BOSTON UNIVERSITY

CAS CS 585 Image and Video Computing - Spring 2024

Assignment 1

Due on GradeScope, Wednesday, January 31, 2024, 11:59 pm

Include a "readme file" with acknowledgements of any help you may have received in solving this assignment.

Exercise 1

Consider the following binary image:

(a) Compute the coordinates of the centroid of the binary object using pencil and paper. Hint: You can select a coordinate system origin that simplifies your computation.
(b) Draw the axes of least and most inertia of the object. To distinguish them, use a dashed line for the axis of most inertia.

Exercise 2

Consider the following three lines:
$(-1,1)^{\top} \mathbf{x}-7=0$
$(1,0)^{\top} \mathbf{x}-5=0$
$(2,1)^{\top} \mathbf{x}-4=0$
(a) Draw the lines in a 2D coordinate system using pencil and paper.
(b) Rewrite the line equations using the $x \sin \alpha-y \cos \alpha+g=0$ notation of a line.
(c) For each line, sketch a binary object for which the line is its axis of least inertia.

Exercise 3

Second moments can be used to evaluate how longish or how circular the shape of a binary object is. This has been used, for example, to evaluate blood samples in microscopy images for sickle cell disease.
(a) Write down the relevant mathematical expression as a function of the second moments of the binary image $B(x, y)$.
(b) Is the expression larger or smaller for sickle cells compared to healthy blood cells?
(c) Propose another computer vision problem where object circularity is a property that could aid in image interpretation.

Exercise 4

The minimum and maximum values of the moment of inertia can be written as
$\mathrm{E}=0.5(\mathrm{a}+\mathrm{c}) \pm 0.5 \mathrm{sqrt}\left(\mathrm{b}^{2}+(\mathrm{a}-\mathrm{c})^{2}\right)$,
where a, b, and c are defined as in class.
(a) Prove that $\mathrm{E} \geq 0$.
(b) When is $\mathrm{E}=0$?

Exercise 5

Prove that the axis of most inertia of a binary object goes through the object centroid.

Exercise 6

When we want to represent a binary object in an image with an object that has a simpler shape, we can use a region that has the shape of an ellipse with the same zeroth, first, and second moments. An ellipse can be defined by the equation

$$
(x / \alpha)^{2}+(y / \beta)^{2}=1,
$$

where α is the semi-major axis long the x-axis and β is the semi-minor axis along the y-axis.
(a) Prove that the minimum and maximum second moments of the region about an axis through the origin are $\pi / 4 \alpha \beta^{3}$ and $\pi / 4 \beta \alpha^{3}$, respectively.

The second moment of any region about an axis inclined at an angle γ can be written in the form $\mathrm{E}=\mathrm{a} \sin ^{2} \gamma-\mathrm{b} \sin \gamma \cos \gamma+\mathrm{c} \cos ^{2} \gamma$.
(b) Compute the major and minor axes of an equivalent ellipse, which means an ellipse that has the same second moment about any axis through the origin.

