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AbstractÐAn improved technique for 3D head tracking under varying illumination conditions is proposed. The head is modeled as a

texture mapped cylinder. Tracking is formulated as an image registration problem in the cylinder's texture map image. The resulting

dynamic texture map provides a stabilized view of the face that can be used as input to many existing 2D techniques for face

recognition, facial expressions analysis, lip reading, and eye tracking. To solve the registration problem in the presence of lighting

variation and head motion, the residual error of registration is modeled as a linear combination of texture warping templates and

orthogonal illumination templates. Fast and stable on-line tracking is achieved via regularized, weighted least-squares minimization of

the registration error. The regularization term tends to limit potential ambiguities that arise in the warping and illumination templates. It

enables stable tracking over extended sequences. Tracking does not require a precise initial fit of the model; the system is initialized

automatically using a simple 2D face detector. The only assumption is that the target is facing the camera in the first frame of the

sequence. The formulation is tailored to take advantage of texture mapping hardware available in many workstations, PCs, and game

consoles. The nonoptimized implementation runs at about 15 frames per second on a SGI O2 graphic workstation. Extensive

experiments evaluating the effectiveness of the formulation are reported. The sensitivity of the technique to illumination, regularization

parameters, errors in the initial positioning, and internal camera parameters are analyzed. Examples and applications of tracking are

reported.

Index TermsÐVisual tracking, real-time vision, illumination, motion estimation, computer human interfaces.

æ

1 INTRODUCTION

THREE-DIMENSIONAL head tracking is a crucial task for
several applications of computer vision. Problems like

face recognition, facial expression analysis, lip reading, etc.,
are more likely to be solved if a stabilized image is
generated through a 3D head tracker. Determining the 3D
head position and orientation is also fundamental in the
development of vision-driven user interfaces and, more
generally, for head gesture recognition. Furthermore, head
tracking can lead to the development of very low bit-rate
model-based video recoders for video telephone, and so on.
Most potential applications for head tracking require
robustness to significant head motion, change in orienta-
tion, or scale. Moreover, they must work near video frame
rates. Such requirements make the problem even more
challenging.

In this paper, we propose an algorithm for 3D head

tracking that extends the range of head motion allowed by a

planar tracker [6], [11], [16]. Our system uses a texture

mapped 3D rigid surface model for the head. During

tracking, each input video image is projected onto the

surface texture map of the model. Model parameters are
updated via image registration in texture map space. The
output of the system is the 3D head parameters and a 2D
dynamic texture map image. The dynamic texture image
provides a stabilized view of the face that can be used in
applications requiring that the position of the head is frontal
and almost static. The system has the advantages of a planar
face tracker (reasonable simplicity and robustness to initial
positioning), but not the disadvantages (difficulty in
tracking out of plane rotations).

As will become evident in the experiments, our proposed
technique can also improve the performance of a tracker
based on the minimization of sum of squared differences
(SSD) in presence of illumination changes. To achieve this
goal, we solve the registration problem by modeling the
residual error in a way similar to that proposed in [16]. The
method employs an orthogonal illumination basis that is
precomputed off-line over a training set of face images
collected under varying illumination conditions.

In contrast to the previous approach of [16], the
illumination basis is independent of the person to be
tracked. Moreover, we propose the use of a regularizing
term in the image registration; this improves the long-term
robustness and precision of the SSD tracker considerably. A
similar approach to estimating affine image motions and
changes of view is proposed by [5]. Their approach
employed an interesting analogy with parameterized
optical flow estimation; however, their iterative algorithm
is unsuitable for real-time operation.

Some of the ideas presented in this paper were initially
reported in [23], [24]. In this paper, we report the full
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formulation and extensive experimental evaluation of our
technique. In particular, the sensitivity of the technique to
internal parameters, as well as to errors in the initialization
of the model are analyzed using ground truth data sensed
with a magnetic tracker [1]. All the sequences used for the
experiments and the corresponding ground truth data are
publicly available.1 Furthermore, a software implementa-
tion of our system is available from this site.

2 BACKGROUND

The formulation of the head tracking problem in terms of
color image registration in the texture map of a 3D cylindrical
model was first developed in our previous work [23].
Similarly, SchoÈdl et al. [30] proposed a technique for 3D head
tracking using a full head texture mapped polygonal model.
Recently, Dellaert et al. [12] formulated the 3D tracking of
planar patches using texture mapping as the measurement
model in an extended Kalman filter framework.

Several other techniques have been proposed for free
head motion and face tracking. Some of these techniques
focus on 2D tracking (e.g., [4], [9], [14], [16], [27], [35], [36]),
while others focus on 3D tracking or stabilization. Some
methods for recovering 3D head parameters are based on
tracking of salient points, features, or 2D image patches. The
outputs of these 2D trackers can be processed by an
extended Kalman filter to recover 3D structure, focal length,
and facial pose [2]. In [21], a statistically-based 3D head
model (eigen-head) is used to further constrain the
estimated 3D structure. Another point-based technique for
3D tracking is based on the tracking of five salient points on
the face to estimate the head orientation with respect to the
camera plane [19].

Others use optic flow coupled to a 3D surface model. In
[3], rigid body motion parameters of an ellipsoid model are
estimated from a flow field using a standard minimization
algorithm. In another approach [10], flow is used to
constrain the motion of an anatomically-motivated face
model and integrated with edge forces to improve tracking
results. In [25], a render-feedback loop was used to guide
tracking for an image coding application.

Still others employ more complex physically-based
models for the face that include both skin and muscle
dynamics for facial motion. In [34], deformable contour
models were used to track the nonrigid facial motion while
estimating muscle actuator controls. In [13], a control
theoretic approach was employed, based on normalized
correlation between the incoming data and templates.

Finally, global head motion can be tracked using a plane
under perspective projection [7]. Recovered global planar
motion is used to stabilize incoming images. Facial
expression recognition is accomplished by tracking deform-
ing image patches in the stabilized images.

Most of the above mentioned techniques are not able to
track the face in presence of large rotations and some
require accurate initial fit of the model to the data. While a
planar approximation addresses these problems somewhat,
flattening the face introduces distortion in the stabilized
image and cannot model self occlusion effects. Our

technique enables fast and stable on-line tracking of
extended sequences, despite noise and large variations in
illumination. In particular, the image registration process is
made more robust and less sensitive to changes in lighting
through the use of an illumination basis and regularization.

3 BASIC IDEA

Our technique is based directly on the incoming image
stream; no optical flow estimation is required. The basic
idea consists of using a texture mapped surface model to
approximate the head, accounting in this way for self-
occlusions and to approximate head shape. We then use
image registration in the texture map to fit the model with
the incoming data.

To explain how our technique works, we will assume
that the head is a cylinder with a 360o wide image, or more
precisely, a video showing facial expression changes,
texture mapped onto the cylindrical surface. Only an
180o wide slice of this texture is visible in any particular
frame; this corresponds with the visible portion of the face
in each video image. If we know the initial position of the
cylinder, then, we can use the incoming image to compute
the texture map for the currently visible portion, as shown
in Fig. 1. The projection of the incoming frame onto the
corresponding cylindrical surface depends only on the 3D
position and orientation of the cylinder (estimated by our
algorithm), and on camera model (assumed known).

As a new frame is acquired, it is possible to estimate the
cylinder's orientation and position such that the texture
extracted from the incoming frame best matches the
reference texture. In other words, the 3D head parameters
are estimated by performing image registration in the
model's texture map. Due to the rotations of the head, the
visible part of the texture can be shifted with respect to the
reference texture. In the registration procedure, we should
then consider only the intersection of the two textures.

The registration parameters determine the projection of
input video onto the surface of the object. Taken as a
sequence, the projected video images comprise a dynamic
texture map. This map provides a stabilized view of the face
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1. http://www.cs.bu.edu/groups/ivc/HeadTracking/.

Fig. 1. Mapping from image plane to texture map.



that is independent of the current orientation, position, and
scale of the surface model.

In practice, heads are not cylindrical objects, so we
should account for this modeling error. Moreover, changes
in lighting (shadows and highlights) can have a relevant
effect and must be corrected in some way. In the rest of the
paper, a detailed description of the formulation and
implementation will be given. An extensive experimental
evaluation of the system will also be described.

4 FORMULATION

The general formulation for a 3D texture mapped surface
model will now be developed. Fig. 1 shows the various
coordinate systems employed in this paper: �x; y; z� is the
3D object-centered coordinate system, �u; v� is the image
plane coordinate system, �s; t� is the surface's parametric
coordinate system. The latter coordinate system �s; t�will be

also referred to as the texture plane, as this is the texture
map of the model. The �u; v� image coordinate system is
defined over the range �ÿ1; 1� � �ÿ1; 1� and the texture plane
�s; t� is defined over the unit square. The mapping between
�s; t� and �u; v� can be expressed as follows: First, assume a
parametric surface equation:

�x; y; z; 1� � x�s; t�; �1�
where 3D surface points are in homogeneous coordinates.

If greater generality is desired, then a displacement
function can be added to the parametric surface equation:

�x�s; t� � x�s; t� � n�s; t�d�s; t�; �2�
allowing displacement along the unit surface normal n, as
modulated by a scalar displacement function d�s; t�. For an
even more general model, a vector displacement field can
be applied to the surface.

An example of a cylinder with a normal displacement
function applied is shown in Fig. 2. The model was
computed by averaging the Cyberware scans of several
people in known position.2 The inclusion of a displacement
function in the surface formula allows for more detailed
modeling of the head. As will be discussed later, a more
detailed model does not neccessarily yield more stable
tracking on the head.

The resulting surface can then translated, rotated, and

scaled via the standard 4� 4 homogeneous transform:

Q � DRxRyRzS; �3�
where D is the translation matrix, S is the scaling matrix,
and Rx, Ry, Rz are the Euler angle rotation matrices.

Given a location �s; t� in the parametric surface space of
the model, a point's location in the image plane is obtained
via a projective transform:

u0 v0 w0� �T� PQ�x�s; t�; �4�
where �u; v� � �u0=w0; v0=w0�, and P is a camera projection
matrix:

P �
1 0 0 0
0 1 0 0
0 0 1

f 1

24 35: �5�

The projection matrix depends on the focal length f , which
in our system is assumed to be known.

The mapping between �s; t� and �u; v� coordinates can
now be expressed in terms of a computer graphics rendering
of a parametric surface. The parameters of the mapping
include the translation, rotation, and scaling of the model, in
addition to the camera focal length. As will be seen in
Section 4.1, this formulation can be used to define image
warping functions between the �s; t� and �u; v� planes.

4.1 Image Warping

Each incoming image must be warped into the texture map.
The warping function corresponds to the inverse texture
mapping of the surface �x�s; t� in arbitrary 3D position. In
what follows, we will denote the warping function:

T � ÿ�I; a�; �6�
where T�s; t� is the texture corresponding to the frame
I�u; v� warped onto a surface �x�s; t� with rigid parameters
a. The parameter vector a contains the position and
orientation of the surface. An example of input frame I,
with cylinder model and the corresponding texture map T,
are shown in Fig. 1. In our implementation, the cylinder is
approximated by a 3D trianglated surface and then
rendered using standard computer graphics hardware.

4.2 Confidence Maps

As video is warped into the texture plane, not all pixels
have equal confidence. This is due to nonuniform density of
pixels as they are mapped between �u; v� and �s; t� space. As
the input image is inverse projected, all visible triangles
have the same size in the �s; t� plane. However, in the �u; v�
image plane, the projections of the triangles have different
sizes due to the different orientations of the triangles, and
due to perspective projection. An approximate measure of
the confidence can be derived in terms of the ratio of a
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2. The average Cyberware scan was provided by Tony Jebara, of the MIT
Media Lab.

Fig. 2. (a) Generalized cylinder model constructed from average
Cyberware head data, (b) Model registered with video, (c) and the
corresponding texture map. Only the part of the texture corresponding to
the visible part of the model is shown.



triangle's area in the video image �u; v� over the triangle's
area in the texture map �s; t�. Parts of the texture
corresponding to the nonvisible part of the surface �x�s; t�
contribute no pixels and, therefore, have zero confidence.

Stated differently, the density of samples in the texture
map is directly related to the area of each triangle in the
image plane. This implies that the elements of the surface in
the �s; t� plane do not all carry the same amount of
information. The amount of information carried by a
triangle is directly proportional to the number of pixels it
contains in the input image I�u; v�.

Suppose we are given a triangle ABC whose vertices in
image coordinates are �ua; va�, �ub; vb�, and �uc; vc�, and in
texture coordinates are �sa; ta�, �sb; tb�, and �sc; tc�. Using a
well-known formula of geometry, the corresponding con-
fidence measure is:

� �
����������������������������������������������������������������������������������j�ub ÿ ua��vc ÿ va� ÿ �vb ÿ va��uc ÿ ua�j

p �����������������������������������������������������������������������������j�sb ÿ sa��tc ÿ ta� ÿ �tb ÿ ta��sc ÿ sa�j
p

:
�7�

Given this formula, it is possible to render a confidence map
Tw in the �s; t� plane. The denominator is constant in the
case of cylindrical or planar models, because the �s; t�
triangle mesh does not change.

In practice, the confidence map is generated using a
standard triangular area fill algorithm. The map is first
initialized to zero. Then each visible triangle is rendered
into the map with a fill value corresponding to the
confidence level. This approach allows the use of standard
graphics hardware to accomplish the task.

Note also that, in the case of a cylindrical model, the
texture map is 360o wide, but only a 180o part of the
cylinder is visible at any instant. In general, we should
associate a zero confidence to the part of the texture
corresponding to the back-facing portion of the surface.

The confidence map can be used to gain a more
principled formulation of facial analysis algorithms applied
in the stabilized texture map image. In essence, the
confidence map quantifies the reliability of different
portions of the face image. The nonuniformity of samples
can also bias the analysis, unless a robust weighted error
residual scheme is employed. As will be seen later, the
resulting confidence map enables the use of weighted error
residuals in the tracking procedure.

4.3 Cylindrical Models vs. Detailed Head Models

It is important to note that using a simple model for the head
makes it possible to reliably initialize the system automati-
cally. Simple models, like a cylinder, require the estimation
of fewer parameters in automatic placement schemes. As will
be confirmed in experiments described in Section 8, tracking
with the cylinder model is relatively robust to slight
perturbations in initialization. A planar model [7] also offers
these advantages; however, the experiments indicate that
this model is not powerful enough to cope with the self-
occlusions generated by large head rotations.

On the other hand, we have also experimented with a
complex rigid head model generated averaging the Cyber-
ware scans of several people in known position, as shown in
Fig. 2. Using such a model, we were not able to
automatically initialize the model, since there are too many

degrees of freedom. Furthermore, tracking performance
was markedly less robust to perturbations in the model
parameters. Even when fitting the detailed 3D model by
hand, we were unable to gain improvement in the tracker
precision or stability over a simple cylindrical model. In
contrast, the cylindrical model can cope with large out-of-
plane rotation, and it is robust to initialization error due to
its relative simplicity.

4.4 Model Initialization

To start any registration-based tracker, the model must be
fit to the initial frame to compute the reference texture and
the warping templates. This initialization can be accom-
plished automatically using a 2D face detector [29] and
assuming that the subject is approximately facing towards
the camera, with head upright, in the first frame. The
approximate 3D position of the surface is then computed
assuming unit size. Note that assuming unit size is not a
limitation, as the goal is to estimate the relative motion of
the head. In other words, people with a large head will be
tracked as ªcloser to the cameraº and people with a smaller
head as farther from the camera.

Once the initial position and orientation of the model are
known, we can generate the reference texture and a
collection of warping templates that will be used for the
tracking. The reference texture T0 is computed by warping
the initial frame I0 onto the surface �x�s; t�. Each warping
template is computed by subtracting from the reference
texture T0 the texture corresponding to the initial frame I0

warped through a slightly misaligned cylinder. Those
templates are then used during the track to estimate the
change of position and orientation of the cylinder from
frame to frame as will be explained later.

For notational convenience, all images are represented as
long vectors obtained by lexicographic reordering of the
corresponding matrices. Formally, given initial values of the
model's six orientation and position parameters stored in
the vector a0 and a parameter displacement matrix
Na � �n1;n2; . . . ;nK �, we can compute the reference texture
T0 and the warping templates matrix B � �b1;b2; . . . ;bK �:

T0 � ÿ�I0; a0� �8�

bk � T0 ÿ ÿ�I0; a0 � nk�; �9�
where nk is the parameter displacement vector for the kth
difference vector bk (warping template).

In practice, four difference vectors per model parameter
are sufficient. For the kth parameter, these four difference
images correspond with the difference patterns that result
by changing that parameter by ��k and �2�k. In our system,
K � 24, as we have six model parameters (3D position and
orientation) and four templates per parameter. The values
of the �k can be easily determined such that their
corresponding difference images have the same energy.
Note that the need for using ��k and �2�k is due to the fact
that the warping function ÿ�I; a� is only locally linear in a.
Experimental results confirmed this intuition. An analysis
of the extension of the region of linearity in a similar
problem is given in [8].
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Fig. 3 shows a few difference images (warping tem-
plates) obtained for a typical initial image using a
cylindrical model. Note that the motion templates used in
[5], [16] are computed in the image plane. In our case the
templates are computed in the texture map plane. A similar
approach has been successfully used in [8], [15], [31].

4.5 Illumination

Tracking is based on the minimization of the sum of
squared differences between the incoming texture and a
reference texture. This minimization is inherently sensitive
to changes in illumination. Better results can be achieved by
minimizing the difference between the incoming texture
and an illumination-adjusted version of the reference
texture. If we assume a Lambertian surface in the absence
of self-shadowing, then it has been shown that all the
images of the same surface under different lighting
conditions lie in a three-dimensional linear subspace of
the space of all possible images of the object [32]. In this
application, unfortunately, the surface is not truly Lamber-
tian nor is there an absence of self-shadowing. Moreover,
the nonlinear image warping from image plane to texture
plane distorts the linearity of the three-dimensional sub-
space. Nevertheless, we can still use a linear model as an
approximation along the lines of [16], [17]:

TÿT0 � Uc; �10�
where the columns of the matrix U � �u1;u2; . . . ;uM �
constitute the illumination templates and c is the vector of
the coefficients for the linear combination.

In [16], these templates are obtained by taking the
singular value decomposition (SVD) for a set of training
images of the target subject taken under different lighting
conditions. An additional training vector of ones is added to
the training set to account for global brightness changes.
The main problem of this approach is that the illumination
templates are subject-dependent.

In our system, we generate a user-independent set of
illumination templates. This is done by taking the SVD of a
large set of textures corresponding to faces of different
subjects, taken under varying illumination conditions. The
SVD was computed after subtracting the average texture
from each sample texture. The training set of faces we used
was previously aligned and masked as explained in [26]. In
practice, we found that first ten eigenvectors were sufficient
to account for illumination changes.

Note that the illumination basis vectors tend to be low-
frequency images. Thus, any misalignment between the
illumination basis and the reference texture is negligible. In
addition, an elliptical binary mask Tl is applied on the
illumination basis to prevent the noisy corners of the
textures from biasing the registration.

The illumination basis vectors for the cylindrical tracker
are shown in Fig. 4. Fig. 5 shows a reference texture and the
same image after the masking and the lighting correction (in
practice T0, T0 �Uc, and T).

4.6 Combined Parameterization

Following the line of [5], [16], a residual image is computed
by taking the difference between the incoming texture and
the reference texture. This residual can be modeled as a
linear combination of illumination templates and warping
templates:

TÿT0 � Bq�Uc; �11�
where c and q are the vector of the coefficients of the linear
combination. In our experience, this is a reasonable
approximation for low-energy residual textures. A multi-
scale approach using Gaussian pyramids [28] is used so that
the system can handle higher energy residual textures [33].

5 REGISTRATION AND TRACKING

During initialization, the model is automatically positioned
and scaled to fit the head in the image plane as described in
Section 4.4. The reference texture T0 is then obtained by
projecting the initial frame of the sequence I0 onto the
visible part of the cylindrical surface. As a precomputation,
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Fig. 3. Example of warping templates. T0 is the reference texture. Warping templates b1, b2, and b3 correspond to translations along the �x; y; z�
axes. Warping templates b4, b5, and b6 correspond to the Euler rotations. Only that part of the template with nonzero confidence is shown.

Fig. 4. User-independent set of illumination templates. Only the part of

the texture with nonzero confidence is shown.

Fig. 5. Example of the lighting correction on the reference texture. For a

given input texture T, the reference texture T0 is adjusted to account for

change in illumination: T0 �Uc.



a collection of warping templates is computed by taking the
difference between the reference texture T0 and the textures
corresponding to warping of the input frame with slightly
displaced surface parameters as described in Section 4.4.

Once the warping templates have been computed, the
tracking can start. Each new input frame I is warped into
the texture map using the current parameter estimate aÿ.
This yields a texture map T. The residual pattern
(difference between the reference texture and the warped
image) is modeled as a linear combination of the warping
templates B and illumination templates U that model
lighting effects (11).

To find the warping parameters a, we first find c and q
by solving the following weighted least squares problem:

W�TÿT0� � �Bq�Uc�; �12�
where W � diag�Tw� � diag�Tl� is the weighting matrix,
accounting for the confidence weights Tw and the elliptical
binary mask Tl mentioned earlier.

If we define:

R � TÿT0; �13�

x � c
q

� �
; �14�

M � �UjB�: �15�
The solution can be written:

x � arg min
x
kRÿMxkW �16�

� �MTWTWM�ÿ1MTWTWR �17�

� KR; �18�
where

K � �MTWTWM�ÿ1MTWTW

and kxkW � xTWTWx is a weighted L-2 norm. Due to
possible coupling between the warping templates and/or
the illumination templates, the least squares solution may
become ill-conditioned. As will be seen, this conditioning
problem can be averted through the use of a regularization
term.

If we are interested only in the increment of the warping
parameter �a, we may elect to compute only the q part of x.
Finally:

a � aÿ ��a; �19�
where �a � Naq and Na is the parameter displacement
matrix as described in Section 4.4.

Note that this computation requires only a few matrix
multiplications and the inversion of a relatively small matrix.
No iterative optimization [5] is involved in the process. This
is why our method is fast and can run at near NTSC video
frame rate on inexpensive PCs and workstations.

5.1 Regularization

Independent of the weighting matrix W, we have found
that the matrix K is sometimes close to singular. This is a

sort of general aperture problem and is due mainly to the

intrinsic ambiguity between small horizontal translation

and vertical rotation and between small vertical translation

and horizontal rotation. Moreover, we found that a

coupling exists between some of the illumination templates

and the warping templates.
Fig. 6 shows the matrix MTM for a typical sequence

using the cylindrical model. Each square in the figure

corresponds to an entry in the matrix. Bright values

correspond with large values in the matrix, dark squares

correspond with small values in the matrix. If the system

were perfectly decoupled, then all off-diagonal elements

would be dark. In general, brighter off-diagonal elements

indicate a coupling between parameters.
By looking at Fig. 6, it is possible to see the coupling that

can cause ill-conditioning. The top-left part of the matrix is

diagonal because it corresponds with the orthogonal

illumination basis vectors. This is not true for bottom-right

block of the matrix. This block of the matrix corresponds

with the warping basis images. Note that the coupling

between warping parameters and appearance parameters is

weaker than the coupling within the warping parameter

space. Such couplings can lead to instability or ambiguity in

the solutions for tracking. To reduce the last kind of

coupling SchoÈdl et al. [30] used parameters that are linear

combinations of position and orientation; however, under

some conditions this may lead to uncorrelated feature sets

in the image plane.
To alleviate this problem, we can regularize the for-

mulation by adding a penalty term to the image energy

shown in Section 5.1, and then minimize with respect to c

and q:

E �k�TÿT0� ÿ �Bq�Uc�kW � 1�cT
ac�
� 2�aÿ �Naq�T
w�aÿ �Naq�:

�20�

The diagonal matrix 
a is the penalty term associated

with the appearance parameter c, and the diagonal matrix


w is the penalty associated with the warping parameters a.
We can define:

p � 0
aÿ

� �
; �21�

N � I 0
0 Na

� �
; �22�

LA CASCIA ET AL.: FAST, RELIABLE HEAD TRACKING UNDER VARYING ILLUMINATION: AN APPROACH BASED ON REGISTRATION OF... 327

Fig. 6. Example of matrix MTM.




 � 1
a 0
0 2
w

� �
: �23�

and then rewrite the energy as:

E � kRÿMxkW � �p�Nx�T
�p�Nx�: �24�
By taking the gradient of the energy with respect to x and
equating it to zero we get:

x � ~KR�Qp; �25�
where

~K � �MTWTWM�NT
N�ÿ1MTWTW

and Q � �MTWTWM�NT
N�ÿ1NT
.
As before, if we are interested only in the warping

parameter estimate, then we can save computation by
solving only for the q part of x. We can then find �a.

The choice of a diagonal regularizer implicitly assumes
that the subvectors c and q are independent. In practice,
this is not the case. However, our experiments consistently
showed that the performance of the regularized tracker is
considerably superior with respect to the unregularized
one. Evaluation experiments will be described in Section 8.

The matrices 
a and 
w were chosen for the following
reasons. Recall that the appearance basis U is an eigenbasis
for the texture space. If 
a is diagonal and with elements
equal to the inverse of the corresponding eigenvalues, then
the penalty term cT
ac is proportional to the distance in
feature space [26]. This term, thus prevents an arbitrarily
large illumination term from dominating and misleading
the tracker.

The diagonal matrix 
w is the penalty associated with the
warping parameters (cylinder translation and rotation). We
assume that the parameters are independently Gaussian
distributed around the initial position. We can then choose

w to be diagonal, with diagonal terms equal to the inverse
of the expected variance for each parameter. In this way, we
prevent the parameters from exploding when the track is
lost. Our experience has shown that this term generally
makes it possible to swiftly recover if the track is lost. We
defined the standard deviation for each parameter as a
quarter of the range that keeps the model entirely visible
(within the window).

Note that this statistical model of the head motion is
particularly suited for video taken from a fixed camera (for
example a camera on the top of the computer monitor). In a
more general case (for example, to track heads in movies), a
random walk model [2], [21] would probably be more
effective. Furthermore, the assumption of independence of
the parameters could be removed and the full nondiagonal
6� 6 covariance matrix estimated from example sequences.

6 SYSTEM IMPLEMENTATION

For sake of comparison, we implemented the system using
both a cylindrical and a planar surface �x�s; t�. To allow for
larger displacements in the image plane we used a multi-
scale framework. The warping parameters are initially
estimated at the higher level of a Gaussian pyramid and
the parameters are propagated to the lower level. In our

implementation, we found that a two level pyramid was
sufficient. The first level of the texture map pyramid has a
resolution of 128� 64 pixels.

The warping function ÿ�I; a�was implemented to exploit
texture mapping acceleration present in modern computer
graphics workstations. We represented both the cylindrical
and the planar models as sets of texture mapped triangles in
3D space. When the cylinder is superimposed onto the
input video frame, each triangle in image plane maps the
underlying pixels of the input frame to the corresponding
triangle in texture map. Bilinear interpolation was used for
the texture mapping.

The confidence map is generated using a standard
triangular area fill algorithm. The map is first initialized
to zero. Then each visible triangle is rendered into the map
with a fill value corresponding to the confidence level. This
approach allows the use of standard graphics hardware to
accomplish the task.

The illumination basis has been computed from a MIT
database [26] of 1,000 aligned frontal view of faces under
varying lighting conditions. Since all the faces are aligned,
we had to determine by hand the position of the surface
only once and then used the same warping parameters to
compute the texture corresponding to each face. Finally, the
average texture was computed and subtracted from all the
textures before computing the SVD. In our experiments, we
found that the first ten eigenimages are in general sufficient
to model the global light variation. If more eigenimages
were employed, the system could in principle model more
precisely effects like self-shadowing. In practice, we
observed that there is a significant coupling between the
higher-order eigenimages and the warping templates,
which would make the tracker less stable. The eigenimages
were computed from the textures at 128� 64 resolution.
The second level in the pyramid was approximated by
scaling the eigenimages.

The system was implemented in C++ and OpenGL on a
SGI O2 graphic workstation. The current version of the
system runs at about 15 frames per second when reading
the input from a video stream. The off-line version used for
the experiments can process five frames per second. This is
due to I/O overhead and decompression when reading the
video input from a movie file. The software implementa-
tion, along with the eigenimages, and a number of test
sequences is available on the web.3

7 EXPERIMENTAL SETUP

During real-time operation, in many cases, the cylindrical
tracker can track the video stream indefinitelyÐeven in the
presence of significant motion and out of plane rotations.
However, to better test the sensitivity of the tracker and to
better analyze its limits, we collected a large set of more
challenging sequences, such that the tracker breaks in some
cases. Ground truth data was simultaneously collected
using a magnetic tracker.

The test sequences were collected with a Sony Handy-
cam on a tripod. Ground truth for these sequences was
simultaneously collected via a ªFlock of Birdsº 3D magnetic
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tracker [1]. The video signal was digitized at 30 frames per
second at a resolution of 320� 240 noninterleaved using the
standard SGI O2 video input hardware and then saved as
Quicktime movies (M-JPEG compressed).

To collect ground truth of the position and orientation of
the head, the transmitter of the magnetic tracker was
attached on the subject's head. The ªFlock of Birdsº system
[1] measures the relative position of the transmitter with
respect to the receiver (in inches) and the orientation (in
Euler angles) of the transmitter. The magnetic tracker, in an
environment devoid of large metal objects and electro-
magnetic frequencies, has a positional accuracy of 0:1 inches
and angular accuracy of 0:5 degrees. Both accuracies are
averaged over the translational range. In a typical labora-
tory environment, with some metal furniture and compu-
ters, we experienced a lower accuracy. However, the
captured measurements were still good enough to evaluate
a visual tracker. In Fig. 8 and Fig. 9, it is possible to see how
the noise level is certainly larger than the nominal accuracy
of the magnetic tracker.

7.1 Test Data

We collected two classes of sequences. One set of sequences
was collected under uniform illumination conditions. The
other set was collected under time varying illumination.
The time varying illumination has a uniform component
and a sinusoidal directional component. All the sequences
are 200 frames long (approximatively seven seconds) and
contain free head motion of several subjects.

The first set consists of 45 sequences (nine sequences for
each of five subjects) taken under uniform illumination
where the subjects perform free head motion including
translations and both in-plane and out-of-plane rotations.
The second set consists of 27 sequences (nine sequences for
each of three subjects) taken under time varying illumina-
tion and where the subjects perform free head motion.
These sequences were taken such that the first frame is not
always at the maximum of the illumination. All of the
sequences and the corresponding ground truth are available
on-line at http://www.cs.bu.edu/groups/ivc/HeadTrack-
ing/. The reader is encouraged to visit the web site and
watch them to have a precise idea of the typology of motion
and illumination variation.

Note that the measured ground truth and the estimate of
the visual tracker are expressed in two different coordinates
systems. The estimated position is in a coordinate system
that has its origin in the camera plane and is known only up
to a scale factor. This is an absolute orientation problem [18], as
we have two sets of measurements expressed in two
coordinate systems with different position, orientation,
and units. To avoid this problem, we carefully aligned the
magnetic receiver and the camera such that the two
coordinate systems were parallel (see Fig. 7). The scale
factor in the three axis directions was then estimated using
calibration sequences. All visual tracker estimates are then
transformed according to these scale factors before compar-
ison with ground truth data.

For the sake of comparing ground truth with estimated
position and orientation, we assume that at the first frame
of the sequence the visual estimate is coincident with the

ground truth. The graphs reported in Fig. 8 and Fig. 9 are

based on this assumption.

7.2 Performance Measures

Once the coordinate frames of magnetic tracker and visual

tracker are aligned, it is straightforward to define objective

measures of performance of the system. We are mainly

concerned about stability and precision of the tracker.
We formally define these measures as a function of the

Mahalanobis distance between the estimated and measured

position and orientation. The covariance matrices needed

for the computation of the distance have been estimated

over the entire set of collected sequences. In particular, we

define for any frame of the sequence two normalized errors:

e2
t;i � �at;i ÿ ~at;i�T�t�at;i ÿ ~at;i� �26�

e2
r;i � �ar;i ÿ ~ar;i�T�r�ar;i ÿ ~ar;i�; �27�

where et;i and er;i are the error in the estimates of the

translation and rotation at time i, The vectors at;i and ar;i
represent the visually estimated translation and rotation at

time i after the alignment to the magnetic tracker coordinate

frame. The corresponding magnetically measured values

for translation and rotation are represented by ~at;i and ~ar;i,

respectively.
We can now define a measure of tracker stability in terms

of the average percentage of the test sequence that the

tracker was able to track before losing the target. For the

sake of our analysis, we defined the track as lost when et;i
exceeded a fixed threshold. This threshold has been set

equal to 2.0 by inspecting different sequences where the

track was lost and then measuring the corresponding error

as given by (27).
The precision of the tracker can be formally defined for

each sequence as the root mean square error computed over

the sequence up to the point where the track was lost

(according to the definition of losing track from above). It is

important to discard the part of the sequences after the track

is lost as the corresponding estimates are totally insignif-

icant and make the measure of the error useless. The

positional and angular estimation error errt and errr for a

particular sequence can then be expressed as:

errt
2 � 1

N

XN
i�1

e2
t;i; �28�
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Fig. 7. Camera and magnetic tracker coordinate systems.



errr
2 � 1

N

XN
i�1

e2
r;i; �29�

where N is the number of frames tracked before losing the

track. For some of the experiments, it is also useful to

analyze the precision of the single components of the

estimate that can be defined in a similar way.

8 SYSTEM EVALUATION

We evaluated our technique using the full set of sequences

collected as described above. We compared the effective-

ness of a texture mapped cylindrical model as opposed to a

planar model. We also evaluated the effect of the lighting

correction term. Finally, experiments were conducted to

quantify sensitivity to errors in the initial positioning,

regularization parameter settings and internal camera

parameters.
Three versions of the head tracker algorithm were

implemented and compared. The first tracker employed

the full formulation: a cylindrical model with illumination

correction and regularization terms (24). The second tracker
was the same as the first cylindrical tracker, except without
the illumination correction term. The third tracker utilized a
3D planar model to define the warping function ÿ�I; a�; this
model was meant to approximate planar head tracking
formulations reported in [5], [16]. Our implementation of
the planar tracker included a regularization term, but no
illumination correction term.

Before detailed discussion of the experiments, two
examples of tracking will be shown. These are intended to
give an idea of the type of test sequences gathered and the
tracking results obtained.

In Fig. 8, a few frames from one of the test sequences are
shown together with the tracking results. Three-dimen-
sional head translation and orientation parameters were
recovered using the full tracker formulation that includes
illumination correction and regularization terms. The
graphs show the estimated rotation and translation para-
meters during tracking compared to ground truth. The
version of the tracker that used a planar model was unable
to track the whole sequence without losing track.
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Fig. 8. Example tracking sequence collected with uniform illumination. In each graph, the dashed curve depicts the estimate gained via the visual
tracker and the solid curve depicts the ground truth.



Fig. 9 shows a test sequence with varying illumination.
Tracking results using illumination correction are shown
together with ground truth. The version of the cylindrical
tracker without lighting correction diverged around frame 60.

8.1 Experiment 1: General Performance of the
Tracker

The first experiment was designed to test sensitivity of the
three different trackers to variation in the warping
regularization parameter 2. Multiple trials were conducted.
In each trial, 2 was fixed at a value ranging from 10 to 106.
At each setting of 2, the number of frames tracked and the
precision of the trackers were determined for all sequences
in the first dataset (45 sequences taken under uniform
illumination). For all trials in this experiment, the focal
length f � 10:0 and the regularization parameter 1 � 105.

Graphs showing average stability and precision for the
different trackers are shown in Fig. 10. The performance of
the two cylindrical trackers (with and without the illumina-
tion term) is nearly identical. This is reasonable as the
sequences used in this experiment were taken under
uniform illumination; therefore, the lighting correction term
should have little or no effect on tracking performance. In

contrast, the planar tracker performed generally worse than
the cylindrical trackers; performance was very sensitive to
setting of the regularization parameter. Note also that the
precision of the planar tracker's position estimate seems
better for low values of 2 (smaller error). This is due to the
error computation procedure that takes into account only
those few frames that were tracked before track is lost. In our
experience, when the tracker is very unstable and can track
on average less than 50 percent of each the test sequences,
the corresponding precision measure is not very useful.

8.2 Experiment 2: Lighting Correction

The second experiment was designed to evaluate the effect
of the illumination correction term in performance of the
cylindrical tracker. In this experiment, the second set of test
sequences was used (27 sequences taken under time
varying illumination conditions). For all the test sequences
in the dataset, we computed the number of frames tracked
and the precision of the tracker while varying 1 over the
range of 102 to 109. For all trials in this experiment, the focal
length f � 10:0, and the regularization parameter 2 � 105.

The results of this experiment are reported in Fig. 11. For
comparison, the performance of the cylindrical tracker
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Fig. 9. Example test sequence and tracking with time varying illumination. In all graphs, the dashed curve depicts the estimate gained via the visual
tracker and the solid curve depicts the ground truth.



without the illumination correction term was tested, as

shown by the dashed curve in each graph. The first graph in

Fig. 11 shows the average percentage of frames tracked

before losing track, as determined by (27). The other graphs

show the average error in estimating position errt and

orientation errr.
As can be seen in the graphs, the stability of the tracker is

greatly improved through inclusion of the illumination

correction term. It is also interesting to note that the system

is not very sensitive to the regularization parameter 1. For

a wide range of values of this parameter performance is

approximatively constant, with performance dropping to

the level of the nonillumination corrected tracker only when

over-regularizing.
In this experiment, the precision of the tracker does not

seem improved by illumination correction. This is

reasonable as the precision is averaged only over those

frames before losing the track of the target. The tracker

without lighting correction is as good as the one using the

lighting correction up to the first change in illumination; at

that point the nonillumination corrected model usually

loses the track immediately while the illumination-cor-

rected model continues tracking correctly.

8.3 Experiment 3: Sensitivity to Initial Positioning of
the Model

Experiments were conducted to evaluate the sensitivity of the
tracker to the initial placement of the model. Given that our
system is completely automatic and that the face detector we
use [29] is sometimes slightly imprecise, it is important to
evaluate if the performance of the tracker degrades when the
model is initially slightly misplaced. The experiments
compared sensitivity of the planar tracker vs. the cylindrical
tracker.

Experiments were conducted using the test set of
45 sequences, taken under uniform illumination. Three sets
of experimental trials were conducted. Each set tested
sensitivity to one parameter that is estimated by the automatic
face detector: horizontal position, vertical position, and scale.
In each trial, the automatic face detector's parameter estimate
was altered by a fixed percentage: �5, �10, �15, and �20

percent. Over all the trials, the other parameters were fixed:
f � 10:0 and 1 � 2 � 105.

In the first set of trials, we perturbed the horizontal head
position by �5, �10, �15, and �20 percent of the estimated
face width. The graphs in Fig. 12 show the stability and
precision of the two head trackers, as averaged over all 45 test
sequences.
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Fig. 10. Experiment 1: Sensitivity of head trackers to the regularization parameter 2. In each graph, the solid curve depicts performance for the
cylindrical head tracker with illumination correction, the dashed curve depicts performance for the cylindrical tracker without the illumination
correction, and the dash-dot curve depicts performance for the planar tracker. Average performance was determined over all the 45 sequences
taken under uniform illumination.

Fig. 11. Experiment 2: Sensitivity of the cylindrical head tracker to the illumination regularization parameter 1. In each graph, the solid curve depicts
performance of the cylindrical tracker with illumination correction term. For comparison, performance of the cylindrical tracker without illumination
correction is reported (shown as dashed curve). Average performance was measured over a test set of 27 sequences taken under time varying
illumination.



Similarly, in the second set of trials, we perturbed the
vertical head position by �5, �10, �15, and �20 percent of
the estimated face height. The graphs in Fig. 13 show the
performance of the two trackers, as averaged over all 45 test
sequences.

Finally, in the third set of trials, we measured perfor-
mance of the system when varying the initial size of the
detected face. This was meant to evaluate sensitivity of
tracking to errors in estimating the initial head scale. Fig. 14
shows graphs of performance of both trackers under such
conditions.

As expected, the planar tracker is almost insensitive to
perturbations of the initial positioning of the model. The

cylindrical tracker, which out performed the planar model
in all previous experiments in terms of precision and
stability, is also not very sensitive to errors in the initial
positioning of the model. This is a very interesting behavior
as the main limitation of more detailed 3D head trackers
[10], [13] is the need for a precise initialization of the model.
At present, such precise initialization cannot in general be
performed in fast or automatic way.

Finally, it should be noted that these experiments were
conducted by perturbing only one parameter at the time. In
informal experiments, perturbing simultaneously the hor-
izontal position, the vertical position and the size of the
estimated face, yielded similar results.
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Fig. 12. Experiment 3: Sensitivity of cylindrical and planar tracker to errors in estimating horizontal position of face. The horizontal position was
perturbed by �5, �10, �15, and �20 percent of the face width. In each graph, the solid curve corresponds to the performance of the cylindrical
tracker, and the dashed curve to the planar tracker.

Fig. 13. Experiment 3 (continued): Sensitivity of cylindrical and planar tracker to errors in estimating vertical position of face, as described in the text.

In each graph, the solid curve corresponds to the performance of the cylindrical tracker and the dashed curve to the planar tracker.

Fig. 14. Experiment 3 (continued): Sensitivity of cylindrical and planar tracker to errors in estimating the initial scale of the face. In each graph, the

solid curve corresponds to the performance of the cylindrical tracker, and the dashed curve to the planar tracker. The horizontal axis of each graph is

the percentage of perturbation added to the head initial scale estimate.



8.4 Experiment 4: Sensitivity to Focal Length

In our system, the focal length is implicitly embedded in the

warping function ÿ�I; a� of (6). The focal length is not

estimated, but it is assumed to be known. This experiment

was intended to determine how the performance of the

tracker is affected by the choice of the focal length.
We computed stability and precision for the 45 test

sequences taken under uniform illumination conditions

using focal length equal to 2; 4; 8; 16; 32, and 64. The results

of this experiment are reported in Fig. 15. For all the trials in

this experiment, the regularization parameters were fixed:

1 � 2 � 105.
The average percentage of frames tracked is reported in

the top graph in Fig. 15. The precision of the trackers in

estimating translation and rotation is reported in the other

graphs. For this experiment, we reported the precision with

respect to the different parameters, as there are significant

differences in precision between them. The error graphs for

translation along the three axes x; y and z are reported

respectively in the second row of Fig. 15. Graphs of error in
the estimated rotation are shown in the bottom row of
Fig. 15.

Note that the planar tracker is relatively insensitive to the
assumed focal length; the only component adversely
influenced was the estimate of the depth when the focal
length becomes too long. Similarly, the cylindrical tracker
was somewhat sensitive for very short focal lengths and
also tended to misestimate the depth as the focal length
became too long.

9 DISCUSSION

The experiments indicate that the cylindrical model
generally allows tracking of longer sequences than when
using a planar model. Furthermore, it allows us to estimate
more precisely the 3D rotations of the head. The error in the
estimates of the position is on average slightly smaller when
using the planar tracker. This is not surprising as the planar
tracker can accurately estimate the position of the head, but
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Fig. 15. Experiment 4: Sensitivity of cylindrical and planar tracker to the focal length. Performance was averaged over 45 different sequences. In all

the graphs, the solid curve corresponds to the cylindrical tracker and the dashed curve to the planar tracker.



tends to lose the target as soon as there is some significant
out of plane rotation. Moreover, the cylindrical tracker is
much less sensitive to the regularization parameter.

The use of an illumination correction term was shown to
greatly improve the performance of the system in the case
of sequences taken under time-varying illumination.
Furthermore, the experiments indicated that the choice of
the regularization parameter is not critical and the
performance of the system remains approximately constant
in a wide range of variability.

As exhibited in the experiments, the system is relatively
insensitive to error in the initial estimate of the position and
scale of the face. The precision and stability of the tracker
remain approximately constant for a range of initialization
errors up to 20 percent the size of the face detected. It is also
interesting to note that the focal length used in the warping
function did not seem to be a critical parameter of the
system in the experiments. In practice, we have found that
this parameter can be chosen very approximately without
particular difficulties.

The experiments confirmed our hope that our tracker
could overcome the biggest problem of a planar tracker
(instability in presence of out of plane rotations) without
losing its biggest advantages (small sensitivity to initializa-
tion errors and low computational load).

Beyond the quantitative testing reported in Section 8, we
analyzed qualitatively the behavior of our technique
through interactive use of the real-time version of the
system. This analysis coherently confirmed the strengths
and weaknesses that emerged from the quantitative testing.
In both our controlled experiments and in our experience
with the real-time system, the formulation was stable with
respect to changes in facial expression, eye blinks, and
motion of the hair.

In most cases, the cylindrical tracker is stable and precise
enough to be useful in practical applications. For example,
in an informal experiment, we tried to control the mouse
pointer with small out of plane rotations of the head. After a
few minutes of training the subjects, they were able to
control the pointer all over the computer screen with a
precision of about 20-30 pixels. The head tracker has also
been successfully tested in head gesture recognition and
expression tracking [23].

We also analyzed which are the most common cases
when the tracker fails and loses the target. We noticed that
all of the cases where the target was lost were due to one of
the following reasons:

1. simultaneous large rotation around the vertical axis
and large horizontal translation,

2. simultaneous large rotations around the vertical and
the horizontal axis,

3. very large rotation around the vertical axis, and
4. motion was too fast.

The first instability is due to the general aperture
problem. This ambiguity is very well highlighted in Fig. 6
as an off diagonal element in the matrix MTM. As
evidenced in the experiments, the use of a regularization
term greatly reduced this problem.

The other failure modes are due partly to the fact the
head is only approximated by a cylinder. This sometimes

causes error in tracking large out-of-plane rotations of the
head. As stated earlier in Section 4.3 , using a more detailed,
displacement-mapped model did not seem to improve
tracking substantially; the resulting tracker tended to have
greater sensitivity to initialization in our informal experi-
ments. A more promising approach for coping with large
out-of-plane rotations would be to use more than one
camera in observing the moving head.

To gain further robustness to failure, our basic first-order
tracking scheme could be extended to include a model of
dynamics (e.g., in a Kalman filtering formulation along lines
of [2], [3], [21]). In addition, our formulation could be used
in a multiple hypothesis scheme [20], [22] to gain further
robustness to tracking failures. These extensions of our
basic formulation remain as topics for future investigation.

10 SUMMARY

In this paper, we proposed a fast, stable, and accurate
technique for 3D head tracking in presence of varying
lighting conditions. We presented experimental results that
show how our technique greatly improves the standard
SSD tracking without the need of a subject-dependent
illumination basis or the use of iterative techniques. Our
method is accurate and stable enough that the estimated
pose and orientation of the head is suitable for applications
like head gesture recognition and visual user interfaces.

Extensive experiments using ground truth data showed
that the system is very robust with respect to errors in the
initialization. The experiments also showed that the only
parameters that we had to choose arbitrarily (the regular-
ization parameters and the focal length) do not affect
dramatically the performance of the system. Using the same
parameter settings, the system can easily track sequences
with different kinds of motion and/or illumination.

The texture map provides a stabilized view of the face
that can be used for facial expression recognition and other
applications requiring that the position of the head is frontal
view and almost static. Furthermore, the formulation can be
used for model-based very low bit-rate video coding of
teleconferencing video. Moreover, the proposed technique
utilizes texture mapping capabilities that are common on
entry level PC and workstations running at NTSC video
frame rates.

Nevertheless, our technique can still be improved on
several fronts. For example, we believe that the use of two
cameras could greatly improve the performance of the
tracker in presence of large out of plane rotations. We also
plan to implement a version of our approach that employs
robust cost functions [31]; we suspect that this would
further enhance the precision and stability of the tracker in
presence of occlusions, facial expression changes, eye
blinks, motion of the hair, etc.
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