
C. Stephanidis and M. Pieper (Eds.): ERCIM UI4ALL Ws 2006, LNCS 4397, pp. 28 – 42, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Customizable Camera-Based Human Computer
Interaction System Allowing People with Disabilities

Autonomous Hands-Free Navigation of Multiple
Computing Tasks

Wajeeha Akram, Laura Tiberii, and Margrit Betke

Department of Computer Science, Boston University
111 Cummington Street, Boston, MA 02215, USA

{wajeeha, ltiberii, betke}@cs.bu.edu

Abstract. Many people suffer from conditions that lead to deterioration of
motor control making access to the computer using traditional input devices
difficult. In particular, they may loose control of hand movement to the extent
that the standard mouse cannot be used as a pointing device. Most current
alternatives use markers or specialized hardware, for example, wearable
devices, to track and translate a user’s movement to pointer movement. These
approaches may be perceived as intrusive. Camera-based assistive systems that
use visual tracking of features on the user’s body often require cumbersome
manual adjustment. This paper introduces an enhanced computer vision based
strategy where features, for example on a user’s face, viewed through an
inexpensive USB camera, are tracked and translated to pointer movement. The
main contributions of this paper are (1) enhancing a video based interface with
a mechanism for mapping feature movement to pointer movement that allows
users to navigate to all areas of the screen even with very limited physical
movement and (2) providing a customizable, hierarchical navigation framework
for human computer interaction (HCI). This framework provides effective use
of the vision-based interface system for accessing multiple applications in an
autonomous setting. Experiments with several users show the effectiveness of
the mapping strategy and its usage within the application framework as a
practical tool for desktop users with disabilities.

Keywords: Computer-vision, assistive technology, alternative input devices,
video-based human-computer interfaces, autonomous navigation.

1 Introduction

Several conditions may cause computer users to be unable to use the standard mouse.
Paralysis from brain injury, stroke, multiple sclerosis, or Amyotrophic Lateral
Sclerosis (ALS, also called Lou Gehrig's disease) may cause the user to have very
little motor control except for limited head or eye movement. Loss of fine motor
control with age and muscle injuries may also make use of the standard mouse
difficult.

 A Customizable Camera-Based Human Computer Interaction System 29

According to the National Multiple Sclerosis Society [1], approximately 400,000
Americans and 2 million individuals worldwide suffer from Multiple Sclerosis, and
about 200 people are diagnosed every week in the US. As such conditions restrict
physical mobility and often speaking capability, loss of the ability to communicate is
one of the most limiting problems for these individuals. Being able to use computers
for common tasks such as sending email and browsing the web opens a huge avenue
of possibility to improve quality of life.

A study by Forrester Research for Microsoft Corporation [2] presents statistics on
the need and significance of accessible technology. It is estimated that about 17%
(22.6 million) of computers users who suffer from severe impairments are very likely
to benefit from accessible technology. It is also postulated that the need for
accessibility devices may grow due to the increase in computer users above the age of
65 and the increase in the average age of computer users.

There has been extensive research in the domain of mouse alternatives as
accessibility aids for users who have very limited movement. Broadly, these efforts
can be divided into two main categories: systems that rely on specialized mechanical
or electronic hardware devices and camera-based systems. Mouse-actuated joysticks,
mechanical switches, breath-puffing straws, and electrodes placed on the user’s face
that measure movement of features are some of the strategies in the first category [3].
Many camera based systems track physical markers, for example, infrared markers
placed on the user’s body [4, 5] or markers on glasses. Systems that capture gaze
information often rely on infrared illumination or special headgear-mounted cameras;
a survey of these methods is provided by Magee et al. [6]. Most of these systems are
expensive, require special devices, and may be intrusive. In addition, significant
levels of technical expertise may be required to install and configure these systems.
Betke et al. [7] presented a vision based solution called the camera mouse which
tracks features on a user’s body in a non-intrusive manner.

There has also been substantial work in developing applications for people with
disabilities [8, 9, 10]. Some existing applications include on-screen keyboards [11],
alternate text entry mechanisms [12, 13], games and learning aids for children [7], and
tools that interact with a web browser to make the internet more accessible for camera
mouse users [14, 15].

In this paper, we present a system that tracks features on the user’s body, usually
the face, and translates feature movement to pointer movement on the screen. Our
work builds on the camera mouse presented by Betke et al. [7], which proposed a
vision based feature tracking approach for pointer movement. Here, we present an
improved mapping strategy that allows translation of minimal feature movement to
pointer movement across the entire range of the screen. A framework for using the
camera mouse to carry out common tasks, with minimal intervention from a
caregiver, is also proposed. Experiments were conducted to determine how well the
users were able to access and perform each of the computing tasks in the HCI
framework. Test results have shown that the system successfully provides access to
common tasks such as opening games, web sites, text entry, and playing music.

The system is cost effective and requires little technical expertise of the user and
caregiver. Use or extension of the proposed system does not incur significant cost,
because the system was developed with open source technologies such as OpenCV
[16] and Java. The only additional hardware required, besides a personal computer, is

30 W. Akram, L. Tiberii, and M. Betke

a low-cost USB camera. We refer to the interface system as the camera mouse
throughout this paper. However, as an alternative to the camera mouse [7], any
interface system, video-based or even the standard computer mouse that provides a
pointing and selection mechanism can be used with our HCI framework.

2 System Overview

The goal of our work is to provide a customizable camera-based human computer
interaction system allowing people with disabilities autonomous hands free navigation
of multiple computing tasks. We focus on two main aspects of the system; designing a
robust feature tracking strategy and an effective interaction approach that operates
optimally with a camera mouse. The following sections give an overview of the
components of the system.

2.1 Tracking Features

This section describes our method to track a feature or set of features on the user’s
body, usually face, and convert the feature movement to pointer movement. The study
by Fagiani et al. [18] gives an experimental comparison of various tracking
mechanisms for use with the camera mouse and recommends either an optical flow or
correlation based tracker. We found the optical flow based algorithm to be both robust
and computationally efficient. Our system operates in real time on a computer with a
1.6 GHz processor, taking up on average less than 5% of processor time. This
demonstrates the use of the camera mouse as a background process that does not
affect the performance of other applications running on the system. Our camera
mouse implementation executes as a standalone application that moves the standard
windows pointer.

A USB Camera is connected to the computer and set up to capture a frontal view of
the user. On starting the application, a window with the video of the user is displayed.
The camera location should be adjusted so that the feature to be tracked is in clear
view. Typically, the user sits within 1 m of the camera. However, if the user is very
close to the camera, even a small physical movement can result in the feature falling
out of the camera’s field of view. Therefore, the distance from the camera should be
carefully adjusted such that the feature remains within the camera’s field of view
throughout the session.

The caregiver selects a feature on the user’s body by clicking at the desired
location of the input video stream. We designed the system to automatically refine the
feature location by finding an image patch with the highest brightness gradient in the
11-by-11-pixel neighborhood of the manually selected feature [16]. The feature is
then tracked in subsequent frames using the Lucas-Kanade optical flow computation
[17]. We used a pyramid-based implementation of the Lucas-Kanade tracker provided
in Intel's OpenCV library [16].

2.2 Feature Movement to Pointer Movement

Once the feature movement in pixels is known, an effective mapping from pixels of
movement in the video frames to pointer movement on the screen is required.

 A Customizable Camera-Based Human Computer Interaction System 31

Pointing devices such as the standard mouse and mouse pad do not have an absolute
mapping of device movement to pointer movement. The pointer is moved in a
differential manner, governed by speed and acceleration parameters set by the user.
Similarly, the camera mouse cannot be used with any degree of flexibility if this
mapping is absolute: an absolute mapping would mean that the feature to be tracked
would have to move the same distance (in pixels, as viewed by the camera) as the
pointer is to move on the screen. Most users do not have such a large range of
movement and even if such movement were possible, it does not complement the
natural movement of a computer user as they view the computer screen. Therefore the
camera mouse operates the pointer in a relative manner.

A relative scheme of pointer movement must consider how to adjust for the
difference in scale of feature movement and pointer movement. The movement of
the detected feature must be scaled in some reasonable manner before being added to
the current pointer position. In previous systems, the scale factor is a user-
customizable setting. However, adjusting the scale factor manually is a cumbersome
trial and error process and requires intervention by a caregiver for manually entering
scale factors. The scale factor is pertinent to the usability of the system, because if the
scale factor is too low, all areas of the screen may not be reachable by the pointer.
Alternatively, if it is too high the pointer may become too sensitive and thus move too
quickly.

It can be observed that the scale factor is a function of the user’s distance from the
screen, as well as the range of possible movement of the feature in both horizontal
and vertical directions. The user’s range of movement may be seriously limited by
motor dysfunction. The range of movement is also typically asymmetric in the
vertical and horizontal directions due to the fact that vertical rotation of the head
when viewing a standard computer screen is smaller than horizontal rotation.

From a usability point of view, the scaling factor should not be such that the
system requires the user to move in a way that interferes negatively with the user’s
visual focus on the screen. In other words, during facial feature tracking with the
camera mouse, feature movement and visual focus cannot be decoupled. Feature
movement required for effective use of the system should not be such that it causes a
strain on the visual focusing mechanism of the user.

Designing a mechanism to allow optimal setting of the scale factor by the user is
therefore important towards the end of improving system performance and usability.
A calibration phase was introduced to determine the optimal scale factor for
individual users. Calibration is performed in advance of a usage session. After a
feature is selected to be tracked, the users are lead through a calibration phase, in
which they are directed to rotate their head towards distinct markers shown on the
video stream, while retaining a comfortable view of the computer screen. The users
successively move towards markers on the top, bottom, left and right boundaries of
the screen (Figure 1). It is important to direct users to move within a comfortable
range of motion, which permits clear and non stressful visual focus on the screen.
Pointer movement is calibrated to the range of movement demonstrated by the user,
using a linear mapping of demonstrated movement range to screen dimensions.

32 W. Akram, L. Tiberii, and M. Betke

Fig. 1. System Calibration: The small colored disk shown in the video indicates the tip of the
eyebrow has been selected as the feature to track. The larger disk on the boundary of the video
display window indicates the direction the user should move her head.

After performing the calibration phase once for a particular user and a specific
feature, in situations where the distance from the camera remains approximately the
same across sessions, for example, for a user in a wheelchair, the scale factors found
by the calibration phase may be saved in a user configuration file that can be loaded
for subsequent use.

2.3 Application Framework

Applications often have to be tailored to work with the camera mouse, since the
effective movement resolution of the camera mouse is not enough to navigate
windows menus or operate standard windows applications. Several on-screen
keyboards, educational programs, and game applications are available for use with the
camera mouse. However, the user must rely on a caregiver to start the custom
application before they can start using it. If the user wants to start a new application
for another task, there is no means to navigate available programs autonomously
without the caregiver’s help. Our motivation in proposing a hierarchical framework
for application navigation is to provide the camera mouse user with an autonomous
experience with their computer, allowing them to perform common tasks of interest
such as text entry, internet browsing, and entertainment applications in a manner that

 A Customizable Camera-Based Human Computer Interaction System 33

is user friendly, requires little technical expertise, and is configurable to meet the
needs of individual users.

Several considerations must be kept in mind when designing an effective interface
[19].

• The user should be able to clearly identify the target being selected.
• Distinguishing information should be placed at the beginning of headings.
• Clear and simple language should be used.
• The design should be consistent.
• There should be clear navigation.

Our interface opens with a main menu that is a list of common tasks (Figure 2).
The main menu items configured in the test system are: Play this Song launches the
default media player and plays the chosen song, Text Entry launches an on-screen
keyboard, Common Sayings speaks saved text using a speech synthesis program, View
a webpage launches the default browser and displays the chosen website, and Games
launches games, such as Eagle Aliens [6], which have been developed to require only
pointer movement.

Fig. 2. Main Menu of Interface

The list of common tasks desired in the application varies depending on the
interests of each user. The system is designed so that menu items can be added,
removed, or modified. This allows the list to be customized for each individual user.

The user will choose the common task they desire in one of two modes, select
mode or scan mode. In select mode, the user moves the pointer to an item. When the
pointer reaches an item it is highlighted in blue, clearly identifying the target to be
selected. In scan mode, the application scans through the list of items highlighting
each item for a specified time interval. The time interval can be changed to the length
of time that is reasonable for the current user.

To facilitate autonomous use, a dwell feature is available to simulate a selection
command. The dwell feature acts as a timer. When an item is highlighted the timer is
started. If that item stays highlighted for a specified time interval, a selection
command is executed. The gray areas of the interface, shown in Figure 2, represent

34 W. Akram, L. Tiberii, and M. Betke

rest areas where the pointer can dwell without causing a selection command to occur.
Gray was used to stress the inactive nature of such areas. The dwell feature can be
enabled or disabled, as alternate methods may be available to simulate pointer clicks,
such as blink detection [22], raised eyebrow detection [23], or use of a mechanical
switch.

The font size of the menu items was also a consideration for users who are unable
to sit close to the system due to wheelchairs. The system is designed so that the font
size can be increased or decreased as desired. Items on the main menu are either links
that directly launch programs or links that open a submenu. Every submenu has the
same font type and size. The same color is used to highlight the menu items. This
consistency helps maintain usability. A ‘Return to Main Menu’ option is always the
last item in the submenu list. This feature supports clear navigation among the various
menus. When a submenu item is selected the program associated with that menu item
is launched. The ‘Return to Main Menu’ option is displayed on the screen after the
program is launched so that the user can return to the system and navigate to other
programs if desired. A strategy for navigation among opened programs is proposed by
our framework, but has not been implemented yet.

An example of navigating through the system and selecting a song to play is shown
in Figure 3.

Fig. 3. Navigation from the main menu through the ‘Play this Song’ submenu to launch a
musicplayer that automatically begins playing the selected song

3 Experiments and Results

The system was tested to determine the performance of the tracking mechanism and
to understand its limitations, as well as to determine the usability of the application
framework proposed. Results from the first test provided input for the design of
interface elements for the application framework.

A test group consisting of 8 subjects did the first set of experiments (Group 1). The
subjects were between 14 and 60 years of age with varying levels of computer skills.
The subjects did not have any functional limitations. The same set of users was asked
to perform a control test, where the same sequence of steps was performed with a
standard mouse (Control Group). The second test group (Group 2) consisted of two
patients from The Boston Home [20]. Both subjects suffered from functional
limitations that made it difficult or impossible to use the standard mouse. One of the

 A Customizable Camera-Based Human Computer Interaction System 35

subjects was diagnosed with muscular dystrophy more than 15 years ago. His
condition causes muscle weakness and wasting in major joints and muscles, his
shoulders and hips have been affected most. The other subject was diagnosed with
multiple sclerosis more than 15 years ago. His condition causes muscle weakness,
limiting his ability to move his arms, hands, and neck. The limitation in neck
movement has resulted in a very small range of head movement.

3.1 Evaluating Tracker Performance

The tests were designed to record indicators of tracker performance. Specifically, we
focused on factors pertaining to the tracker’s ability to track features and translate
feature movement to pointer movement on the screen. Specific factors include:

• Effective Dwell Area: the smallest region within which the user can dwell for 3
seconds. This will allow us to study the tradeoff between tracker sensitivity and
dwelling ability.

• Movement patterns that cause the tracker to lose features while tracking.
• Movement patterns that affect the smoothness of the tracker’s constructed pointer

movement.

A movement evaluation tool was developed to analyze the above factors
(Figure 4). During the test, users were asked to move the pointer from box to box. The
order of movement between boxes was chosen so that we could evaluate the user’s
ability to move the pointer vertically, horizontally, and diagonally. The placement of
the boxes on the screen was chosen to allow us to determine if there were areas of the
screen that the users found difficult to reach, or were unable to reach. Different sized
boxes were used to evaluate the smallest area that the user can easily dwell in for a
few seconds. The size and location of the boxes was chosen so as to discern if it was
easier to dwell in smaller boxes in some areas of the screen. The use of color in the
boxes allows the user to recognize the area they are asked to move without having to
read through the labels.

Fig. 4. Movement Evaluation Tool

 2

7

8

5

4

6

1 3

2

36 W. Akram, L. Tiberii, and M. Betke

The users were asked to move the pointer in the following sequence, dwelling for
three seconds in each box: dark blue box labeled 3, yellow box labeled 7, green box
labeled 8, red box labeled 2, light blue box labeled 4, black box labeled 1, purple box
labeled 5, white box labeled 6.

Figure 5 shows a user with multiple sclerosis performing a subset of steps in the
movement evaluation test. It is apparent from the test that despite being restricted to
only slight movements of the head, the user was able to reach all areas of the screen,
including corners, and could dwell even in small regions.

Fig. 5. User with multiple sclerosis while performing movement evaluation test (left),
simultaneous screen shots depicting pointer location (center), and the instruction given (right).
(Note: Pointer is shown enhanced in the figure.)

4

 5

6

7

 8

3 1

2

Instruction:
User is asked to move
from the green box
labeled 8 to the red box
labeled 2.

2
4

5

6

7

 8

 3 1

Instruction:
User is asked to move
from the red box
labeled 2 to the light
blue box labeled 4.

2
4

5

6

7

8

3 1

Instruction:
User is asked to move
from the light blue box
labeled 4 to the black box
labeled 1.

 A Customizable Camera-Based Human Computer Interaction System 37

Fig. 6. Pointer trajectory of the movement evaluation test

Figure 6 shows the entire trajectory of pointer movement as a user performs the
movement evaluation test.

The task in the tracker evaluation test was to move from one colored box to
another (Figure 4) and then focus on the box for several seconds. The test consisted of
eight tasks. The tracker evaluation tests showed that all ten users, with and without
disabilities, were able to move the pointer to every location. This indicates that we
were successful in designing a system that tracks features and translates feature
movement to pointer movement on the screen. Table 1 categorizes three levels of
movement error, no overshooting, overshooting once, and overshooting more than
once. Overshooting occurs when the mouse pointer moves beyond the target on the
screen. This did not prevent the user from selecting the desired target. The control
experiment was done using the standard mouse.

38 W. Akram, L. Tiberii, and M. Betke

Table 1. Results of Movement Evaluation Test

 Control Group 1 Group 2

Average Completion Time 1.0 s 1.8 s 3.2 s*

Average % of Tasks Completed
on the First Trial

8/8 = 100% 8/8 = 100% 7.5/8 = 94%

Average % of Not Overshooting 8/8 = 100% 4/8 = 50% 2/8 = 25%

Average % of Overshooting Once 0/8 = 0% 2/8 = 25% 2.5/8 = 31%

Average % of Overshooting more
than Once

0/8 = 0% 2/8 = 25% 3.5/8 = 44%

* We discounted the timing result of one of the eight assigned tasks for one user in Group 2 in
computing the average completion time. The reason was that, during the test, the subject was
asking questions and the recorded time of 30 seconds did not reflect the actual time to move
the pointer, which was on average less than 3 seconds for the remaining seven tasks
performed by this user.

3.2 Evaluating Application Design

The tests in this section were designed to capture the usability of the application
framework with respect to the design and layout of the interface elements. The test
consisted of launching five applications in sequence, Text Entry (Keyboard
application), Common Sayings (speech synthesizer), View a webpage (open browser),
Games (open a game), and Play this Song (open a media player).

We were interested in determining how well users were able to navigate through
the menus (average completion time), how many times the users had to try before
they successfully launched the correct application (number of tasks completed on the
first trial), and how often the programs were launched unintentionally (percent of
unintentional launches). Table 2 presents the results.

Another consideration for the application evaluation was the degree of independent
use, i.e., the degree to which the user can effectively use the application without
intervention, once it has been set up. This factor is difficult to measure quantitatively.
From personal observation we saw that the subjects were able to launch all of the
programs independently and interact with the applications. For example, using the
cascading menu selection strategy, they were able to launch and play a game, get back
to the main menu by hovering above it and then launch and use a text entry
application.

The users were also provided with the opportunity to use the system on their own,
without a guided sequence of steps. This helped determine their opinion on the overall
use of the system. During this period unexpected problems with the system could be
identified. A survey was used to gather the opinions of the sample test group.

 A Customizable Camera-Based Human Computer Interaction System 39

Table 2. Application Evaluation Results

 Control Group 1 Group 2

Average Completion Time * 5.0 s 6.3 s 9.4 s

Number of Tasks Completed
on the First Trial **

1 5/5 = 100%
for 5 users

4/5 = 80% for
2 users

5/5 = 100%
for user 1

3/5 = 60%

for user 2

Percent of Unintentional
Launches

0 0/5 = 0%

for 5 users

2/7 = 29% for
1 user

3/8 = 38% for
1 user

0/5 = 0% for
user 1

4/9 = 44%

for user 2

*Actual task completion times for Group 1 and 2 were not significantly different. The
computed results for Group 2 were affected by the fact that users in Group 2 showed much
interest in the system; they stopped to discuss, ask questions, and give ideas. Such instances
skewed the average of the recorded times.

**The users needed more than one trial to complete a task due to unintentional launches. The
unintentional launches were instances where the user diverted from the test to discuss
something and hence caused unintentional launching of the applications. This forced them to
return to the main menu and repeat the task. This also highlights the need for a binary
switching mechanism to turn off the tracker when not in active use.

Issues were determined by analysis of survey questions and by personal

observation. The tests performed by Group 1 revealed several issues. It was observed
that after a program was launched it was not possible to return to the application
without using the standard mouse. To resolve this issue, the system was configured
such that when the pointer moves over the title area of the partially occluded
application, the application is brought into the foreground. This assumes that the
programs opened will not take the full screen area.

Another issue noticed during preliminary testing was that the testers could not
easily identify where to rest the pointer without causing a selection command to
occur. As a result, programs were opened unintentionally; the Midas touch problem
[21]. To resolve this issue, all areas where the pointer can rest were changed to have a
gray background color distinguishing them from the areas with a white background
that cause a selection command to be executed. The users of Group 2 also found that
the pointer had some jitter, due to the increased sensitivity. We propose a simple
averaging mechanism to solve this problem.

Users showed interest in the prospect of being able to write and save text and send
email autonomously using the camera mouse. Current users rely on a separate
application to enter the text and then the caregiver has to copy and paste the text into
an email application to dispatch the email. Users also expressed interest in a system
that allowed effective web browsing with the camera mouse.

40 W. Akram, L. Tiberii, and M. Betke

4 Discussion

In summary, we developed a customizable camera-based human computer interaction
system and showed that people with and without disabilities can complete multiple
computing tasks with slight head movements. The improvements made to the camera
mouse have resulted in a robust feature tracker and a calibration of feature movement
to pointer movement that is specific for each individual user. Taking advantage of the
features of the camera mouse, our interaction system was able to provide hands-free
access to many common computing tasks. The test results show that users were able
to successfully open all of the programs available in our system with only a small
percentage of error. This provides evidence that we designed a user-friendly interface
with an effective navigation strategy. Survey results obtained from the test subjects
showed that their holistic experience of the system was positive and they especially
enjoyed playing the games.

Several of the test subjects in the first group used the system more than once.
Their ability to control the pointer movement and dwell in a selection area improved
as quickly as the second use. This indicates that the difference in average completion
time between the control experiment and the camera mouse experiment would be
reduced if all subjects were given more time to become accustomed to moving the
pointer with the camera mouse.

A possibility for extension is to provide automatic feature detection. This would
eliminate the dependence of tracking performance on the manual selection of an
appropriate feature. The type of features best suited for tracking with the camera
mouse was studied by Cloud et al. [24], who suggested that the tip of the nose was a
robust feature. Gorodnichy [25] also discussed the robustness of nose tracking. Our
experiments with the camera mouse showed similar results. Features on the sides of
the face were lost by the tracker frequently as they were occluded upon rotation of the
head. The outer tips of the eyes and features on the outer boundaries of the face were
similarly not suitable for tracking. Features that exhibited good contrast on the central
band of the face, e.g. the inner tip of the eyebrows, the tip of the nose and the outer
boundary of the top or bottom lip, were the best features to track with the camera
positioned so that it has a frontal view of the person’s face. Tracking a feature on the
lips may however be problematic if the user speaks during use. Features on the eye
were often lost during blinking. Also, experiments showed that if the user wore
glasses, especially of a dark color, features on the glasses, such as the bridge of the
glasses, were robust to track.

Directions for future work include:

• Providing an automatic feature detection method.
• Smoothing pointer jitter that resulted from the increased sensitivity.
• Navigation among the opened programs.
• Providing better internet browsing, text entry, and email programs.
• Designing interaction strategies that allow the camera mouse to be used with

standard, non-specialized applications. For example, adding features such as
generalized dwell that is decoupled from camera mouse enabled applications and
operates with the desired dwell radius on the entire screen. To overcome the
limitation of small interface elements found in many standard applications, screen

 A Customizable Camera-Based Human Computer Interaction System 41

magnification could be used to magnify menus as the pointer hovers above them. A
binary switch could then be provided to toggle to the magnified area and select
menu items. A cursor lock could also be used to aid selection of small interface
elements.

• Extension to usage scenarios within the ambient intelligence paradigm [26]. The
computer vision strategy presented here as a pointer alternative can be applied to
menu selection tasks in common appliances such as telephones, microwave ovens,
web-enabled digital television (DTV) and CD players.

Acknowledgements

The authors thank David Young-Hong from The Boston Home for his help with the
experiments and for sharing his insights regarding technologies needed for people
with disabilities. This work was supported by NSF grants IIS-0093367, IIS-0329009,
and 0202067.

References

1. National Multiple Sclerosis Society, http://www.nationalmssociety.org, accessed April
2006.

2. Microsoft Accessibility, http://www.microsoft.com/enable/research/agingpop.aspx,
accessed April 2006.

3. J. Gips, P. Olivieri, and J.J. Tecce, "Direct Control of the Computer through Electrodes
Placed Around the Eyes", Human-Computer Interaction: Applications and Case Studies,
M.J. Smith and G. Salvendy (eds.), Elsevier, pages 630-635. 1993.

4. Synapse Adaptive, http://www.synapseadaptive.com/prc/prchead.htm, accessed April
2006.

5. NaturalPoint SmartNAV, http://www.naturalpoint.com/smartnav/, accessed July 2006.
6. J.J. Magee, M.R. Scott, B.N. Waber and M. Betke, "EyeKeys: A Real-time Vision

Interface Based on Gaze Detection from a Low-grade Video Camera," In Proceedings of
the IEEE Workshop on Real-Time Vision for Human-Computer Interaction (RTV4HCI),
Washington, D.C., July 2004.

7. M. Betke, J. Gips, and P. Fleming, “The camera mouse: Visual tracking of body features
to provide computer access for people with severe disabilities”, IEEE Transactions on
Neural Systems and Rehabilitation Engineering, 10:1, pages 1-10, March 2002.

8. D.O. Gorodnichy and G. Roth, “Nouse ‘Use your nose as a mouse’ perceptual vision
technology for hands-free games and interfaces”, Proceedings of the International
Conference on Vision Interface (VI 2002), Calgary, Canada, May 2002.

9. Assistive Technologies, http://www.assistivetechnologies.com, accessed April 2006.
10. Apple Computer Disability Resources, http://www.apple.com/accessibility, accessed April

2006.
11. WiViK on-screen keyboard (virtual keyboard) software, http://www.wivik.com, accessed

April 2006.
12. The Dasher Project, http://www.inference.phy.cam.ac.uk/dasher, accessed April 2006.
13. J. Gips and J. Gips, "A Computer Program Based on Rick Hoyt's Spelling Method for

People with Profound Special Needs," Proceedings International Conference on
Computers Helping People with Special Needs (ICCHP 2000), Karlsruhe, pages 245-250.

42 W. Akram, L. Tiberii, and M. Betke

14. B.N. Waber, J.J. Magee, and M. Betke, “Web Mediators for Accessible Browsing,”
Boston University Computer Science Department Technical Report BUCS 2006-007, May
2006.

15. H. Larson and J. Gips, "A Web Browser for People with Quadriplegia." In Universal
Access in HCI: Inclusive Design in the Information Society, Proceedings of the
International Conference on Human-Computer Interaction, Crete, 2003, C. Stephanidis
(ed.), Lawrence Erlbaum Associates, pages 226-230, 2003.

16. OpenCV library. http://sourcforge.net/projects/opencvlibrary, accessed April 2006.
17. B.D. Lucas and T. Kanade. “An iterative image registration technique with an application

to stereo vision.” In Proceedings of the 7th International Joint Conference on Artificial
Intelligence (IJCAI), pages 674-679, Vancouver, Canada, April 1981.

18. C. Fagiani, M. Betke, and J. Gips, “Evaluation of tracking methods for human-computer
interaction.” In Proceedings of the IEEE Workshop on Applications in Computer Vision
(WACV 2002), pages 121-126, Orlando, Florida, December 2002.

19. “Human-centered design processes for interactive systems,” International Organization for
Standardization ISO 13407, 1999.

20. The Boston Home, http://www.thebostonhome.org, accessed April 2006.
21. R.J.K. Jacob, “What you look at is what you get,” Computer, 26:7, pages 65–66, July

1993.
22. M. Chau and M. Betke, “Real Time Eye Tracking and Blink Detection with USB

Cameras,” Boston University Computer Science Technical Report 2005-012, May 2005.
23. J. Lombardi and M. Betke, “A camera-based eyebrow tracker for hands-free computer

control via a binary switch”, In Proceedings of the 7th ERCIM Workshop, User Interfaces
For All (U14All 2002), pages 199-200, Paris, France, October 2002.

24. R. L. Cloud, M. Betke, and J. Gips, “Experiments with a Camera-Based Human-Computer
Interface System.” In Proceedings of the 7th ERCIM Workshop "User Interfaces for All,"
UI4ALL 2002, pages 103-110, Paris, France, October 2002.

25. D.O. Gorodnichy, “On importance of nose for face tracking”, In Proceedings of the IEEE
International Conference on Automatic Face and Gesture Recognition (FG 2002), pages
188-196, Washington, D.C., May 2002.

26. A. Ferscha, “Contextware: Bridging Physical and Virtual Worlds.” In Proceedings of the
Ada-Europe Conference on Reliable Software Technologies, 2002.

	Introduction
	System Overview
	Tracking Features
	Feature Movement to Pointer Movement
	Application Framework

	Experiments and Results
	Evaluating Tracker Performance
	Evaluating Application Design

	Discussion
	References

