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Abstract
We present a framework for recognizing isolated and

continuous American Sign Language (ASL) sentences from
three-dimensional data. The data are obtained by us-
ing physics-based three-dimensional tracking methods and
then presented as input to Hidden Markov Models (HMMs)
for recognition. To improve recognition performance,
we model context-dependent HMMs and present a novel
method of coupling three-dimensional computer vision
methods and HMMs by temporally segmenting the data
stream with vision methods. We then use the geomet-
ric properties of the segments to constrain the HMM
framework for recognition. We show in experiments
with a 53 sign vocabulary that three-dimensional features
outperform two-dimensional features in recognition per-
formance. Furthermore, we demonstrate that context-
dependent modeling and the coupling of vision methods
and HMMs improve the accuracy of continuous ASL recog-
nition.

1 Intr oduction
AmericanSignLanguage(ASL) is theprimarymodeof

communicationfor many deafpeoplein the USA. It is a
highly inflectedlanguagewith sophisticatedgrammatical
properties,which constrainstronglytheorderandappear-
anceof signs.Becauseof theconstraints,it providesanap-
pealingtestbedfor understandingmoregeneralprinciples
governinghumanmotionandgesturing,includinghuman-
computergestureinterfaces.Suchinterfacesareessential
in virtual reality applications,wheretheusermustbeable
to manipulatevirtual objectsby gesturing.A workingASL
recognitionsystemcouldalsofacilitateinteractionof deaf
peoplewith their surroundings.

To date, most attemptsat ASL recognitionhave ei-
ther used only two-dimensionalcomputervision meth-
ods,or they have usedother input devices,suchasdata-
gloves, insteadof computervision, to collect input from
thesigner[18, 3, 23]. In this paperwe presenta new ap-
proachto ASL recognition.First, we usecomputervision
methodsto extract the three-dimensionalparametersof a
signer’s armmotions. We thenuseHiddenMarkov Mod-
els(HMMs) to recognizeisolatedandcontinuousASL ut-
terancesfrom the three-dimensionalinput. We develop
context-dependentmodelingof HMMs and methodsfor

coupling the applicationof HMMs and the application
of three-dimensionalcomputervision methodsto improve
continuousrecognitionperformance. Our approachat-
temptsto overcomesomeof thelimitationsof theprevious
approachesthat usetwo-dimensionalvisual input, do not
usecontext-dependentmodeling,or do not couplecom-
putervisionmethodswith HMMs [18, 3, 17, 12].

Three-dimensionalimage-basedshape and motion
tracking of a human’s arm and handis difficult because
of the complexity of the motionsand occlusioneffects.
Recently, a methodologyhasbeendeveloped[8, 10] that
allows three-dimensionaltrackingof humanmotion from
multiple images.In this paperwe augmentthis methodol-
ogy to track the three-dimensionalmotion of a subject’s
arms and handsfrom multiple images. This methodis
basedon theuseof deformablemodels,whoseshapeand
motion fits the given imagesequencesbasedon occlud-
ing contourinformationandtheoremsfrom projective ge-
ometry. The outputof this methodconsistsof the three-
dimensionalmotionparametersof thesubject’s arms.For
efficiency reasons,and becausearm movementsalready
carrymuchof theinformationneededfor recognizingASL
signs,wedonotusethehandinformationin thispaper.

Apart from obtainingaccuratedata,ASL recognition
is difficult, becausetherearealwaysstatisticalvariations
in the way humansperformmotions,even with identical
meaning. In addition, in continuousutterances,thereare
noclearboundariesbetweenindividualsigns.HMMs pro-
videaframework for capturingstatisticalvariationsin both
positionanddurationof themovement,aswell asimplicit
segmentationof theinputstream.Furthermore,continuous
recognitionis complicatedby coarticulationeffects,thatis,
thepronunciation1 of a signis influencedby thepreceding
andfollowing signs. Coarticulationeffectscanbe partly
alleviatedby trainingcontext-dependentHMMs.

The theorybehindHMMs makesseveral assumptions
thatareoftennot valid in practice.For this reason,we de-
velopa new approachthatcouplescomputervision meth-
odswith HMM modeling. It is basedon a temporalseg-
mentationprocessthat operatesby extracting geometric
propertiesof the three-dimensionalcomputervision pa-

1By “pronunciation”we meanmotion. We follow theterminologyof
spokenlanguagelinguisticswhereapplicable.
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rameters. Thesepropertiesare obtainedindependently
from the HMM algorithmsandareusedto imposeaddi-
tionalconstraintsonHMM-basedrecognition.

To testouralgorithmsandassumptions,weperformeda
seriesof experimentsbasedon a vocabulary consistingof
53differentsignsthatmakeextensiveuseof space.Weex-
perimentedwith bothisolatedandcontinuousASL recog-
nition for both three-dimensionaland two-dimensional
data. As HMMs require large amountsof training data
andthecomputervisionprocessis computationallyexpen-
sive,we useddatafrom anAscensionTechnologiesFlock
of Birdsandcomputervisionprocessesinterchangeably.

Ourgoalis to discoverandanalyzeausableframework
for bothisolatedandparticularlycontinuousASL recogni-
tion. We do not addressmoregeneralgesturerecognition
topicsandsignerindependencein this paper. Neitherdo
we addresstheinvolvedaspectsof ASL linguistics[19] at
this point, but obviously, a viable futureASL recognition
systemshouldbeableto handlethem.

In the following sections,we discussrelatedwork and
give an overview on the theory behindthe vision meth-
odsandHMMs. Afterward,we addresstheuseof HMMs
for isolatedandcontinuousASL recognition,andcoupling
computervision processeswith theHMM algorithms.Fi-
nally, we outlinedatacollectionandprovideexperimenta-
tion resultsfor isolatedandcontinuousrecognitionandthe
couplingof computervisionandHMMs.

2 PreviousWork
Previous work on sign languagerecognitionfocuses

primarily on fingerspellingrecognitionand isolatedsign
recognition. Somework usesneural networks [3, 22].
For this work to applyto continuousASL recognition,the
problemof explicit temporalsegmentationmustbesolved,
whichis alimitation thatHMM-basedrecognitiondoesnot
have. MohammedWaleedKadous[23] usesPowerGloves
to recognizeasetof 95 isolatedAuslansignswith 80%ac-
curacy, with anemphasison computationallyinexpensive
methods.Kirsti GrobelandMarcellAssam[4] useHMMs
to recognizeisolatedsignswith 91.3%accuracy out of a
262signvocabulary. They extract thefeaturesfrom video
recordingsof signerswearingcoloredgloves.

Thereis very little previous work on continuousASL
recognition. ThadStarnerand Alex Pentland[18] usea
view-basedapproachto extract two-dimensionalfeatures
as input to HMMs with a 40 word vocabulary. Yanghee
Nam andKwangYoenWohn [12] usethree-dimensional
dataasinputtoHMMs for continuousrecognitionof avery
smallsetof gestures.

3 Model-basedTracking of a Human’sArms
In thissectionwegivea brief overview of our formula-

tion thatallows the three-dimensionalarmshapeandmo-

tion estimationfrom multiple images[6, 7, 8, 10].

Our approachconsistsof two parts.Thefirst part[6, 7]
consistsof anactive,integratedapproachthatidentifiesre-
liably thepartsof amovingarticulatedobjectandestimates
their shapeand motion from a controlled set of motions
thatrevealtheobject’s structure.We usethealgorithmde-
velopedin [6, 7], which segmentstheapparentbodycon-
tourof amovinghumaninto theconstituentparts.Initially,
a singledeformablemodelis usedin orderto fit theimage
data.As themodeldeformsto fit thedeformed(dueto the
motionof thehuman)subsequentimagecontours,a novel
Human Body Part Identification Algorithm (HBPIA) is
developedto identify all the body parts. By applyingthe
HBPIA iterativelyoverthesubsequentframes,all themov-
ing partsareidentified.In addition,we have extendedthis
algorithmto allow theestimationof thethree-dimensional
shapeof asubject’sbodyparts,basedon theintegrationof
imagestakenfrom threeorthogonallyplacedcameras.We
usedthis methodologyto estimatethe three-dimensional
shapeof thesubject’s armsshown in theexamplesin Sec-
tion 7. It is worthnotingthatwe have recoveredthelower
armandthehandasonepart,sincein ourASL recognition
experimentswe did not usethe motion of the lower arm
andthehandrelative to eachother.

The secondpart of the algorithmconsistsof usingthe
extractedthree-dimensionalshapeof the arm to track the
three-dimensionalposition and orientationof a subject’s
bodyparts[8]. To alleviatedifficultiesarisingfrom occlu-
sionanddegenerateviewsduringtheunconstrainedmove-
mentof the arm, we usethreecalibratedcamerasplaced
in a mutually orthogonalconfiguration. At every image
frameand for eachbody part, we derive a subsetof the
camerasthatprovidethemostinformativeviewsfor track-
ing. This active and time varying selectionis basedon
thevisibility of apartandtheobservability of its predicted
motion from a certaincamera.Oncea setof camerashas
beenselectedto trackeachpart,weuseconceptsfrom pro-
jective geometryto relatepointson theoccludingcontour
to pointson the three-dimensionalshapemodel. Using a
physics-basedmodelingapproach,we transformthis cor-
respondence,in addition to two-dimensionalforcesaris-
ing from the discrepancy betweenthe model’s occluding
contourand the imagedata, into generalizedforcesthat
areappliedto the model to estimatethe model’s transla-
tional androtationaldegreesof freedom. To improve the
trackingresultsfurther, the dynamicsystemis embedded
within an extendedKalmanfilter framework, andwe use
the predicted motion of the model at eachframe to es-
tablishpoint correspondencesbetweenoccludingcontours
andthethree-dimensionalmodel.

We usedthis two-stepapproachto track the motionof
thesubject’s armsperformingtheASL gestures,asshown
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in Section7. Theoutputof thesystemis a setof rotation,��� , andtranslation,��� , parametersthatwe useasinput to
the HMMs and the vision-basedsegmentationalgorithm
presentedin thefollowing sections.

4 Hidden Mark ov Models
HiddenMarkov Models (HMMs) area type of statis-

tical model. They have beenusedsuccessfullyin speech
recognition,andrecentlyin handwriting,gesture,andsign
languagerecognition.Wenow giveasummaryof thebasic
theorybehindHMMs, which is coveredin detailin [15].

4.1 Definition of HMMs
An HMM consistsof anumber� of states���
	����	�������	�� , togetherwith transitionsbetweenstates.Thesystemis

in oneof theHMM’ sstatesatany giventime. At regularly
spaceddiscretetimeintervals,thesystemtakesanoutgoing
transitionfrom its currentstateto a new state.

Eachtransitionfrom �� to ��� hasanassociatedproba-
bility ����� of beingtaken. Hence, � � ��������� . Eachstate�� alsohasan initial probability ��� of thesystemstarting
in ��� . In addition,eachstate �� generatesoutput �! #" ,
which is distributedaccordingto a probabilitydistribution
function $ �&% �(')�+*-, Outputis ��.Systemis in � �0/ . An ex-
ampleisgivenin Figure1. Themodeldepictedthereis also
anexampleof a left-right model; that is, � ���2143 implies57698 � In otherwords,transitionsonly flow forwardfrom
lower statesto the samestateor higherstates,but never
backward. This topologyis themostcommonlyusedone
for modelingprocessesover time.

a11 a24

a23a12

55a

b5b4b3b2b1

a34 a45
S1 S S S S2 3 4 5

Figure1: Exampleleft-right HMM with its transitionand
outputprobabilities.“Left-right” meansthattransitionsoc-
curonly from left to right, andneverbackward.

4.2 The Thr eeFundamentalHMM Problems
Therearethreefundamentalproblemsin HMM theory:

(1) For a sequenceof observations :;�<:)�=	>���?�@	�:BA ,: �  C" , computethe probability * % :D. E�' that an
HMM E generated: .

(2) For some: andanHMM E , recover themostlikely
statesequence� � 	F�?���?	�� A thatgenerated: .

(3) Adjust the parametersof an HMM E suchthat they
maximize* % :D. EG' for some: .

The first problemcorrespondsto maximumlikelihood
recognitionof an unknown data sequencewith a set of
HMMs, eachof which correspondsto a sign. For each
HMM, the probability * % :D. EG' is computedthat it gener-
atedthe unknown sequence,andthenthe HMM with the
highestprobability is selectedastherecognizedsign. For
computing * % :D. EG' , let HI�JH � 	KH � 	����?��	LH A be a state
sequencein E :

MON % 8 'P�#* % :)�=	K:B�=	?�����?	K: N 	KH N �Q� � . EG'4�SR 8 R!�T	 (1)

* % :D. E�'U� �V
�XW � M A % 8 '@	 (2)

M � % 8 'P�#���Y$Z� % : � '@	 (3)

MON\[ � % 8 'P�#$ �K% : N\[ �?' �V�]W � M�N % 5 '&� �]� �)R!^UR4_!`4� (4)

Theseequationsassumethat the : � areindependent,and
they make the Markov assumptionthat a transition de-
pendsonly on the currentstate,a fundamentallimitation
of HMMs. This methodis called the forward-backward
algorithmandcomputes* % :D. E�' in : % � � _)' time.

The secondproblemcorrespondsto finding the most
likely path H throughan HMM E , given an observation
sequence: , andis equivalentto maximizing * % Ha	K:D. E�' .
Let b

N % 8 'P� cad=efhgLi�j�j�j i f�kmlFg * % H � H � ���?�]H N �n��]	K:D. E�'@	 (5)b
N\[ � % 8 'o�Q$ �]% : N\[ ��'qprcDd
e�Ls � sG� ,

b
N % 5 't� �]�]/ 	 (6)

cad=ef * % Ha	K:D. E�'u�vcad=e�Zs � sG� ,
b
A % 8 ' / � (7)b

N % 8 ' correspondsto themaximumprobabilityof all state
sequencesthat endup in � � at time ^ . Equations6 and7
follow from Equation5 by induction on ^ . The Viterbi
algorithmis a dynamicprogrammingalgorithmthat, us-
ing Equation7, computesboth the maximumprobability* % Ha	K:D. E�' andthestatesequenceH in : % � � _B' time.

Therecoveryof thestatesequencemakestheViterbi al-
gorithminvaluablefor continuousrecognition,sinceit by-
passesthe difficult problemof segmentingthe utterances
into its individualparts.Instead,asequenceof HMMs cor-
respondingto individual signsis concatenatedinto a net-
work, as schematicallydepictedin Figure 2. Thus, the
mostlikely statesequencerecoversthesequenceof signs.

The Viterbi algorithmalsohasthe propertythat it can
be optimizedwith the beam-searchingalgorithm. While
updating

b
N\[ � % 8 ' , this optimizationconsidersonly those

states� � in the HMM network for which

b
N % 5 ' is above

a thresholdvalue.Theassumptionis thatif theprobability
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Figure2: Concatenationof HMMs into a network

of a partial paththroughthe network becomestoo low, it
cannotcontributeto themostlikely path.Beam-searching
is essentialfor makinglarge-scaleapplicationstractable.

The third problemcorrespondsto training the HMMs
with data,suchthat they areableto recognizepreviously
unseendatacorrectlyafterthetrainingphase.Thereexists
no analyticalsolution for maximizing * % :D. EG' for given
observation sequences,but an iterative procedure,called
the Baum-Welch procedure,maximizes * % :D. E�' locally.
In thecaseof continuousdensityoutputprobabilities,the
reestimationprocessworksasfollows.

Define $]� % :S' as $]� % :S'w�x�Qyz W �|{ � z)} % :-	&~G� z 	Z�O� z ' ,
where � describesthenumberof mixtures,

5
is thestate

number, { describesthe weight of mixture � in state
5
,

and } is a Gaussiandensitywith mean~ , andcovariance
matrix � . Definethebackwardvariable� as

� N % 8 'P�#* % : N\[ ��: N\[ �=	?���?��	K:BA�. H N �#� � 	KEG'Z	 (8)

�GA % 8 'P����	 (9)

� N % 8 '�� �V
�]W � ������$K� % : N\[ � 't� N\[ � % 5 'Z	 (10)

�SR 8 R!��	��SR�^UR4_!`4��� (11)

Furthermore,define� and � as

� N % 8 	 5 'P� MON % 8 't� ��� $ ��% : N\[ �?'0� N\[ � % 5 '* % :D. E�' 	 (12)

� N % 8 'P� �V
��W � � N % 8 	 5 'Z� (13)

� N � N % 8 	 5 ' canbe interpretedas the expectednumber
of transitionsfrom � � to � � ; likewise � N � N % 8 ' canbe in-
terpretedastheexpectednumberof transitionstakenfrom� � . With theseinterpretations,the reestimationformulae
for thetransitionsandoutputprobabilitiesare����q��� � % 8 '@	 (14)

�� ��� � � A���N W � � N % 8 	 5 '� A���N W � � N % 8 ' 	 (15)

�{ � z � � AN W � � N % 5 	&�T'� AN W � � y� W � � N % 5 	L�(' 	 (16)

�~G� z � � AN W � � N % 5 	&�T'&: N� AN W � � N % 5 	]��' 	 (17)

�� � z � � AN W � � N % 5 	]��' % : N `7~G� z ' % : N `�~G� z ' A� AN W � � N % 5 	]��' � (18)

Repeateduseof thisprocedureconvergestoamaximum
probability[15], typically after5–10iterations.

5 Useof HMMs for ASL Recognition
In the previous sectionwe reviewed the extraction of

three-dimensionalfeaturesfrom computervision and the
HMM theory. We now discusshow they fit in the frame-
work of ASL recognition.

HMMs are an attractive choice for processingthree-
dimensionalsigndata,becausetheirstate-basednatureen-
ablesthemto describehow a sign changesover time and
to capturevariationsin thedurationof signs,by remaining
in a statefor severaltime frames.

Therearetwo waysto approachthe recognitionprob-
lem that posevery different researchproblems. Isolated
recognitionattemptsto recognizeonesinglesignata time.
Hence,it is basedon theassumptionthateachsigncanbe
individually extractedandthenindividually recognized.

Continuousrecognition,on theotherhand,attemptsto
recognizean entirestreamof signs,without any artificial
pausesor any other form of marked boundariesbetween
theindividualsigns.Clearly, continuousrecognitionis de-
sirablefor the most natural interactionpossiblebetween
humansandmachines,but it is alsomuchmoredifficult to
tacklethanisolatedrecognition.Thenext two subsections
discusseachof thetwo approachesin detail.

5.1 IsolatedRecognition
Isolatedsign recognitionassumesthat eachsign can

be extractedindividually. This requiresclearly marked
boundariesbetweensigns. Sucha boundarycould sim-
ply besilence,thatis, a brief restingphaseaftereachsign,
duringwhich thesignerperformsno movements.Silence
is easilydetectedthroughananalysisof theglobalvariance
overthehandmovements.

Once there are clearly marked boundariesbetween
signs,HMM recognitionis comparatively straightforward.
Therecognitionprocessextractsthesignalcorresponding
toeachsignindividually. It thenpickstheHMM thatyields
the maximumlikelihoodfor that signalasthe recognized
sign.

Training the HMMs to maximize recognitionperfor-
manceis alsocomparatively straightforward. Initially, all
signs in the training set are labeled. For eachsign in
the dictionary, the training procedurethen computesthe
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meanand covariancematrix over the data available for
that sign and assignsthem uniformly as the initial out-
put probabilitiesto all statesin the correspondingHMM.
It alsoassignsinitial transitionprobabilitiesuniformly to
the HMM’ s states.Unlike the initial outputprobabilities,
initial transitionprobabilitiesdo not influencethe perfor-
manceof thefully trainedHMMs greatly.

The trainingprocedurethenrunstheViterbi algorithm
repeatedlyon thetrainingsamples,soasto align thetrain-
ing dataalong the HMM’ s states. The aligneddataare
thenusedto estimatebetteroutputprobabilitiesfor each
stateindividually. This realignmentyieldsmajorimprove-
mentsin recognitionperformance,becauseit increasesthe
chancesof the Baum-Welch reestimationalgorithm con-
verging to an optimal or a near-optimal maximum. After
constructingthesebootstrappedHMMs, the training pro-
cedurefinishesby reestimatingeachHMM in turn with
the Baum-Welch reestimationalgorithmoutlined in Sec-
tion 4.2.

Theby far mostchallengingproblemin isolatedrecog-
nition is extractinga featurevector that optimizesrecog-
nition performance.Even after obtainingaccuratethree-
dimensionaldata from our computervision methodde-
scribedin Section3, we found that the featuresusedfor
recognition— and the way that they are represented—
greatly influencerecognitionperformance. The experi-
mentalresultsgiven in Section8.1 demonstratehow the
featurevectoraffectsperformance.

Thereareseveral reasonswhy performanceis so sen-
sitive to choosingthe type of featurevector: First, some
featurescarry more information than others; for exam-
ple,three-dimensionalfeaturesaremorereliablethantwo-
dimensionalones.Second,somefeaturesaremoreinvari-
ant to changesin orientationandpositionthanothers;for
example,polarcoordinatesaremoreinvariantto rotations
thanCartesiancoordinates[1]. Third, thestatisticalprop-
ertiesof somefeatureschange,dependingon theduration
of a sign. For this reason,the positionsof the handsin
three-dimensionalspaceperformbetterthanthevelocities
of the hands(seealso Section8.2). Fourth, the statisti-
cal distribution of the featuresduring thecourseof a sign
seemsto play a role. For somefeatures,their distribution
fits Gaussiandensitiesnaturally, whereasfor othersit does
not.

If thelatterexplanationholdstrue,weshouldseeama-
jor improvementin recognitionperformancefrom using
multiple Gaussianmixturesastheoutputprobabilitiesfor
HMMs, insteadof usingjust onesingleGaussiandensity.
However, we did not experimentwith multiple mixtures
becauseof thelackof sufficient trainingdata.

The numberof statesand the topology usedfor the
HMMs is alsoimportant.Signlanguageasa time-varying

processlendsitself naturallyto aleft-rightmodeltopology.
Findingtheoptimumnumberof states,which dependson
theframerateandonthecomplexity of thesignsinvolved,
is anempiricalprocess.We usedthesamemodeltopology
for all signs,anddeterminedexperimentallythat for our
taskamodelwith 9 stateswassufficient,whichis depicted
in Figure3. TheoutputprobabilitiesweresingleGaussian
densitieswith diagonalcovariancematrices,becausewe
hadinsufficient trainingdatafor multiplemixtures.

Figure 3: Left-right HMM topology for isolated ASL
recognition.

5.2 ContinuousRecognition
Continuoussignrecognition,ontheotherhand,is much

harderthanisolatedsign recognition.Thereis no silence
betweenthe signs,so the straightforward methodof us-
ing silenceto distinguishboundariesfails. Here HMMs
offer the compellingadvantageof beingable to segment
the streamsof signsautomaticallywith the Viterbi algo-
rithm. Coarticulationeffectsfurthercomplicatecontinuous
recognition.We now discussthemin detail,beforewede-
scribethetechniquesneededto trainHMMs for continuous
recognition.

5.2.1 The Coarticulation Problem
Coarticulationmeansthatthepronunciationof asignis

influencedby the precedingandfollowing signs. Oneof
the mostvisible effectsof coarticulationin ASL is that a
widerangeof movementsareinsertedbetweensigns.

For example,the sign for “FATHER” is performedby
repeatedlytappingtheforehead,andthesignfor “READ”
is performedin neutralspacein front of thechest.If these
two signsareperformedin succession,anextramovement
from theforeheadto neutralspaceappears(Figure4). This
phenomenonis calledmovementepenthesis[5]. We dis-
cussits implicationsfor ASL recognitionmorethoroughly
in [20].

Figure4: Movementepenthesis.Thearrow in themiddle
pictureindicatesanextra movementbetweenthesignsfor
“FATHER” and“READ” thatis notpresentin their lexical
forms.
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Speechrecognizershandlecoarticulationby training
phonemecontext-dependentHMMs. They traina separate
modelfor eachpossiblecombinationof threephonemesin
sequencethatcouldoccurduringnaturalspeech.In princi-
ple,thesameideaappliestosignlanguagerecognition,and
weperformedsomeexperimentsto verify theapplicability,
seeSection8.3.

A possibleway to train context-dependentmodelsfor
ASL recognitionis to usewhole signsas the phonologi-
cal unit in ASL.2 Thus,triphonecontext-dependentmod-
elsfrom speechrecognitioncorrespondto tri-signcontext-
dependentmodelsin ASL recognition. In otherwords,a
separatemodel is trained for eachcombinationof three
signsin sequence.The first andthe third sign in the se-
quenceform the context for the middle sign, with which
themodelis associated.

Tri-sign context-dependentmodeling,however, is pro-
hibitively expensive, becauseit requires : %���� ' models
overall, where � is the vocabulary size. Collectingsuch
a large amountof training datanecessaryto obtain reli-
ableestimatesfor themodelsis intractableevenfor small
vocabulary sizes. This intractability is a negative conse-
quenceof usingwholesignsasthephonologicalunit. Un-
like for speechrecognition,which hasto handleonly ap-
proximately40 classesof allophones,there is no upper
boundon the numberof modelsrequiredfor ASL recog-
nition with wholesignsasthesmallestunit.

Therefore, we used only bi-sign context-dependent
models,whichrequireamodelfor everypossiblecombina-
tion of two signs.Themodelis associatedwith thesecond
sign,andthefirst signformsits precedingcontext.

Bi-sign context-dependentmodeling requires : %�� � '
models.Althoughthiscomplexity is animprovementover: %���� ' , it is still too largefor anythingbut a smallvocab-
ulary. Speechrecognizersreducethenumberof modelsre-
quiredbyusingtheobservationthatmany contextsarevery
similar. Therefore,they tie the parametersof the models
correspondingto similar contexts, suchthat the transition
andoutputprobabilitiesaresharedbetweenthesemodels.
This techniquesignificantlyreducesthenumberof distinct
models.

Parametertying is alsoapplicableto ASL recognition,
but it is not as effective as for speechrecognition. The
main reasonfor the reducedeffectivenessis that move-
mentepenthesisinsertsmany movementsunrelatedto the
signs’ lexical forms. The implication is that context-
dependentmodelswill work well only with prohibitively
largeamountsof trainingdata.

In fact, it is questionablewhethercontext-dependent
modeling is a good solution to the coarticulationprob-

2Thisassumptionis not correct:Wholesignsarenot thesmallestunit
in ASL phonology, but this topic is beyondthescopeof thispaper.

lem in ASL recognitionat all. Movementepenthesisis
a phonologicalprocessin ASL and shouldbe treatedas
such;thatis, themovementsinducedbyepenthesisaresep-
aratephonemes.Usingcontext-dependentmodelsto cap-
turethemis implausiblefrom aphonologicalpointof view.
It seemsto make moresenseto modelthemovementsex-
plicitly. We follow up on this ideain [20] andshow that it
leadsto betterrecognitionperformance.

5.2.2 The Training Procedure
A sign in our datacollectedat naturalsigningspeeds

was between10 and 45 frames long, not counting the
framesneededfor the transitionbetweensigns. Because
of themovementsbetweensigns,theHMM topologymust
bemoreflexible thantheonedescribedfor isolatedrecog-
nition in Section5.1. Theseconsiderationsled usto using
theleft-right modelshown in Figure5.

Figure5: Topologyof thecontext-dependentmodel. The
arcsthat skip statesallow the modelingof variabilitiesin
thedurationof differentsigns.

Like for isolatedrecognition,we determinedthe opti-
mal numberof statesexperimentally. For theoutputprob-
abilities,wechoseasingleGaussiandensitywith diagonal
covariance,aswehadinsufficienttrainingdatafor estimat-
ing full-rank covariancematrices.

Trainingcontinuousrecognitionmodelsis muchharder
thantrainingisolatedrecognitionmodels,becauseit is dif-
ficult to obtaingoodinitial estimatesof theHMM param-
eters.Viterbi realignment(seeSection5.1) worksonly if
thetrainingdatais accuratelylabeled,includingthebound-
ariesbetweentheindividualsigns.Obtainingthesebound-
ariesis very difficult and time-consuming;even humans
have troubledeterminingwherea sign endsandthe next
onestarts.

The alternative to usingViterbi realignmentis usinga
flat-startscheme.It consistsof computingtheglobalmean
andcovariancematrix over theentiretrainingdatasetand
assigningtheseas the initial output probabilitiesto the
HMMs. We usedthisschemeto initialize theHMMs.

Wethenusedembeddedtraining [24] to reestimatethe
HMMs. Eachiterationof this procedureconcatenatesthe
HMMs correspondingto the individual signsin a training
sentenceinto a singlelargeHMM. It thenreestimatesthe
parametersof thelargeHMM with asingleiterationof the
Baum-Welchalgorithmdescribedin Section4.2,asusual.
Thereestimatedparameters,however, arenot immediately
appliedto theindividual HMMs. Instead,they arepooled
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in accumulators,andappliedto theindividualHMMs only
after thetrainingprocedurehasiteratedover all sentences
in thetrainingset.

Hence,embeddedtraining effectively trains all mod-
els in parallel with the entire training set. It yields bet-
ter parameterestimatesthantrainingtheHMMs indepen-
dently[24].

In the caseof context-independentmodels,using the
flat start schemefollowed by several embeddedtraining
runsis all thatis necessaryto trainHMMs for recognition.
Context-dependentmodelsaremoredifficult to train than
context-independentmodels,becausethetraininginvolves
two extra steps. Theseconsistof generatingthe context-
dependentmodels,and tying the parametersof HMMs
with similar contexts(seealsoSection5.2.1).

The first extra step, which consists of generating
the context-dependentmodels,requirescare,becausefor
context-dependentmodels there exist far fewer training
examplesper model than for context-independentmod-
els. In this case,embeddedtraining is likely to yield the
bestparameterestimatesfor context-dependentmodelsif
they have alreadybeeninitialized with bettervaluesthan
the global meanandcovariancematrix from the flat-start
scheme.

Therefore,weranseveralembeddedtrainingrunsonthe
context-independentmodelsand then generatedcontext-
dependentmodelswith thesameparametersasthecontext-
independentmodels. It is vital to avoid overtrainingthe
context-independentmodelsby keepingthenumberof ini-
tial trainingpasseslow. Theprobabilitiesshouldnot have
fully convergedyet. Otherwise,usingcontext-dependent
modelsactuallydecreasesrecognitionperformance.

The secondextra step,which consistsof tying the pa-
rameters,is also vital to the context-dependentmodels’
performance,especiallybecauseof our relative lack of
training data. Tying parametersreducesthe numberof
models,assignswith similar contexts thensharea com-
monmodel.As a result,moretrainingdatapermodelbe-
comesavailable.

Unfortunately, parametertying is a highly empirical
process.Ourexperimentsindicatedthattying thetransition
probabilitiesproperlyhadthegreatestinfluenceon recog-
nition results. We usedthe endinglocationsof the signs
in the precedingcontext to decideon the tying. For ex-
ample,the signsfor “BROTHER” and“SISTER” end in
the samelocation. As a result,the two modelsfor a sign
occurringafter the signsfor “BROTHER” or “SISTER,”
suchas “LIKE, ” cansharethe sametransitionprobabili-
ties. We alsousedtheendinglocationsto decideon tying
the outputprobabilities. For our dataset, the tying pro-
cessreducedthe numberof modelsto lessthanonesixth
of theiroriginalnumber.

6 Coupling of Vision and HMMs
In the precedingsectionwe reviewedhow HMMs can

be usedfor ASL recognition. The useof HMMs alone,
however, imposessomelimitations,oneof which is insuf-
ficiency of trainingdata,especiallywhile trainingcontext-
dependentmodels.Furthermore,theprobabilitytheoryas-
sumptionsunderlying the HMM theory, as describedin
Section4.2, areoften not valid: Successive observations
areoftennot independent,the transitionfrom onestateto
the next often dependsnot only on the currentstate,but
alsoon the statehistory, and the distribution of observa-
tionsdoesnotnecessarilyresembleanormaldensity.

Anotherproblemis thattheHMM theorydoesnot pro-
videfor any dynamicweightingof featuresdependingona
sign’scontext. For example,theinvariantfeaturesfor some
signs,suchas “I,” are the endpointsof their movements
with respectto a bodypart,andthemovementsareunim-
portant.For othersigns,only themovementsareinvariant.
The partsof the featureset that shouldbe examinedand
ignoredfor eachclassof signsaremutuallyexclusive.

To alleviate theselimitations,we investigatedthe cou-
pling of the HMM recognitionprocesswith an indepen-
dent computervision-basedmotion analysisthat tempo-
rally segmentsthe signalandextractsits geometricprop-
erties.Theideais thata signcanbedescribedin termsof
oneormoregeometricprimitives,suchashandmovements
alonga line, in a plane,or a circle. This ideais supported
by theexistenceof transcriptionsystems,suchastheHam-
NoSys[14], thatbasethedescriptionof themovementson
geometricprimitives.

The presenceof three-dimensionalinformationis cru-
cial for the couplingto work. In the past,geometricfit-
ting of planeshasalreadybeenusedfor rough segmen-
tation [12], but not for providing additional information
aboutthe natureof the fits to the HMM recognitionpro-
cess.

6.1 Segmentationof the Signal
To extract the geometricpropertiesof the continuous

signalestimatedwith ourcomputervisionmethods,it must
first besegmentedtemporallyinto its parts.Any changeof
thetypeof armmovementis likely to beaccompaniedby
a dip in the velocity. Thus, minima in the absoluteval-
uesof thevelocity vectorprovide stronghintsat segmen-
tationboundaries.However, therearetypically many more
velocity minimathansegmentationboundaries.Thus,the
segmentationprocessmustprovide facilities to mergead-
jacentsegments.

After performinginitial segmentationbasedon veloci-
ties, our algorithmattemptsto fit geometricprimitivesto
the individual segments.Thesecurrentlyconsistof lines,
planes,andholds3 ata positionin space.

3A hold is a shortperiodof time, duringwhich no handmovements
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The fit of a hold is determinedby computingthe co-
variancematrix over thesegment’s positiondata. If there
is little movement,the eigenvaluesof the matrix in every
directionaresmall,andconsequentlyits traceis small.

Theleast-squaresfit of a line is governedbyV
�Q� � �

V
� .X. � � ` %�� p@� � ' � .�. � 	 (19)

where� � is thedistanceof � � to theline, and � is theline’s
unit direction vector. Let � be a matrix containingthe
points �q� in the segmentsas its row vectors. Minimiz-
ing Equation19 with respectto � correspondsto maxi-
mizing � A � A � � . By Rayleigh’s principle,themaximal-
eigenvalueeigenvectorof � A � maximizesthis equation,
which is equivalentto themaximal-eigenvalueeigenvector
of the points’ covariancematrix. This eigenvectoris the
line’s directionvector. Theothertwo eigenvaluesindicate
thegoodnessof fit — thesmallerthey arewith respectto
thelargesteigenvalue,thebetterthefit.

Theleast-squaresfit of a planeis governedbyV
� � ���

V
� .�. �h��p���.�. � 	 (20)

where � � is the distanceof � � to the plane,and � is the
plane’s unit normalvector. If � is a matrix containingthe
points � � asits row vectors,theminimal-eigenvalueeigen-
vectorof � A � minimizesEquation20 with respectto � .
Hence,minimizing this equationis equivalent to finding
the minimal-eigenvalueeigenvectorof the points’ covari-
ancematrix. Theothertwo eigenvaluesindicatethegood-
nessof fit — thelargerthey arewith respectto thesmallest
eigenvalue,thebetterthefit.

Using least-squaresfitting is basedon the assumption
that the signalnoiseterm is capturedby a normaldistri-
bution. If this assumptionis not valid, the least-squares
estimatoris likely to yield poorresults,becauseof its sen-
sitivity to outliers.Ontheotherhand,in three-dimensional
space,the least-squaresestimatoris mucheasierto com-
putethanmorerobust estimators.It would be interesting
to compareits performanceon temporalsegmentationto
theperformanceof robustregressionestimators[13], such
astheleastmedianof squaresestimator[2, 11], or there-
peatedmedianestimator[16, 9].

After the initial fit, the algorithmpools the primitives
into a directedacyclic graph (DAG), schematicallyde-
pictedin Figure6. Note that the individual segmentsare
not mutually exclusive; for example,datacan fit both a
line anda plane.

If the algorithmfails to fit any geometricprimitivesto
somesegment, it insertsthe segmentinto the DAG as a

take place.

“wild card,” which is definedconservatively to matchany
kind of geometricprimitive. It thenattemptsto mergead-
jacentsegmentsif they are compatible,in an attemptto
eliminatespurioussegmentationboundaries.

We definedadjacentsegmentsto be compatiblefor a
mergeif they sharedthesametypeof geometricprimitive
in similar orientations,andif the mergedsegmentstill fit
thesametypeof geometricprimitiveasits constitutingseg-
ments.In addition,we considereda wild cardto becom-
patiblewith anothergeometricprimitive if this primitive
alsofit themergedsegment.

PlaneLine

Line

Hold

Figure6: Geometricprimitivespooledinto a DAG. Cir-
clesdenotesegmentationboundaries.Dottedarcsdenote
possiblenull transitions;they arenecessaryto compensate
for spurioussegments.Sometimesdatacanfit multiplege-
ometricprimitives; in this DAG the dataof the first two
segmentsfit both a hold followedby a line, anda simple
line.

TheDAGnow givesall possiblesegmentsequencesthat
area valid representationof thesignal. If a sequenceis to
bevalid, it mustbeobtainableby tracingapaththroughthe
DAGfromtheleftmostsegmentationboundaryto theright-
mostsegmentationboundary. In theexamplegivenin Fig-
ure6 thesequences“Hold, Line,Plane,” and“Line, Plane”
would both be valid sequences,but “Plane,Plane”would
not,becausethelatterdoesnot lie onany paththroughthat
DAG.

Thisdiscussionhassofarignoredthepossibilityof spu-
rioussegmentsarisingfromthevisionanalysis.Thatis, the
analysismight recognizea segmentthatshouldbepartof
another, but the merge processfails to merge it into an-
othersegment. Themain reasonfor theexistenceof spu-
rioussegmentsis undersampling.If a segmentconsistsof
very few samples,it is oftenimpossibleto extractreliable
informationfrom it. Our algorithmattemptsto solve this
problemby addingarcsto theDAG from eachsegmenta-
tion boundaryto the next (representedby the dottedarcs
in Figure6). Thus,a paththroughtheDAG canoptionally
skip thesespurioussegments.

6.2 Using the Motion Analysiswith HMMs
Eachsignin thevocabularyhasassociatedoneor more

templatesthat comprisethe sign’s geometricprimitives
with weightsof eachfeature’s relative importance.These
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primitivesarematchedagainstthosein theDAG. Assum-
ing thatthesegmentationprocessyieldscorrectresults,the
following must be true: If a sequenceof signsis repre-
sentedby theinputsignal,thesequenceof geometricprim-
itivescorrespondingto thesignsmustform a paththrough
theDAG. We call sucha sequenceof signsvalid with re-
spectto thecomputervisionDAG.

This observationsuggestsanapplicationof themotion
as a backupcheckfor the HMM framework. First rec-
ognizea candidatesentencefrom the input signalvia the
Viterbi algorithm.Thengenerateall possiblesequencesof
geometricprimitivescorrespondingto therecognizedsigns
and constructanotherDAG from them. Using dynamic
programming,matchthetwo DAGsagainsteachother. If
thetwo DAGssharea commonpath,acceptthecandidate
sentenceascorrect. Otherwise,reject the candidatesen-
tenceasincorrect.

Thejustificationfor this algorithmcomesfrom thefol-
lowing propertiesof the DAGs: If the two DAGssharea
commonpath,thereis a sequenceof geometricprimitives
that forms a paththroughthecomputervision DAG. Fur-
thermore,this sequenceof geometricprimitivesis oneof
the possiblesequencesgeneratedfrom the candidatesen-
tence. Thus, the candidatesentenceis valid with respect
to thecomputervision DAG. Conversely, if no suchcom-
monpathexists,noneof thesequencesof geometricprim-
itivesgeneratedfrom thecandidatesentenceformsa path
through the computervision DAG. Thus, the candidate
sentenceis not valid with respectto the computervision
DAG andshouldberejected.

6.3 Discussionof the Coupling
TheHMM recognitionalgorithmandthevisionmatch-

ing algorithmcomplementeachother. Theadvantagesof
theHMM recognitionmethodareautomaticsegmentation
during both training andrecognition,anda fully formal-
ized training procedure.The disadvantagesarepoor per-
formancein the presenceof insufficient training data,no
formal way to weight featuresdynamically, andpossible
violationsof thestochasticindependenceassumptions.

Theadvantagesof thevision matchingmethodarethe
possibilityof weightingtherelative importanceof features
dynamically, and independencefrom insufficient training
data. A significantdisadvantageis thatestimatingthege-
ometricpropertiesof the signsin the vocabulary requires
manuallabelingandanalysisof thedata.Furthermore,seg-
mentationmustbedoneexplicitly, which raisesthepossi-
bility of spurioussegments,asdescribedin Section6.1,or
thepossibilityof missingsegments.Coarticulationsome-
timesalsochangesthegeometricpropertiesof thesignal,
suchthatthetemplatesfor thecorrectsequenceof signno
longermatchthe actualsignal. Copingwith the changes
in thegeometricpropertiesis an importanttaskfor future

research.

7 Data Collection
For our experimentswe collecteddata,usingboth our

computervision system,and an AscensionTechnologies
Flock of Birds. Thereasonfor usingthe latterwasthat it
is fasterat this point thanthecomputervision system,and
hencemoresuitablefor prototyping.

The computervision systemyields rotation, � � , and
translation,��� , of eachsegmentof thearm,asdescribedin
Section3. Figure7 givesanexampleof thecomputervi-
siontrackingprocess.Theimagesshow thehighaccuracy
of thecomputervision system;in fact,it is comparableto
theaccuracy achievedby theFlockof Birdssystem.

TheFlockof Birds systemconsistsof a magnetandsix
sensorsthat detecttheir rotation, �� � , andtranslation, ��|� ,
with respectto the magnetat 25 framesper second.We
usedthe datafrom both systemsinterchangeablywith a
simplealignmentof coordinatesystems.The coordinate
systemwasright-handed,with theorigin at thebaseof the
signer’sspineandthe � axisfacingup.

Figure 7: Fitting the three-dimensionalmodels to the
signer’s arms. From top to bottom, the signs for “FA-
THER,” “I,” and“MAIL ” aredisplayed.Fromleft to right,
thefront, side,andtopviewsaredisplayed.

We used the 53-sign vocabulary listed in Table 1.
TheirpronunciationsfollowedtheASL dialectusedin the
Philadelphia,PA, area. The goalsin choosingthe vocab-
ulary wereto beableto expresssentencesthatcouldhave
occurredin a naturalconversation,andto make intensive
useof the signingspace,so asto demonstratethe advan-
tagesof three-dimensionaldataovertwo-dimensionaldata.
Wecollected486continuousASL sentences,eachbetween
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Category Signsused
Nouns America, Christian, Christmas, book,

brother, chair, college, family, fa-
ther, friend, interpreter, language,mail,
mother, name,paper, president,school,
sign,sister, teacher

Pronouns I, my, you,your, how, what,where,why
Verbs act,can,give,have,interpret,like,make,

read,sit, teach,try, visit, want,will, win
Adjectives deaf,good,happy, relieved,sad
Other if, from, for, hi

Table1: Thecomplete53signvocabulary

2 and12 signslong, with a total of 2345signs. Theonly
constraintsontheorderandoccurrenceof signswerethose
dictatedby thegrammarof ASL [19].

Furthermore,we collectedexamplesof eachsign for
isolatedrecognition. Becausepart of the datawerecor-
ruptedduringthecollectionprocess,wediscardedall signs
for whichwedid nothaveenoughintacttrainingexamples.
This left 656examplesovera rangeof 40signs.Eachsign
hadat least6 examplesavailablefor thetrainingset,and2
examplesavailablefor thetestset.

8 Experiments
We performedisolated,continuous,and vision-HMM

coupledASL recognitionexperiments.WeusedEntropic’s
Hidden Markov Model Toolkit (HTK) Version 2.02 for
trainingandtestingin all of ourexperiments.

8.1 IsolatedRecognitionExperiments
Thegoalof theisolatedrecognitionexperimentswasto

discover a setof featuresthat maximizesHMM recogni-
tion performance.We useddifferentfeaturesin ourexper-
iments,includingwrist positioncoordinatesof bothhands
(denotedby �O	&�|	]  ), wrist positionexpressedin polarco-
ordinatesin the � - � plane (denotedby ¡£¢?¤�	]¥�¢£¤ ), polar
coordinatesin the � -   plane(denotedby ¡?¢£¦�	&¥
¢?¦ ), wrist
position expressedin sphericalcoordinates(denotedby¡
	]¥(	K§ ), andwrist orientationangle(denotedby

b
), aswell

asderivativesof these(denotedby a dot). We alsocom-
binedseveralfeaturesin someexperiments.

We ran repeatedexperiments,morethan � 3 	 3�3�3 total,
with differentfeaturesandrandomlyselectedtrainingand
testsetson a per-experimentbasis. Threequartersof the
examplesfor eachsignwerein thetrainingsetandtherest
werein thetestset.Eachselectionyielded178testexam-
plesperexperiment.Sometypical resultsaregivenin Ta-
ble 2. In addition,we performedexperimentsto compare
the merits of using three-dimensionalcoordinatesversus
two-dimensionalcoordinatesby projectingthecoordinates
onplanes.Theresultsareshown in Table3.

Features ~ ¨ B W N��	]�G	K  98.42% 0.99% 100.0% 93.8% 463¡ ¢£¤ 	&¥ ¢£¤ ,  98.72% 0.79% 100.0% 95.5% 494¡?¢£¤�	&¡£¢?¦ ,¥
¢?¤�	]¥�¢£¦ ,��	]�G	K  98.78% 0.78% 100.0% 94.9% 882¡
	&¥(	L§ 96.48% 1.31% 100.0% 93.3% 210©�O	 ©�|	 ©  96.87% 1.21% 100.0% 93.3% 167��	]�G	K ª	
b

98.25% 0.92% 100.0% 95.5% 167©¡ ¢£¤ 	 ©¥ ¢£¤ ,©  96.28% 1.04% 98.9% 93.8% 120©¡«	 ©¥(	 ©§ 95.89% 1.29% 98.9% 92.1% 150

Table2: Resultsof isolatedsign recognitionwith three-
dimensionalfeatures. ~ , ¨ , B, W, and N correspondto
theaveragepercentageof correctlyrecognizedsigns,stan-
darddeviation,bestcase,worstcase,andnumberof exper-
iments,respectively. All experimentsusedatestsetof 178
signs.

Features ~ ¨ B W N¡ ¢£¤ 	&¥ ¢?¤ 98.06% 1.26% 100.0% 94.9% 118��	&� 97.75% 1.20% 100.0% 94.9% 118

Table 3: Resultsof isolatedsign recognitionwith two-
dimensionalfeatures.Themeaningof the columnsis the
sameasin Table2.

8.2 Analysisof IsolatedRecognition
The low error ratesof the bestfeaturesetsshow that

with a good selectionof features,the hand movements
alone,without handconfigurationinformation,carry suf-
ficient informationto discriminateamongmany different
signs. Polarcoordinatesslightly outperformedCartesian
coordinates.A combinationof both yielded the bestre-
sults,althoughthedifferenceis not significant. However,
thestandarddeviationof thecombinedfeaturesetwaslow-
est,indicatingthatacomplex featurevectoris morerobust
thana simplefeaturevector.

Positioncoordinatessignificantlyoutperformedveloc-
ities. The reasonfor the poor performanceof velocity
featuresis that the statisticalpropertiesof the velocities
changewith variationsin thesign’s duration. In contrast,
thestatisticalpropertiesof positioncoordinatesarelargely
unaffectedby thedurationof signs,becauseHMMs absorb
variationsin durationthroughtransitionslooping backto
the samestate. Yet, positioncoordinateshave the signif-
icantdisadvantagethat they arenot invariantwith respect
to location.Thelackof invariancewill causeproblemsfor
future applicationsthat attemptto capturecommonalities
betweenmovementsatdifferentlocationsin space.
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Three-dimensionalfeaturesperformedbetterthantwo-
dimensionalfeatures,althoughthedifferenceis not large.
The differencewould probablybecomemore significant
with a largervocabulary. The differencesin standardde-
viation, however, indicatethat three-dimensionalfeatures
aremorerobustthantwo-dimensionalfeatures.

It is an importantconsequenceof the experiments’re-
sults that the performanceof the featurevectorsdepends
on theactualexamplesin thetrainingset,all otherfactors
beingequal.Thus,only performinga largenumberof ex-
perimentsyieldsreliableestimatesof therelativemeritsof
differentfeatures.

8.3 ContinuousRecognitionExperiments
We split the486sentencesrandomlyinto a trainingset

with 389 examplesanda testsetwith 97 examples(con-
taining 456 signs). Eachsign in the vocabulary occurred
at least once in the test set. The training and test sets
werethesamethroughoutall experiments,andno portion
of the testsetwasusedfor training in any way. We ran
three-dimensionalexperimentswith andwithout context-
dependentHMMs, andtwo-dimensionalexperiments(by
projectingthedataonplanes;theresultsgivenarethebest
thatwe found).

In accordancewith the results from isolated experi-
mentsthat position coordinatesperform better than ve-
locities, and that a complex featurevector is more ro-
bust thana sparseone,we choseour featurevectorto be% ��	&�|	K ª	]¥ ¢£¤ 	&¥ ¢£¦ 	 ©��	 ©�|	 © (	

b
' for bothhands.Thatis, it con-

sistedof Cartesianandpolarpositioncoordinates,veloci-
ties,andwrist orientationangles.Thetaskgrammarwasa
simpleword loop, soevery signwasequallylikely at any
time in theHMM network.

Table4 shows the experimentalresults. We useword
accuracy asourevaluationcriterion.It is computedby sub-
tractingthenumberof insertionerrorsfrom thenumberof
correctlyspottedsigns.Thenumberof wordsin theresult
for two-dimensionaldatais lower thanin theotherresults,
becausefor onesentencetheViterbi beam-searchingopti-
mizationprunedall pathsthroughtheHMM network (see
alsoSection4.2).

8.4 Analysisof ContinuousRecognition
The resultsare clearly in favor of using three-dimen-

sionaldataover two-dimensionalfor continuousrecogni-
tion. The6.3percentdifferenceis large,although,accord-
ing toourexperienceswith isolatedrecognition,oneexper-
imentis notenoughto estimatetherealdifferencereliably.

Context-dependentmodelsoutperformedcontext-inde-
pendentmodels, but the increasein performancewas
small, probably to a large extent becauseof insufficient
trainingdata— context-dependentmodelingrequireshuge
amountsof data to becomeeffective. Also, cross-sign
context-dependentmodelingfor ASL is implausiblefrom

Typeof Word
experiment accuracy Details
3D context 87.71% H=416,D=8, S=32
independent I=16,N=456
3D context 89.91% H=424,D=6, S=26
dependent I=14,N=456
2D context 83.63% H=394,D=14,S=44
dependent I=16,N=452

Table 4: Resultsof continuousrecognitionexperiments.
H denotesthe numberof correctsigns,D the numberof
deletionerrors,S the numberof substitutionerrors,I the
numberof insertionerrors,andN thetotalnumberof signs
in thetestset.

a phonologicalpoint of view (seeSection5.2.1). Theal-
ternative is modelingmovementepenthesisdirectly, andit
appearsto performbetter[20].

More thanhalf of thesubstitutionerrorsin eachexperi-
mentwereconfusionsbetween“I” and“MY,” and“Y OU”
and“Y OUR,” whichdiffer only in handconfiguration.We
expectthataddingfeaturesdescribingthehandconfigura-
tion will improverecognitionperformancesignificantly.

Repeatingthecontext-dependentexperimentwith five-
bestrecognitionshowedthattheabsenceof astronggram-
marfor constrainingtheHMM network degradesrecogni-
tion performancesignificantly. In many cases,thecorrect
sentencewastheonlygrammaticalsentenceamongthefive
bestcandidates.In othercases,all fivecandidateswereun-
grammatical.

Unfortunately, using a strong grammarfor a test set
asdiverseasours is not practical,becausethe sizeof an
HMM network grows exponentiallywith the numberof
rulespresentin thegrammar. Statisticallanguagemodels,
suchasbigrammodels,haveprovedto beaneffectivesolu-
tion to thisproblemin speechrecognition.Weshow in [20]
thatbigramlanguagemodelsarepromisingfor ASL recog-
nition aswell. However, they requirea largecorpusof la-
beledreal-world datato becometruly effective. Presently,
nosuchcorpusexistsfor ASL.

8.5 Coupling Experiments
To investigatethe effectsof couplingthe three-dimen-

sionalmotionanalysiswith theHMM framework, weper-
formedtwo experiments.In thefirst experiment,we ana-
lyzedall sentencesin thetestsetwith ourmotionanalysis,
soasto provideanupperboundon its performance.If the
motion analysishadworked perfectly, it shouldhave ac-
ceptedall of these97 testsentences.In reality, however, it
rejected10outof these97sentences.

A closerlook at the10 rejectedsentencesrevealedthat
five of thesewerenot recognizedcorrectlyby thecontext-
dependentHMMs either. Thus,it is likely that thesefive
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sentenceswerenotsignedpreciselyenoughduringthedata
collectionprocess.Theotherfive rejectedsentencesindi-
catethatthemotionanalysisstill needsimprovement.

In thesecondexperiment,weranthecouplingalgorithm
on the actual recognitionhypothesesfrom the context-
dependentHMMs in theexperimentsin Section8.3. This
time,thealgorithmalsoeliminated10sentencesoutof 97.
Five of thesewere correctly rejected;that is, the HMM
framework hadprovidedincorrectresultsfor them. Thus,
at thecurrentmoment,couplingHMMs with motionanal-
ysisbreaksevenwith usingtheHMM framework by itself.
Theword accuracy achievedby thecouplingwas90.10%,
which is slightly better than the 89.91%word accuracy
achievedby thecontext-dependentmodelsalone.

As we have usedonly a small part of the full power
of computervision motion analysisso far, we seethese
resultsasevidencethatcouplingwill eventuallybeableto
outperformeithermethodindependently.

9 Summary
Wehavedevelopeda framework for recognizingAmer-

icanSignLanguagefrom three-dimensionaldataobtained
with computervision techniques.We showedhow to col-
lect three-dimensionaldatafrom computervision anduse
them as input to Hidden Markov Models. We also de-
terminedthat three-dimensionalfeaturesaresuperiorover
two-dimensionalones.

By using context-dependentmodeling, we improved
recognitionperformance. Throughcoupling vision pro-
cesseswith HiddenMarkov Models,we took a first step
towardovercomingthe limitationsof eithermethodby it-
self.

10 Future work
The collection of a standardizedcorpusof real-world

ASL conversationsandstory telling shouldbea high pri-
ority for future work. The currentlack of sucha corpus
makesit impossibleto compareresultsfrom differentre-
searchers.Furthermore,it makesthe developmentof sta-
tistical languagemodelsfor ASL difficult. Suchlanguage
modelsarenecessaryfor large-scaleapplications.

Testing the algorithms describedin this paper and
in [20, 21] with alargervocabularyis alsoimportant.Only
thenit will bepossibleto judgehow well thesealgorithms
scale.

On the linguistic sideof ASL recognition,futurework
shouldincorporatefacialexpressionsandotherphonolog-
ical processesin ASL into the recognitionframework. It
alsoneedsto addresshow to make useof handconfigura-
tion information;usingthis informationeffectively seems
to benontrivial. Furthermore,futurework hasto find ways
to use statistical languagemodels, so as to counterbal-
ancetheimpracticabilityof usingstronglyconstrainedtask

grammars.
On thecomputervisionsideof ASL recognition,future

work shouldelaborateon thecouplingof computervision
andHMMs andmake the computervision analysismore
robust. This work shouldconsistof recognizingmoredif-
ferentgeometricproperties,fine-tuningthesigntemplates,
andfine-tuningthe dynamicweightingof featuresbased
onthepropertiesof eachsignthatis matchedto thesignal.
It alsoneedsto addresscoarticulationeffects,which it has
ignoredsofar.

It is alsonecessaryto to developananthropometrically
correctmodelof thehumanhand,sothatthecomputervi-
sion trackingprocesscanmake handconfigurationinfor-
mationavailableto therecognitionframework.
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