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Abstract

We describe a computer system that allows real-time
tracking of facial expressions. Sparse, fast visual mea-
surements using 2-D templates are used to observe the
face of a subject. Rather than track features on the face,
the distributed response of a set of templates is used to
characterize a given facial region. These measurements
are coupled via a linear interpolation method to states in a
physically-based model of facial animation, which includes
both skin and muscle dynamics. By integrating real-time
2D image-processing with 3-D models, we obtain a system
that is able to quickly track and interpret complex facial
motions.

1 Introduction

The communicative power of the face makes the model-
ing of facial expressions and the tracking of the expressive
articulations of a face an important problem in computer
vision and computer graphics. Consequently, several re-
searchers have begun to develop methods for tracking of
facial expression [10, 11, 16, 18].

These efforts, while exciting and important, have
had limitations such as requiring makeup, and hand-
initialization of the facial model. In this paper we improve
on these previous systems by removing the need for surface
markings and hand-initialization. We describe a tool for for
real-time facial tracking, using spatio-temporal normalized
correlation measurements [4] from video which are inter-
preted using a physically-based facial modeling system [7].

The principle difficulty in real-time tracking of fa-
cial articulations is the sheer complexity of human facial
movement. To represent facial motion using a low-order
model, many systems define independent geometric (i.e.,
FACS [6]) and physical [5, 7, 17] parameters for model-
ing facial motion. The combinations of these parameters
(mostly called “Action Units”) results in a large set of pos-
sible facial expressions. The level of detail of facial motion
encompassed by each parameter provides a broad base for
representing complex facial articulations. Tracking of fa-
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Figure 1: (a) Face image with a FEM mesh placed accu-
rately over it and (b) Face image with muscles (black lines),
and nodes (dots).

cial expressions can be achieved by categorizing a set of
such predetermined facial expressions (e.g., lip smiling,
pursing, stretching, and eye, eyelid, and eyebrow move-
ment) rather than determining the motion of each facial
point independently. In other words, in articulation of facial
expressions, there are often only few independent param-
eters each of which may have a large amount of temporal
and spatial variation.

With this low-order model, we can use direct visual
measurements to establish facial parameters in real time.
In our system the visual measurements are normalized cor-
relation between the face and a small set of pre-trained 2-D
templates. This type of measurement has the advantage
of both being very robust and fast; there is smooth degra-
dation as input faces differ from the templates. We use
commercial image processing hardware so that the image
measurement process can occur at near-frame rate (pro-
cessing 5-10 frames a second). These measurements are
then coupled with our physically-based model’s parameters
via an interpolation process, resulting in a real-time facial
tracking system.



1.1 Previous Work

There have been several attempts to track facial expres-
sions over time. The VActor system [9], for instance, uses
physical probes or infrared markers to measure movement
of the face. Another method, which has been used to pro-
duce computer animations, is that of Williams et al. [18].
In this approach marks are placed on peoples faces, to track
facial motion with cameras. Terzopoulos and Waters [16]
developed a method to trace linear facial features, estimate
corresponding parametersof a three dimensional wireframe
face model, and reproduce facial expression. Requirement
of facial markings for successful tracking is a significant
limitation of these systems. Mase and Pentland [11, 12]
introduced a method to track facial action units using op-
tical flow. Haibo Li, Pertti Roivainen and Robert Forch-
heimer [10] propose a feedback control loop between vision
measurements and a facial model for improved tracking.
Essa and Pentland [7] describe an approach which com-
bines optical flow with a physically-based optimal obser-
vation, estimation and control formulation to obtain better
response and accuracy.

In this paper we present a method which builds upon this
prior work, utilizing the power of the 3-D facial models,
but turning to a fast, real-time method for facial state esti-
mation, rather than using explicit facial landmarks (which
require makeup) or dense optical flow (which is difficult to
compute in real time).

2 Nonrigid Facial Modeling

To interpret and interpolate facial state estimates, we use
a 3-D model of facial dynamics coupled with model of fa-
cial action units. This model captures how expressions are
generated by muscle actuations and the resulting skin and
tissue deformations. Hence, a priori information about fa-
cial structure is an important parameter for our framework.
We need a model capable of controlled nonrigid deforma-
tions of various facial regions, in a fashion similar to how
humans generate facial expressions by muscle actuations
attached to facial tissue. For this facial model, we use a
3-D finite element mesh as shown in Figure 1(a). This is an
elaboration of the mesh developed by Platt and Badler [14].
We extend this into a topologically invariant physics-based
model by adding anatomically-based muscles to it (Fig-
ure 1(b)).

A physically-based dynamic model of a face, capable
of articulated nonrigid deformations, requires use of Finite
Element methods. These methods give our facial model
an anatomically-based facial structure by modeling facial
tissue/skin, and muscleactuators, with a geometric model to
describe force-based deformations and control parameters.
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Figure 2: Using FEM on the facial mesh to determine the
continuum mechanics parameters of the skin.

For dynamic modeling we need to integrate the system
dynamics with respect to the following equation of rigid
and nonrigid dynamics.��������	��
���������� � 1 �
where ��������������� "! is the global deformation vector,
which describes the deformation in the facial structure over
time. Using a polygonal mesh of a face as the finite element
mesh with # nodes and $ elements, then

�
is a � 3 #&% 3 #'�

mass matrix, which accounts for the inertial properties of
the face, � is a � 3 #�% 3 #'� stiffness matrix, which accounts
for the internal energy due to its elastic properties, and �
is a � 3 #(% 3 #'� damping matrix. Vector � , is a � 3 #(% 1 �
applied load vector, characterizing the force actuations of
the muscles (see [8, 1] for additional details).

By defining each of the triangles on the polygonal mesh
of a face as an isoparametric triangular shell element,
(shown in Figure 2), we can calculate the mass, stiffness
and damping matrices for each element (using ) �*�+ )-, ),
given the material properties of skin. Then by the assem-
blage process of the direct stiffness method [1, 8] on $
elements, the required matrices for the whole mesh can be
determined. As the integration to compute the matrices
is done prior to the assemblage of matrices, each element
may have different thickness + , although large differences
in thickness of neighboring elements are not suitable for
convergence [1]. Models for muscles are attached to this
physical model of the facial tissue, based on the work of
Pieper [13] and Waters [17].

2.1 Visually extracted Facial Expressions

The method of Essa and Pentland [7] provides us with
a detailed physical model and also a way of observing and
extracting the “action units” of a face using video sequences
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(a) Surprise Image (b) Smile Image

(c) Surprise Model (d) Smiling Model

Figure 3: Determining of expressions from video se-
quences. (a) and (b) show expressions of smile and sur-
prise, (c) and (d) show a 3D model with surprise and smile
expressions. This technique of extracting motor controls
for facial expressions is described in [7].

as input. The visual observation (sensing) is achieved by
using an optimal estimation optical flow method coupled
with a geometric and a physical (muscle) model describ-
ing the facial structure. This modeling results in a time-
varying spatial patterning of facial shape and a parametric
representation of the independent muscle action groups,
responsible for the observed facial motions. We will use
these physically-based muscle control units as our prede-
fined facial actions in the next section. Figure 3 shows
smile and surprise expressions, and the extracted smile and
surprise expression on a 3D model. For further details on
this method see [7].

3 Tracking of Facial Expressions

Because face models have a large number of degrees of
freedom, facial modeling requires dense, detailed geomet-
ric measurements in both space and time. Currently such
dense measurement is both computationally expensive and
noisy; consequently it is more suitable to undertake off-
line analysis of discrete facial movements rather than real-

time analysis of extended facial action. Tracking of facial
expressions, in contrast, typically involves temporally se-
quencing between a fixed set of predefined facial actions.
For instance, an extended sequence of facial expressions
might consist of the lip movements associated with speech
plus a few eye motions plus eyeblinks and eyebrow raises.

The number of degrees of freedom required for tracking
facial articulations is limited, especially as most of the facial
expressions are linear combinations of simpler motions.
One can think of tracking being limited to a fixed, relatively
small set of “control knobs,” one for each type of motion,
and then tracking the change in facial expression by moving
these control knobs appropriately. The muscle parameters
associated with these control knobs are determined by off-
line modeling of each individual type of facial action as
described in previous section.

The major question, of course, is when and how much
to move each control knob (face muscle). In our system
the setting of each muscle control parameter is determined
using sparse, real-time geometric measurements from video
sequences.

One way to obtain these measurements would be to
locate landmarks on the face, and then adjust the control
parameters appropriately. The difficulty with this approach
is first that landmarks are difficult to locate reliably and
precisely, and second that there are no good landmarks on
the cheek, forehead, or eyeball.

3.1 Image Measurement

An alternative method is to teach the system how the
person’s face looks for a variety of control parameter set-
tings, and then measure how similar the person’s current
appearance is to each of these known settings. From these
similarity measurements we can then interpolate the cor-
rect control parameter settings. Darrell and Pentland have
successfully used this general approach to describe and rec-
ognize hand gestures [4], and in our experience this method
of determining descriptive parameters is much more robust
and efficient than measuring landmark positions.

By constraining the space of expressions to be recog-
nized, we can match and recognize predefined expressions
rather than having to derive new force controls for each
new frame of video input. This can dramatically improve
the speed of the system. Our method, therefore, begins by
acquiring detailed muscle actuation and timing information
for a set of expressions, using the optical flow method de-
scribed in [7]. We then acquire training images of each
expression for which we have obtained detailed force and
timing information. This training process allows us to
establish the correspondence between motor controls and
image appearance.
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Figure 4: 2-D Full-Face templates of neutral, smile and
surprise expressions used for tracking facial expressions.
See Figure 7 and Figure 8(a).

Given a new image, we compute the peak normalized
correlation score between each of the training views and the
new data, thus producing . �/+ � , a vector-valued similarity
measurements at each instant. Note that the matching pro-
cess can be made more efficient by limiting the search area
to the neighborhood of where we last saw the eye, mouth,
etc. Normally there is no exact match between the im-
age and the existing expressions, so an interpolated motor
observation 0 �1+ � must be generated based on a weighted
combination of expressions (our training examples).

In our system, we interpolate from vision scores to mo-
tor observations, using the Radial Basis Function (RBF)
method [15] with linear basis functions. The details of
using this interpolation method for real-time expression
analysis and synthesis appear in [3].

The RBF training process associates the set of view
scores with the facial state, e.g., the motor control param-
eters for the corresponding expression. If we train views
using the entire face as a template, the appearance of the
entire face helps determine the facial state. This provides
for increased accuracy, but the generated control parame-
ters are restricted to lie in the convex hull of the examples.
View templates that correspond to parts of the face are
often more robust and accurate than full-face templates, es-
pecially when several expressions are trained. This allows
local changes in the face, if any, to have local effect in the
interpolation.

Figure 5 shows the eye, brow, and mouth templates
used in some of our tracking experiments, while Figure 4
shows full-face templates of neutral, smile and surprise ex-
pressions. (The normalized correlation calculation is car-
ried out in real-time using commercial image processing
hardware from Cognex, Inc.) The normalized correlation
matching process allows the user to move freely side-to-
side and up-and-down, and minimizes the effects of illumi-
nation changes. The matching is also insensitive to small
changes in viewing distance ( 2 15%) and small head rota-
tions ( 2 15 3 ).

Left Brow Right Brow

Left Eye

Right Eye

Mouth

Figure 5: 2-D Eye-brows [Raised], Left and Right Eyes
[Open, Closed, Looking Left, and Right], and Mouth tem-
plates [Open, Closed and Smiling] used for tracking facial
expressions. See Figure 8(b).

4 Dynamic Estimation

Estimating motor controls and then driving a physical
system with the inputs from such a noisy source is prone
to errors, and can result in divergence or a chaotic physi-
cal response. This is why an estimation framework needs
to be incorporated to obtain stable and well-proportioned
results. Similar considerations motivated the framework
used in [10] or [7]. Figure 6 shows the whole framework
of estimation and control of our facial expression tracking
system.

This framework uses a continuous time Kalman filter
(CTKF) which allows us to estimate the uncorrupted state
vector, and produces an optimal least-squares estimate un-
der quite general conditions [2]. The CTKF for the above
system is established by the following formulation:�45 76 45 �98;: 0�<�= 45�> � � 2 �
where

45
is the linear least squares estimate of the state5

, which are the motor controls of facial motion. 6 is
a state evolution matrix and contains elements of � ,

�
and � from Equation (1) to relate the changes in facial
mesh with muscle actuation. 0 is the observed motor state
(  5 here) for a set of correlation scores . . Using the
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Figure 6: Block diagram of the proposed control-theoretic approach. Showing the estimation and correction loop (a), and
the dynamics loop (b).

Riccati equation [2] to obtain the optimal error covariance
matrix IKJ with ILJ as the error covariance matrix for

45
and INM the error covariance matrix for measurements 0 ,
the Kalman Gain matrix 8 is simply: 8O IPJQ= ! ILMPR 1.

The Kalman filter, Equation (2), mimics the noise free
dynamics and corrects its estimate with a term proportional
to the difference � 0S<
= 45 � . This correction is between the
observation and our best prediction based on previous data.
Figure 6 shows the estimation loop (the bottom loop (a))
which is used to correct the dynamics based on the error
predictions.

5 Experiments

Figure 7 illustrates an example of real-time facial ex-
pression tracking using this system. Across the top, labeled
(a), are five video images of a user making an expression.
Each frame of video is then matched against all of the tem-
plates shown in Figure 4, and peak normalized correlation
scores are measured. These scores are then converted to
motor observations ( 0 �/+ � ) and fed into the muscle control
loop, to produce the muscle control parameters (state es-
timates;

45 �/+ � ). Five images from the resulting sequence
of mimicking facial expressions in 3-D are shown in (b).
This example ran in real time, with 5 frames processed per
second.

Figure 8 (c), (d) and (e) show some of the live shots of
the system in use. Figure 8 (a) and (b) show the video feed
with the regions of interest on the face for both full-face

and local region templates. We have tested this system
for video sequences of upto several minutes without no-
ticeable failure in tracking. We have also tested the system
successfully for tracking lip motions for speech. The major
difficulty encountered is that increasing the number of tem-
plates slows down the processing and creates a lag of about
half a second to a second, which is unacceptable for some
applications. We are working on reducing the lag time by
incorporating a more sophisticated prediction algorithm.

6 Conclusions

The automatic analysis, synthesis and tracking of facial
expressions is becoming increasingly important in human-
machine interaction. Consequently, we have developed
a mathematical formulation and implemented a computer
system capable of real-time tracking of facial expressions
through extended video sequences.

This system analyzes facial expressions by observing ex-
pressive articulations of a subject’s face in video sequences.
The primary visual measurements are a set of peak normal-
ized correlation scores using a set of previously-trained 2-D
templates. These measurements are then coupled to a phys-
ical model describing the skin and muscle structure, and the
muscle control variables estimated.

Our experiments to date have demonstrated that we can
reliably track facial expressions, including independent
tracking of eye and eyebrow movement, and the mouth
movements involved in speech. We are currently extending
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Figure 7: (a) Face images used as input and the images of the model from the (b) resulting tracking of facial expressions.

our system so that it can handle large head rotations, and
working to remove lags in estimation/generation by use of
sophisticated prediction methods.
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Figure 8: (a) Face with single template, (b) Face with multiple templates. (c) Complete system tracking eyes, mouth,
eyebrows., (d) tracking a smile and (e) a surprise expression.
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