Vanishing Points, Computer Vision to Analyze Paintings Thin Lens Model

Lecture by Margrit Betke, CS 585, February 2024

Vanishing Point

Definition:

Point at which receding parallel lines viewed in perspective appear to converge

Vanishing Point

Definition:

Point at which receding parallel lines viewed in perspective appear to converge

Vanishing Point

Definition:

Point at which receding parallel lines viewed in perspective appear to converge

Why do parallel lines intersect when projected?

Why do parallel lines intersect when projected?

One Vanishing Point

One-point Perspective: Only 1 Vanishing Point

One-point Perspective: When the image plane is parallel to two world-coordinate axes, lines parallel to the axis that is cut by this image plane will have images that meet at a single vanishing point. Lines parallel to the other two axes will not form vanishing points as they a parallel to the image plane.

Two-point Perspective: 2 Vanishing Points

Two-point Perspective:
The image plane intersects two world-coordinate axes. Lines parallel to those planes will form two vanishing points in the image plane.

Two-point Perspective: 2 Vanishing Points

The image plane
 intersects two
world-coordinate axes.
Lines parallel to those planes will form two vanishing points in the image plane.

Two-point Perspective: 1st Vanishing Point

Two-point Perspective: 2 Vanishing Points

Two-point Perspective: 2 Vanishing Points

These parallel lines do not intersect

Can a vanishing point be somewhere far in the image plane, without showing up in the actual image (i.e., the part of the image plane that is outside the field of view)?

Can a vanishing point be somewhere far in the image plane, without showing up in the actual image (i.e., the part of the image plane that is outside the field of view)?

Yes, see snowy house example

Two-point Perspective: 2 Vanishing Points

These parallel lines do not intersect.

The vanishing points are on the image plane but not in the image frame

How many vanishing points can an image have?

How many vanishing points can an image have?

Up to 3

Three-point Perspective: 3 Vanishing Points

Three-point Perspective:
The image plane intersects the x, y, and z world-coordinate axes and therefore lines parallel to these axes intersect, resulting in three different vanishing points.

Image plane

Three-point Perspective: 3 Vanishing Points

The image plane intersects the x, y, and z
world-coordinate axes and therefore lines parallel to these axes intersect, resulting in three different vanishing points.

How can a Computer Vision System use Vanishing Points to Make Sense of a Scene?

We can use them to derive real-world distances!!

Example: How wide is this sidestreet?

- Case 1:

Assume you know the width of The Jericho Cafe and Brancha, 7 and 6 meters, respectively.

- Case 2:

You only know the width of The Jericho Cafe (7 m)

Example: How wide is this sidestreet?

- Case 1:

You know the width of The Jericho Cafe and Brancha, 7 and 6 meters, respectively.

- Case 2:

You only know the width of The Jericho Cafe (7 m)

Solution uses length ratios along a line that ends in a vanishing point

- Case 1:

You know the width of The Jericho Cafe and Brancha, 7 and 6 meters, respectively.

- Case 2:

You only know the width of The Jericho Cafe (7 m)

Cross-ratio Rule

Given four points A, B, C, and D on a projective line, their cross ratio is defined as

$$
\frac{\mathrm{AC} \cdot \mathrm{BD}}{\mathrm{BC} \cdot \mathrm{AD}}
$$

If one of the points is a vanishing point V , the cross ratio of ($\mathrm{V}, \mathrm{B}, \mathrm{C}, \mathrm{D}$) reduces to

$$
\frac{D-B}{C-B}
$$

Cross-ratio Rule: Case 1

Given four points D, C, B, and A on a projective line, their cross ratio is defined as

$$
\frac{\mathrm{AC} \cdot \mathrm{BD}}{\mathrm{BC} \cdot \mathrm{AD}}
$$

Here:
[(Jericho Cafe + w).(w + Brancha)] / [w •(Jericho Cafe + w + Brancha)]

Ratios are equal in both real world meters and image plane pixels

$$
\begin{aligned}
& \text { (1) } \quad \overrightarrow{\overrightarrow{A C}} \times \stackrel{\rightharpoonup D}{B D}=\overrightarrow{A^{\prime} C^{\prime}} \times \stackrel{* B^{\prime} D^{\prime}}{ } \\
& \frac{(30+20) \times(20+10)}{20 \times(30+20+10)}=\frac{(7+W)(W+6)}{W(7+W+6)} \\
& 5 W(W+13)=4(W+7)(W+6) \\
& 5 W^{2}+65 W=4 W^{2}+52 W+168 \\
& W^{2}+13 W-168=0 \\
& (W+21)(W-8)=0 \\
& W>0 \therefore W=8 \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
\frac{50 \times 90}{20 \times 120} & =\frac{7+W}{W} \\
15 W & =8(7+W) \\
7 W & =56 \therefore W=8 \mathrm{~m}
\end{aligned}
$$

How can a Computer Vision System use Vanishing Points to Make Sense of a Scene?

1) We can use them to derive real-world distances
2) We can use them to analyze paintings

Computer Vision to Analyze Paintings

St. Jerome in his Study (1630) by Hendrick Steenwick

Computer Vision to Analyze Paintings

The Arnolfini Portrait by Van Eyck (1434)

Too many intersecting lines...

UNIVERSITY

Computer Vision to Analyze Floor Tiles in Paintings

Computer Vision to Analyze Floor Tiles in Paintings

Computer Vision to Analyze Paintings

Flagellation of Christ (1453) by Piero della Francesca

Poll: Are these real or fake photos?
A: Pumpkin picture is fake
B: Tower of Pisa picture is fake
C: Both are fake
D: Both are real
E: We don't know

How to Check for Realism with a Vanishing Point

A person's height h can be checked by comparing it to reference height h_{r} :

$$
\frac{h}{h_{r}}=\frac{d\left(\mathbf{x}_{t}, \mathbf{x}_{b}\right)}{d\left(\mathbf{i}, \mathbf{x}_{b}\right)}
$$

Unrealistic Placement of People or Genius Painting?

Flagellation of Christ (1453) by Piero della Francesca

Unrealistic Placent of People or Genius Painting

Flagellation of Christ (1453) by Piero della Francesca

From 2D Painting to 3D Scene

From
 2D Painting to 3D Scene

b

d
Paper by Criminisi et al.

From
 2D Painting to 3D Scene

Paper by Criminisi et al.

Pinhole camera
 Box with a hole
 Image is projected upside down on side opposite to hole.
 light rays

Ideal Pinhole Model

Perspective Projection Equations:

Relate scene ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}$) and image (x, y) coordinates

Example: Self-driving Cars:

Estimate distance to car in front

Distance in meters: $Z=c_{\text {horiz }} \mathrm{f} W / \mathrm{w}=(22 \mathrm{pix} / \mathrm{mm})(50 \mathrm{~mm})(1.77 \mathrm{~m}) /(100 \mathrm{pix})$

$$
=19.47 \mathrm{~m}
$$

- Typical width of a car: $\mathrm{W}=1.77 \mathrm{~m}$
- Car width measured in image: $\mathrm{w}=100$ pixel
- focal length $\mathrm{f}=50 \mathrm{~mm}$
- $35-\mathrm{mm}$ camera: pixel-to-mm conversion $\mathrm{c}_{\text {horiz }}=22$ pixel $/ \mathrm{mm}$

Orthographic Projection

Assume all Z 's are approximately at fixed distance Z_{0} and $\frac{|\Delta \mathrm{Z}|}{\mathrm{Z}_{0}} \ll 1$ i.e., distances of points in the

Then $x=\left(f / Z_{0}\right) X$ and $y=\left(f / Z_{0}\right) Y$. scene do not differ much

Or assume $x=X$ and $y=Y$. => Simplifies image analysis to
2D problem.

Orthographic vs. Perspective Projection

Orthographic projection is not an appropriate model if

- objects are far from camera and
- objects are not at approximately the same distance

Use perspective projection instead!

Field of View

Field of View

Field of View

Field of View α

Field of View of Lenses

"Normal" lens:	$25^{\circ}-40^{\circ}$
Wide-angle lens:	$>40^{\circ}$
Telephoto lens:	$<25^{\circ}$

Cone of Directions Encompassing Scene

"Normal lenses"

Wide-angle lens

Telephoto lenses

Conversion Field of View \& Focal Length

If α is measured horizontally and $w / 2$ is half the width of the image:
$\tan \alpha / 2=(w / 2) / f$
$\alpha=2 \arctan (\mathrm{w} /(2 \mathrm{f}))$

Conversion Field of View \& Focal Length

If α is measured horizontally and $w / 2$ is half the width of the image:
$\tan \alpha / 2=(\mathrm{w} / 2) / \mathrm{f}$
$\alpha=2 \arctan (\mathrm{w} /(2 \mathrm{f}))$ or $\mathrm{f}=(\mathrm{w} / 2) /(\tan \alpha / 2)$


```
"Normal" lens: }2\mp@subsup{5}{}{\circ}-4\mp@subsup{0}{}{\circ}\quad\mathrm{ (f: 48 mm - 79 mm for w=35 mm film)
Wide-angle lens: }\quad>4\mp@subsup{0}{}{\circ}\quad(<48 mm
Telephoto lens: < 25 
```


Field of View of Lenses

Images Captured with Wide-angle Lens

The distance between bottles was kept constant.

The wider the lens (= shorter f), the more scene is included and the smaller the blue bottle appears.

Images Captured with Wide-angle, "Normal," and Telephoto lenses
Which focal length belongs to which image? Is A, B, or C correct?

A: 28 mm
B: 210 mm
C: 210 mm

50 mm
70 mm
28 mm

70 mm
28 mm
70 mm

210 mm 50 mm 50 mm

Images Captured with Wide-angle, "Normal," and Telephoto lenses

28 mm

50 mm

70 mm

210 mm

What is a lens?

Law of Refraction

A simple lens is an object made of transparent material that focuses a light beam by means of refraction. Refraction is the phenomenon that traveling waves (here light) change their direction.

Refractive indices n_{1}, n_{2} of two media Velocities $\mathrm{v}_{1}, \mathrm{v}_{2}$ Incident angles θ_{1} Refracted angle θ_{2} :

$$
\frac{\sin \theta_{1}^{1}}{\sin \theta_{2}}=\frac{n_{2}}{n_{1}}=\frac{v_{2}}{v_{1}}
$$

Also called Snell's Law

Ideal Lens: Same projection as pinhole camera but gathers more light

1) Ray through center of lens is not reflected
2) Parallel ray intersects optical axis at F from CoP
3) Spherical shape of lens -> well-focused images only at particular distance
4) Well-focused system = all rays from scene point H reach same image point h as central ray

Ideal Lens: Same projection as pinhole camera but gathers more light

Derivation of the Lens Equation

H/Z

$=h / z$
and

$$
H / f=h /(z-f)
$$

Image h
$\mathrm{H}=\mathrm{h} \mathrm{Z} / \mathrm{z}$ substitute into: $f / H=(z-f) / h$
$f /(h z / z)=(z-f) / h$

Derivation of the Lens Equation

$\mathrm{H}=\mathrm{h} \mathrm{Z} / \mathrm{z}$ substitute into: $f / H=(z-f) / h$
$f /(h z / z)=(z-f) / h$
Multiply by h :
$\mathrm{f} z / \mathrm{Z}=\mathrm{z}-\mathrm{f}$

Derivation of the Lens Equation

$\mathrm{H}=\mathrm{h} \mathrm{Z} / \mathrm{z}$ substitute into: $f / H=(z-f) / h$
$f /(h Z / z)=(z-f) / h$

Multiply by h :
$f z / Z=z-f$

Add f:
$f z / Z+f=z$

Derivation of the Lens Equation

Interpretation of the Lens Equation

Lens equation determines how far image plane can be placed to have image in focus

Interpretation of the Lens Equation

Lens equation determines how far image plane can be placed to have image in focus

Interpretation of the Lens Equation

Lens equation determines how far image plane can be placed to have image in focus

Interpretation of the Lens Equation

Lens equation determines how far image plane can be placed to have image in focus

Interpretation of the Lens Equation: Depth of Focus

Blur circles

Depth of focus = range of image plane placement so that objects are focused sufficiently well Blur circle must be < resolution of the image device

Interpretation of the Lens Equation: Depth of Focus

Depth of focus = range of image plane placement so that objects are focused sufficiently well Blur circle must be < resolution of the image device

Interpretation of the Lens Equation: Depth of Field

$$
1 / Z+1 / z=1 / f
$$

Depth of field = range of distances over which objects are focused sufficiently well

Interpretation of the Lens Equation: Aperture of Lens

Large Aperture: More Light

Large Aperture:
\Rightarrow Large blur circle
\Rightarrow Small depth of field

Small Aperture:
\Rightarrow Small blur circle
\Rightarrow Large depth of field

Watch Steve Seitz' Video:

https://www.youtube.com/watch?v=F5WA26W4JaM\&list=PLWfDJ5nla 8UpwShx-IzLJacp575fKpsSO\&index=11
after 2:58

Summary of Concepts: Ideal Thin Lens

- Field of View
- Law of Refraction
- Imaging Rules for lenses
- Focal Point
- Lens Equation
- Depth of Focus
- Depth of Field
- Aperture

Learning Objectives

Be able to explain and use:

- Use of perspective versus orthographic projection
- One, two, and three-point perspective
- Vanishing points to analyze paintings
- Cross-ratio rule for projected lines and vanishing points for image interpretation
- Law of refraction
- Ideal thin lens model (concepts on previous slide)
- Differences of wide-angle, "normal," and telephoto lenses
- Trade-off of small versus large aperture of a lens model

Reading materials:

Carlbom and Paciorek, 1978:
http://www.cs.uns.edu.ar/cg/clasespdf/p465carlbom.pdf

Criminisi et al., 2016:
https://www.microsoft.com/en-us/research/wp-content/uploads/2016 /02/criminisi chart2002.pdf

