Image Formation: Pinhole Model, Perspective Projection, and Binocular Stereo

Lecture by Margrit Betke, CS 585, February 6, 2024

Larger hole: Blurrier image

Small Aperture

Large Aperture

Watch Steve Seitz' Video:

https://www.youtube.com/watch?v=F5WA26W4JaM&list=PLWfDJ5nla 8UpwShx-lzLJqcp575fKpsSO&index=11

until 2:58

Pinhole camera = Camera obscura

Camera means 'room' and obscura means 'dark' in Latin.

Historic descriptions in

Chinese Mozi writings (~ 500 BCE),

Aristotelian Problems (~ 300 BCE),

Arab writings (~1000 CE).

Pinhole camera = Camera obscura

Problem: Real-time images cannot be stored!

Development of Camera Obscura to Modern Camera

The first permanent photoetching was an image produced in 1822 by the French inventor Nicéphore Niépce.

Development of Camera Obscura to Modern Camera

Film as a storage medium:

The first flexible photographic roll film was marketed by George Eastman, founder of Kodak in 1885.

Array of linked capacitors as storage medium:

Sony unveiled the first consumer camera (Mavica) to use a charge-coupled device (CCD) for imaging, eliminating the need for film, in 1981.

Modern Film or Digital Cameras

Problem solved: Real-time images can be stored!

So then, why do we care about pinhole cameras in CS 585?

Poll: So then, why do we care about pinhole cameras in CS 585?

- 1. Historic reason: We need to learn how computer vision started as a research field.
- 2. Mathematical reason: Real cameras have complicated lens systems, not pin holes. We can simplify the geometry of image formation mathematically by ignoring the lenses.
- 3. Computational reason: Modern cameras post-process the projected images as if they were collected by a pinhole camera.

We can relate the scene and image plane coordinates X and x

using a perspective projection equation.

Binocular Stereo

Special Considerations:

Binocular Stereo

In a Monocular System: Coordinate System Origin = Center of Projection (CoP) = Pinhole

Binocular Stereo

In a Monocular System: Coordinate System Origin = Center of Projection (CoP) = Pinhole In a Binocular System: Coordinate System Origin in the middle between CoPs

Binocular Stereo

In a Monocular System: Coordinate System Origin = Center of Projection (CoP) = Pinhole In a Binocular System: Coordinate System Origin in the middle between CoPs

Projection Equation: x_{left}/f = (something)/Z

Projection Equations: $x_{left}/f = (X+b/2)/Z$ $x_{right}/f = (X-b/2)/Z$

Projection Equations: $x_{left}/f = (X+b/2)/Z$ $x_{right}/f = (X-b/2)/Z$

CS 585: Image and Video Computing

What happens with the images when we make the baseline smaller?

original baseline: smaller baseline:

Poll: What happens with the images when we make the baseline **smaller**?

The disparity

- 1. increases
- 2. stays the same
- 3. decreases

Making the Baseline Smaller Reduces the Disparity

What happens when we increase the depth = distance between scene and image plane?

What happens with the images when we increase the depth?

What happens with the images when we **increase** the depth?

The disparity

- 1. increases
- 2. stays the same
- 3. decreases

Summary of Concepts: Binocular Stereo

- Today we considered a special case:
 - parallel optical axes
 - image planes aligned
 - same focal length
- Combining perspective projection equations for both cameras yields formula $Z = bf/\delta$
- \bullet We discussed how disparity δ changes with changes in b or Z

Back to the Single Camera Pinhole Model

Placing Image Plane in Front of Pinhole

Placing Image Plane in Front of Pinhole

This is done for **mathematical convenience**: Image x and scene X are measured in the same direction on the x-axis (a positive x means a positive X). The focal length is often set to f=1.

Back to the Original Single Camera Pinhole Model

Let's rotate the camera counterclockwise:

Vertical Dimension Included: 3D scene point (0,0) f CoP **Optical Axis** = (x,y) depth Z axis Ζ image plane

Vertical Dimension Included:

relate scene (X,Y,Z) and image (x,y) coordinates

Why are perspective projection equations important for computer vision and image understanding?

relate scene (X,Y,Z) and image coordinates (x,y)

Poll: Why are perspective projection equations important for computer vision and image understanding?

- 1. Mathematical reason: We need to learn about the mathematical underpinnings of computer vision.
- 2. Historical reason: All computer vision students need to learn about these fundamental equations.
- 3. Computational reason: We can process measurements in the image to infer information about the scene.

Why are perspective projection equations important for computer vision and image understanding?

Use measured image coordinates (x,y) to interpret the scene (X,Y,Z)

Example: Self-driving Cars:

Estimate distance to car in front

Distance in meters: $Z = c_{horiz} f W / w = (22 pix/mm)(50 mm)(1.77 m)/(100 pix) = 19.47 m$

- Typical width of a car: W = 1.77 m
- Car width measured in image: w = 100 pixel
- focal length f = 50 mm
- 35-mm camera: pixel-to-mm conversion c_{horiz} = 22 pixel/mm

Why are perspective projection equations important for computer vision and image understanding?

In the self-driving car example:

Use measured image coordinates (W,y) of car in front to interpret its distance: (W,Y,Z)

Orthographic Projection

Alternative to perspective projection when imaged objects are far away

Orthographic Projection

Alternative to perspective projection when imaged objects are far away

used when distances of points in the scene do not differ much, i.e., far away building

Orthographic Projection

Assume all Z's are approximately at fixed distance Z_0 and

 $\frac{\left|\Delta Z\right|}{Z_0} << 1$

i.e., distances of points in the scene do not differ much

Then $x = (f/Z_0)X$ and $y = (f/Z_0)Y$.

Or assume x = X and y =Y. => Simplifies image analysis to

2D problem.

Vanishing Point

Definition:

Point at which receding parallel lines viewed in perspective appear to converge

Photo by Wikipedia user: MikKBDFJKGeMalak

Vanishing Point

Definition:

Point at which receding parallel lines viewed in perspective appear to converge

Vanishing Point

Definition:

Point at which receding parallel lines viewed in perspective appear to converge

Why do parallel lines intersect when projected?

Why do parallel lines intersect when projected?

One Vanishing Point

Learning Objectives

Be able to explain:

- Pinhole model, camera obscura, center of projection, aperture, principal point, optical axis, focal length, depth, perspective projection, disparity
- What happens to an image if the aperture is increased or decreased?
- What is the impact of changing the baseline or the distance to the scene on the images in a binocular camera system?
- What is the difference between the perspective and orthographic projection models and when should you use them?
- How could you use a perspective projection equation to estimate the distance of a car in front?
- What is a vanishing point? Why could it be useful for highway scene analysis?

