CAS CS 585

Image and Video Computing
 Lecture by Margrit Betke January 30 and February 1, 2024

Traditional Segmentation Algorithms
Boundary Following Algorithm
Hausdoff Distance, Curvature Measures

Segmentation

Definition 1:

Segmentation $=$ finding outline of object or region in image

Definition 2:

Segmentation = grouping of pixels into regions such that:

- Pixels in each region have a common property
- Pixels in adjacent regions do not share this property
- Exclusive Partitioning: Pi intersect $\mathrm{Pj}=\{ \}$ for all i not equal to j
- Exhaustive Partitioning: Union of $\mathrm{Pi}=$ entire image

Definition 2:
Segmentation = grouping of pixels into regions such that:
Pixels in each region have a common property
Pixels in adjacent regions do not share this property
Exclusive Partitioning: Pi intersect $\mathrm{Pj}=\{ \}$ for all i not equal to j
Exhaustive Partitioning: Union of $\mathrm{Pi}=$ entire image

Common Property:

Easy to test:
Same (or similar) color
Same grey value
Brightness above some threshold
Black versus white
Deep Learned:
"Typical" object appearance
"Semantic Segmentation"
common property =
same type of object, e.g. cars
"Instance Segmentation"
common property $=$ object instance, e.g., a specific car (my car)

Definition 2:
Segmentation = grouping of pixels into regions such that:
Pixels in each region have a common property
Pixels in adjacent regions do not share this property
Exclusive Partitioning: Pi intersect $\mathrm{Pj}=\{ \}$ for all i not equal to j
Exhaustive Partitioning: Union of $\mathrm{Pi}=$ entire image
Segmentation Pipeline of traditional (not-deep-learned) methods:

Common Property:

Same color
Same grey value
Brightness above some threshold Black versus white

$$
\begin{aligned}
& \text { Color image -> e.g., R+G+B/3 } \\
& \text { Greyscale image -> } \\
& \hline \text { Segmentation algorithm } \\
& \text { e.g., thresholding } \\
& \hline \text {-> Binary image -> } \\
& \hline
\end{aligned}
$$

Segmentation Methods

1. Absolute Thresholding

Algorithm:

1) Determine by inspection of the grey value histogram of the image which threshold T separates bright and dark pixels
2) Scan image and assign foreground and background labels to objects/regions

Disadvantage ?

Segmentation Methods

1. Absolute Thresholding

Algorithm:

1) Determine by inspection of the grey value histogram of the image which threshold T separates bright and dark pixels
2) Scan image and assign
foreground and background labels to objects/regions

Disadvantage: Does not work well if

object is illuminated unevenly
MRI scanner has a bias

Segmentation Methods

2. Percentile Method

Assumption: Single (dark) object occupies p\% of image
Algorithm:

1) $n=$ number of pixels
2) $m=$ number of object pixels $=n * p \%$
3) Scan image and find m dark pixels and assign them to belong to desired object

Segmentation Methods

3. Mode Method

Assumptions: n objects and background have different and relatively uniform grey values; objects are not "very small"
Algorithm for 1 Object:

1) Find local maxima at some minimum distance apart, e.g., maximum at gi \& gj
2) $\mathrm{gk}=$ minimum between $\mathrm{gi} \& \mathrm{gj}$

3) Peakiness $p(i, j, k)=[\min \{H(g i), H(g j)\}] / H(g k)$
4) Use (i,j,k) with highest peakiness $p: \quad T=g_{k}$

Algorithm for n Objects:
Move through histogram to find n valleys based on their peakiness

Segmentation Methods

4. Adaptive Thresholding

Adapt T to image region

Algorithm: Create different thresholds for different image regions

Segmentation Methods

5. Iterative Threshold Method

- $\mathrm{T}=$ average grey value in image
- Partition image into sets of pixels with grey value above and below T

```
Image Histogram
    Update \bigcircROGOBOGray }\square\mathrm{ Curves
```


- Compute the average grey value in each set
- $\mathrm{T}=$ average of these averages
- Repeat procedure until averages do not change much anymore

What if you segmented the object of interest into several regions instead of one region?

Merging of Adjacent Regions

Merging: Combine adjacent regions with similar characteristics:
Mean of grey values of region 1: $\mu_{1}=1 / n_{1} \Sigma_{\text {i in region }} g_{i}$
Mean of grey values of region 2: $\mu_{2}=1 / \mathrm{n}_{2} \Sigma_{\text {iin region2 }} \mathrm{g}_{\mathrm{i}}$
Method 1: Merge based on means
If $\left|\mu_{1}-\mu_{2}\right|<$ threshold, merge regions.

Method 2: Merge based on likelihood ratio (use standard deviations)
$\sigma_{1}^{2}=1 / n_{1} \Sigma_{i \text { in region1 }}\left(\mathrm{g}_{\mathrm{i}}-\mu_{1}\right)^{2}$
$\sigma_{2}{ }^{2}=1 / n_{2} \Sigma_{i \text { in region2 }}\left(g_{i}-\mu_{2}\right)^{2}$

$$
\begin{aligned}
\mathrm{L}= & \mathrm{P}\left(\mathrm{~g}_{1}, \mathrm{~g}_{2}, \ldots, \mathrm{~g}_{\mathrm{n} 1+\mathrm{n} 2} \mid \mathrm{H}_{0}\right) / \\
& \mathrm{P}\left(\mathrm{~g}_{1}, \mathrm{~g}_{2}, \ldots, \mathrm{~g}_{\mathrm{n} 1+\mathrm{n} 2} \mid \mathrm{H}_{1}\right) \\
= & \sigma_{0}{ }^{\mathrm{m} 1+\mathrm{m} 2} /\left(\sigma_{1}^{\mathrm{m} 1} \sigma_{2}^{\mathrm{m} 2}\right)
\end{aligned}
$$

Assume the regions in an image have constant grey values that are corrupted by independent additive zero-mean Gaussian noise.
If L < threshold, then it is highly likely that there is only one region => merge

Boundary Following Algorithm

Goal: Given a segmented region (or object), find the pixels on the closed boundary of the region (or object).

Tool: Neighborhood definitions

Notation: R=region, $\underline{R}=$ background,

0	1	0
1	$?$	1
0	1	0

N_{8}

1	1	1
1	$?$	1
1	1	1

$\mathrm{b}=$ pixel at boundary (outside object/region)
c= "current pixel" inside object/region on boundary

Boundary Following Algorithm

1. Find start pixel s (through scanning binary image), $c=s$
2. Find N_{4}-neighbor b in \underline{R} to west of c
3. Among N_{8}-neighbors of c , starting with b , search clockwise for first n_{i} in R
4. $c=n_{i}, b=n_{i-1}$
5. Repeat steps $3 \& 4$ until $c=s$

Boundary Following Algorithm

1. Find start pixel s (through scanning binary image), $c=s$
2. Find N_{4}-neighbor b in \underline{R} to west of c
3. Among N_{8}-neighbors of c , starting with b, search clockwise for first n_{i} in R
4. $c=n_{i}, b=n_{i-1}$
5. Repeat steps $3 \& 4$ until $c=s$

Boundary Following Algorithm

1. Find start pixel s (through scanning binary image), $c=s$
2. Find N_{4}-neighbor b in \underline{R} to west of c
3. Among N_{8}-neighbors of c , starting with b , search clockwise for first n_{i} in R
4. $c=n_{i}, b=n_{i-1}$
5. Repeat steps $3 \& 4$ until $\mathrm{c}=\mathrm{s}$

Boundary Following Algorithm

1. Find start pixel s (through scanning binary image), $c=s$
2. Find N_{4}-neighbor b in \underline{R} to west of c
3. Among N_{8}-neighbors of c , starting with b, search clockwise for first n_{i} in R
4. $c=n_{i}, b=n_{i-1}$

			1	2	3				
			10			4	5		
			9		6				
			8	7					

5. Repeat steps $3 \& 4$ until $c=s$

Boundary Following Algorithm

1. Find start pixel s (through scanning binary image), $c=s$
2. Find N_{4}-neighbor b in \underline{R} to west of c
3. Among N_{8}-neighbors of c , starting with b, search clockwise for first n_{i} in R
4. $c=n_{i}, b=n_{i-1}$
5. Repeat steps $3 \& 4$ until $\mathrm{c}=\mathrm{s}$

Boundary Following Algorithm

1. Find start pixel s (through scanning binary image), $c=s$
2. Find N_{4}-neighbor b in \underline{R} to west of c
3. Among N_{8}-neighbors of c , starting with b , search clockwise for first n_{i} in R
4. $c=n_{i}, b=n_{i-1}$
5. Repeat steps $3 \& 4$ until $c=s$

		b	c						

Boundary Following Algorithm

1. Find start pixel s (through scanning binary image), $c=s$
2. Find N_{4}-neighbor b in \underline{R} to west of c
3. Among N_{8}-neighbors of c , starting with b , search clockwise for first n_{i} in R
4. $c=n_{i}, b=n_{i-1}$
5. Repeat steps $3 \& 4$ until $\mathrm{c}=\mathrm{s}$

		$?$	$?$	$?$	$?$				
		b	c	?					

Boundary Following Algorithm

1. Find start pixel s (through scanning binary image), $c=s$
2. Find N_{4}-neighbor b in \underline{R} to west of c
3. Among N_{8}-neighbors of c , starting with b, search clockwise for first n_{i} in R
4. $c=n_{i}, b=n_{i-1}$
5. Repeat steps $3 \& 4$ until $\mathrm{c}=\mathrm{s}$

				b					
			s	c					

Boundary Following Algorithm

1. Find start pixel s (through scanning binary image), $c=s$
2. Find N_{4}-neighbor b in \underline{R} to west of c
3. Among N_{8}-neighbors of c , starting with b , search clockwise for first n_{i} in R
4. $c=n_{i}, b=n_{i-1}$
5. Repeat steps $3 \& 4$ until $c=s$

					b				
			s	c	c				
						I			

Boundary Following Algorithm

1. Find start pixel s (through scanning binary image), $c=s$
2. Find N_{4}-neighbor b in \underline{R} to west of c
3. Among N_{8}-neighbors of c , starting with b, search clockwise for first n_{i} in R
4. $c=n_{i}, b=n_{i-1}$
5. Repeat steps $3 \& 4$ until $c=s$

			s			b			
						c			

Boundary Following Algorithm

1. Find start pixel s (through scanning binary image), $c=s$
2. Find N_{4}-neighbor b in \underline{R} to west of c
3. Among N_{8}-neighbors of c , starting with b , search clockwise for first n_{i} in R
4. $c=n_{i}, b=n_{i-1}$
5. Repeat steps $3 \& 4$ until $\mathrm{c}=\mathrm{s}$

			1	2	3				
			10	1		4	5		
			9		6				
			8	7					

Comparison of two Boundaries (or Curves): using the Hausdorff Distance

Idea: Two boundaries have a small Hausdorff distance if every pixel of either boundary is close to some pixel of the other boundary.

The Hausdorff distance is the largest distance (supremum) between points on two curves when an adversary can select a point on one of the curves (goal to maximize the distance) while you are trying to minimize the distance (infimum) from that chosen point to a point on the other curve
$\sup _{x \text { in } X} \inf _{y \text { in } Y}$ Euclidean distance (x, y)

Comparison of two boundaries (or curves): using the Hausdorff Distance

The Hausdorff distance is the largest distance between points on two curves when an adversary can select a point on one of the curves (goal to maximize the distance) while you are trying to minimize the distance from that chosen point to a point on the other curve

$\sup _{x \text { in } x} \inf _{y \text { in } Y}$ Euclidean distance (x, y) largest smallest

Comparison of two boundaries (or curves): using the Hausdorff Distance

The Hausdorff distance is the largest distance between points on two curves when an adversary can select a point on one of the curves (goal to maximize the distance) while you are trying to minimize the distance from that chosen point to a point on the other curve

[^0]

Comparison of two boundaries (or curves): Hausdorff Distance

Hausdorff distance between curves X and $Y=$

Application: Use Hausdorff Distance to compare hand shapes

ASL Sign: A

B

Template boundary of equivalent shape

Comparison with measured boundary

Curve Processing: Lung Nodule on Boundary

Before: High curvature

After: Low curvature
 Boundary is smoothed

Black pixels:
Output of Boundary
Following Algorithm.
Problem: Adjacent nodule excluded from Lung

Solution: Include nodule into lung region by -searching for candidate boundary with appropriate curvature
-smoothing the boundary.

Evaluating a Curved Boundary in an Image: Curvature Measures

1) Parametric Definition

Intuition: How does the angle of a tangent change when you move along the curve?

Fast change -> high curvature
Slow change -> low curvature
Arc length s, tangential angle θ
Curvature $=d \theta / d s=\lim _{\delta s \rightarrow 0} \frac{\theta(s+\delta s)-\theta(s)}{\delta s}$
Discrete version: $\Delta \theta / \Delta \mathrm{s}=\left(\theta_{2}-\theta_{1}\right) / \Delta \mathrm{s}$

Evaluating a Curved Boundary in an Image: Curvature Measures

2) Extrinsic Definition

Intuition: The change of the tangential angle is written as a function of time and expressed by the derivatives of curve coordinates $[x(t),(y(t)]$
Arc length s, tangential angle θ
Curvature $\mathrm{K}=\mathrm{d} \theta / \mathrm{ds}=(\mathrm{d} \theta(\mathrm{t}) / \mathrm{dt}) /(\mathrm{ds} / \mathrm{dt})=$

$$
\frac{x^{\prime} y^{\prime \prime}-y^{\prime} x^{\prime \prime}}{\left(x^{\prime 2}+y^{2}\right)^{3 / 2}}
$$

See derivation on blackboard

Evaluating a Curved Boundary in an Image:

 Curvature Measures
3) Consecutive Vectors on Curve

Intuition: The change of the tangential angle is approximated by the angle between consecutive vectors

$$
\begin{aligned}
& \mathbf{u}_{j}=\left(x_{j}-x_{j-1}, y_{j}-y_{j-1}\right)^{\top} \\
& \mathbf{u}_{j+1}=\left(x_{j+1}-x_{j}, y_{j+1}-y_{j}\right)^{\top}
\end{aligned}
$$

$$
\cos (\Delta \theta)=\frac{u_{j} \cdot u_{j+1}}{\left|u_{j}\right|\left|u_{j+1}\right|}
$$

$$
\Delta \theta / \Delta \sin [0 . . \pi] /[0 . .1]
$$

Curvature in range [0.. π]

Evaluating a Curved Boundary in an Image:

 Curvature Measures
4) Assuming Equally Spaced Vectors on Curve

Intuition: The change of the arc length s is now 1.

$$
\begin{aligned}
K=\left|\frac{d^{2} \mathbf{v}_{j}}{d s^{2}}\right|^{2} & \approx\left|\left(\mathbf{v}_{j+1}-\mathbf{v}_{j}\right)-\left(\mathbf{v}_{j}-\mathbf{v}_{j-1}\right)\right|^{2} \\
& =\left(x_{j-1}-2 x_{j}+x_{j+1}\right)^{2}+\left(y_{j-1}-2 y_{j}+y_{j+1}\right)^{2}
\end{aligned}
$$

Learning Objectives

- Can select and explain an appropriate "traditional" segmentation algorithms that uses analysis of greyscale histograms
- Can define N4 and N8 neighborhoods
- Can implement boundary following algorithm
- Can evaluate the similarity of a pair of curves based on their Hausdorff distance
- Can evaluate the curvature of an object boundary in an image using different measures of curvature

[^0]: Sup. $_{\text {in } Y} \inf _{x \text { in } x}$ Euclidean distance (x, y) largest smallest

