CAS CS 585 Image and Video Computing 0.5 Lecture by Margrit Betke January 30, 2024

Face Detection, Hierarchical Image Analysis, Motion Analysis by Image Differencing, Template Matching, SSD, NCC

Class Poll: Which line equation is wrong?

B.
$$(-1,1)^T \mathbf{x} - \mathbf{g} = 0$$
, where $\mathbf{g} = \sqrt{2}$

C. -x sin α + y cos α = 0, where α = 45 degrees

D.
$$(-\sin \pi/4, \cos \pi/4)^T \mathbf{x} = 0$$

Finding the Head and its Movement by Detecting Pixels with Skin Color

Computer Science

Hope:

Largest skin color "blob" is face.

Fewer false positive skin pixels in background, e.g., wooden door.

Finding the Head and its Movement by Detecting Pixels with Skin Color

Computer Science

Common Trick in **Computer Vision:** Use "image pyramid" = input image at difference scale. Here: 6 levels, reduction in x, y by $\frac{1}{4}$ (other schemes possible) Then process result pyramid. Why?

Finding Movement by Detecting Pixels with Brightness Changes

Computer Science

Motion

(c)

DifferenceImage(x,y,t) = Image(x,y,t)-Image(x,y,t-1)

or

DifferenceImage(x,y,t) = Image(x,y,t)-Image(x,y,t-k)where k > 1, e.g., 10

• Or

DifferenceImage(x,y,t) = |Image(x,y,t)-Image(x,y,t-k)|

Why absolute value?

Finding the Face and its Movement by Locating the Best Match of a Face Template

Computer Science

Better matches shown brighter Best match: Blue pixel

Finding the Face and its Movement by Locating the Best Match of a Face Template

Use Jingbin's face as a template

Visualization of Match Values

How can we compute a match?

Template Matching with Sum-Squared Difference (SSD)

Computer Science

8

Scene subimage s, template image m
same size images = n pixels
s_i = ith pixel in subimage of scene
m_i = ith pixel in template image m

$$\Box SSD = \Sigma_{(i=1 \text{ to } n)} (s_i - m_i)^2$$

Template matching = exhaustive search algorithm for position of scene subimage that best matches the template (where SSD is smallest)

Finding the Face and its Movement by Locating the Best Match of a Face Template

Used average face as a template

Visualization of Match Values

Normalized Correlation Coefficient (NCC)

Computer Science

Paired pixels in image X and Image Y:

$$\{(x_1,y_1),\ldots,(x_n,y_n)\}$$

Definition of NNC:

$$r_{xy} = rac{\sum_{i=1}^n (x_i - ar{x})(y_i - ar{y})}{\sqrt{\sum_{i=1}^n (x_i - ar{x})^2} \sqrt{\sum_{i=1}^n (y_i - ar{y})^2}}$$

where the mean for the image X pixel values is

$$ar{x} = rac{1}{n} \sum_{i=1}^n x_i$$

The mean for Y is defined similarly.

The NCC is also called "Pearson coefficient." Pearson was not the inventor. He is known for eugenics and scientific racism, so we will not use his name to describe the NCC in CS 585.

Template Matching via with Normalized Correlation

Computer Science

- Scene subimage s, template image m
- Normalized correlation coefficient

$$r = 1/n \Sigma_i ((s_i - mean(s)) * (m_i - mean(m)) / (\sigma_s \sigma_m)) where$$

 s_i and m_i are respective brightness values of the *i*th pixel *mean(m)* and σ_m are mean and standard deviation of all pixels in the template

mean(s) and σ_s are mean and standard deviation of all pixels in the subimage of the scene

- Template matching = exhaustive search for position of subimage that produces highest r
- □ *r* can be between -1 and 1

Finding the Face and its Movement by Locating the Best Match of a Face Template

Used average face as a template

Visualization of Normalized Correlation Coefficient Match Values

Finding the Face with Template Matching & the Normalized Correlation Coefficient

Computer Science

(d) Correlation

Multi-Resolution Matching

Computer Science

Normalized correlation coefficient over multi-resolution search space:

$$1/n \sum_{i} (s_i - mean(s)) (m_i - mean(m)) (\sigma_s \sigma_m)$$

←Template matched over all resolutions →

Finding the Face and its Movement by Locating the Best Match of a Face Template

Computer Science

(a) Input

You can apply template matching to a small version of your input image and use that search result to start searching for a match in the 2nd smallest images. Repeat until the original size is processed.

(d) Correlation

Multi-scale Pyramids

Computer Science

Combine the results of color and motion detection to mask the regions of interest for correlation-based template matching

(a) Input

(b) Color

(c) Motion

(d) Correlation

(e) Masked

Face Detection

Computer Science

Data Variability

Shadows Cluttered background

Large Face

Small Face

Algorithm: Multi-scale Face Detection

Face Detection Interface

Learning Objectives

- Can explain and apply to image analysis problems:
- Detection by Color Analysis
- Hierarchical Image Analysis
- Motion Analysis by Image Differencing
- Sum-squared Difference (SSD)
- Normalized Correlation Coefficient (NCC)
- Template Matching with SSD or NCC