
best “Best-Fit”. The Best Fit heuristic is a special case of the
“K-delayed Best-Fit”, where K = 0.

Initial experimentation has shown that for relatively small
buffer sizes (4-10), this heuristic outperforms both First Fit and
Best Fit. The optimum buffer size to be selected is an interesting
point to be addressed. We have noticed from our preliminary ex-
periments that increasing the buffer size from 0 to 4 resulted in
a noticeable performance gain. A further increase of the buffer
size to 10 resulted in even better performance. Buffer sizes larger
that 10 did not seem to provide any better responses. This sug-
gests the existence of a certain threshold. We suspect that this
threshold relates to the shape of the candidate bins filter (see
[7]). Further experiments are needed to support this claim.



6 Conclusion

We have considered the issue of developing implementations of
the bin packing problem for different platforms, but especially
for massively parallel systems. The approached consisted in a
sequence of refinements rooted in a space of abstract implemen-
tations. In the quest of efficiency, we had to make choices both in
terms of process mapping and data mapping. In the final analy-
sis, we found that our serial intuition did not always serve us well
in parallel contexts. Our own transition from serial to parallel
thinkers is far from complete. Thus it is important to provide
means for explicit control over both processes (see [6])
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