
Counting Fingers in Real Time: A Webcam-Based Human-
Computer Interface with Game Applications

Stephen C. Crampton and Margrit Betke

Department of Computer Science, Boston University
111 Cummington Street, Boston, MA 02215, USA

{stevec,betke}@cs.bu.edu

Abstract

Finger Counter is a simple and universal human-computer interface. Using a webcam, it
interprets specific hand gestures as input to a computer system in real time. Finger Counter
employs two novel computer-vision techniques: (1) a background-differencing method adaptive
to changing lighting conditions and camera movement and (2) a new procedure to analyze hand
contours. The Finger Counter interface runs under Linux with multiple threads of execution.
Finger Counter applications include a game designed to teach children to count with their fingers
and a program that allows you to “finger paint” on a computer screen. Test subjects compared the
familiar keyboard with Finger Counter under difficult lighting and background conditions and
found Finger Counter a viable substitute.

1 Introduction

Real-time computer-vision systems using hand-gesture analysis have been explored by, for
example, Freeman et al., 1998, and Bretzner, Laptev, Lindeberg, Lenman & Sundblad, 2001.
Finger Counter introduces new techniques for adapting to changing lighting and unsteady
cameras, as well as two game applications.

2 Method

Figure 1 shows the system architecture at the highest level. Finger Counter processes incoming
images, extracts features from the processed images, and stores feature information in a circular
buffer. As each new frame arrives, Finger Counter's analysis module inspects the buffer and
updates the state, i.e., how many fingers the user is holding up. Application programs, such as
those described below, examine the state and respond accordingly.

Figure 1: System overview

Image
Processing

Feature
Extraction

Circular
Buffer

Analysis
Module

Current State:
“2 Fingers”

Application
Program

“Finger Paint”

2.1 Image Processing

In the image-processing stage, Finger Counter uses a new background-differencing technique to
segment a user’s hand from the background. Finger Counter thus requires an initialization step,
when the user is not in the camera's view. During initialization, which lasts less than a second, the
camera adjusts to the lighting conditions and acquires a background image. An audio cue tells the
user that initialization is happening and informs him or her once it is completed.

2.1.1 Adaptive Background Differencing

Finger Counter’s background-differencing algorithm adapts to changes in scene brightness and
camera position. It minimizes the squared error of the brightness difference between pixels in an
initial background image 0B and background pixels in sub-images of subsequent frames. The
result of the minimization is an offset u that aligns a M N′ ′× sub-image I with the M N×
background image 0B , where M M′ ≤ and N N′ ≤ . Initially, () ()1

2, ,i ju u u M M N N′ ′= = − − .

As each new frame comes in, the system aligns, crops, and brightness-adjusts the background
image to () ()0 0, ,i jB i j B u i u iλ

λ= + + , where λ and 0λ are the camera’s current and initial
automatic-gain-control (AGC) levels, respectively. The AGC adjusts dynamically in response to
changed lighting conditions. From the input image I , B is subtracted to get () (){, ,D i j I i j= if

() (), , DI i j B i j τ− > , 0 otherwise. Threshold () () ()(),max , ,D i j I i j B i jτ κ= − was chosen
empirically. Values for κ and other parameters are given in section 3 below.

After foreground and background pixels are segmented, the background-image offset u is
recomputed by template-matching the background image 0B with background pixels in I , taking

into account the current AGC level. Let () (){ }, | , 0P i j D i j= = . Updated u is computed as

() ()()() 0

2

0,
arg min , ,i ji j P

I i j B u i u iλ
λ∈

− + +∑u . Finger Counter’s background-differencing

method allows the camera to be perturbed by as many as ()1
2 N N ′− pixels vertically and

()1
2 M M ′− pixels horizontally.

2.1.2 Edge Detection

From the difference image D , the system computes an edge image using standard computer-
vision techniques. First, the difference image D is convolved with Prewitt filters. (Prewitt,
1970) Then an iterative edge-following algorithm similar to the one described in Jain, Kasturi &
Schunck, 1997, p. 47, identifies distinct connected contours in the image. Finger Counter discards
all but the largest contour, which is represented by the 1 pixels in a binary image E . Let A be
the number of 1 pixels. The centroid () ()() ()()(), ,

1 1, , ,,
i j i jA AjE i j iE i jx y = ∑ ∑ corresponds to the

centre of mass of the contour. An adjusted centroid (),x yζ is then computed, with ζ chosen
experimentally to move the centroid downward near the centre of an up-facing palm. Finally, the

system defines a rectangular region of interest (ROI) containing all contour pixels level with or
above the adjusted centroid (),x yζ .

2.2 Feature Extraction

Human fingers protrude in a radial fashion, a trait Finger Counter exploits. A pixel in contour
image E , referenced by Cartesian coordinates (),i j , is converted to polar coordinates (), rα .

The origin of the polar coordinates is the adjusted centroid (),x yζ . Figure 2 shows the result of
this conversion.

Figure 2: From Cartesian to polar coordinates

To count fingers the system first sets threshold rτ to be a fraction of the maximum r in the ROI:

()maxr c rατ α= . Then, the system identifies the tip ()t kφ of finger-like protrusion k in frame

t as a local maximum in a range of angles for which ()r α exceeds rτ : ()arg maxmax rαα α= ,

where () rr α τ> . The system stores tφ and tν , the number of finger-like protrusions found in
frame t , in the circular buffer shown in Figure 1.

2.3 State Analysis

The ultimate goal is to reliably determine the state of a user's hand, e.g., “he is holding up three
fingers.” To that end, the system analyzes sequences of frames at a time. By doing so, Finger
Counter is less prone to errors caused by noise, camera artefacts, or cluttered images.

Finger Counter’s state-analysis module considers the last ρ records from the circular buffer. If
(1) they report the same number of finger-like protrusions, 1 0t k t k kν ν ρ− − −= ∀ ≤ < , and (2) the
distance in pixels between the same protrusion in successive frames is less than a threshold ντ ,

() ()1k ki i ντ−− <φ φ for 1t t kρ− + ≤ ≤ , 1 ti ν≤ ≤ , then the state-analysis module concludes that

there are tν fingers held up in frame t . Note that this technique introduces a f
ρ -second delay at

a frame rate of f frames per second.

α

r

rτ

ROI

αr
•

•(),x y

(),x yζ

Contour Image E

3 Implementation

We implemented Finger Counter under Linux kernel 2.4.18 on a laptop computer with a Pentium
IV 1.4 GHz processor and 256 MB of RAM. Attached to the computer via USB were a Logitech
Quickcam 4000 Pro or a Creative Labs Webcam III, running (with compression) at 30 frames per
second. The Finger Counter interface processes about 10 frames per second. Most of the delay is
due to the adaptive background differencing. Parameters were empirically determined as follows:

320M = , 240N = , 300M ′ = , 225N ′ = , 0.2κ = , 0.67ζ = , 0.75c = , 5ρ = , and 28.28ντ = .

Multiple threads of execution improve the system’s efficiency. (Silberschatz & Galvin, 1997)
Finger Counter uses two threads to interface with Video4Linux, a Linux module that facilitates
communication with cameras attached to the system. Another thread processes incoming frames
as described above and implements one of the application programs described below. A final
thread handles audio output. Multithreading prevents the system from stalling while waiting for
input or output and thus maintains seamless interaction with the user.

4 HCI Applications

We created two applications for Finger Counter. One is a game in which the player is audibly
prompted to hold up a certain number of fingers and then the system tells the player how many
fingers it sees. A modified version of the game randomly alternates requests to hold up fingers
with requests to type a key on a standard keyboard and logs response times. We used the modified
game to evaluate the interface, as discussed below.

The second application allows the user to paint on the screen using her fingertips. If she holds up
one finger, she paints with one brush. If she holds up two fingers, she paints with a single brush,
but can vary the brush size dynamically by spreading or contracting the two fingers. If she holds
up three or four fingers, she paints simultaneously with that many brushes. Finally, holding up
five fingers erases the entire image.

5 Experiments

To test the Finger Counter interface, we performed 18 experiments on test subjects of various ages
and with diverse computer experience. Test subjects were shown the finger-painting application
and asked to play with it for a few minutes. Then, the subjects played the modified voice-
interactive game, and their response times were logged. Table 1 shows the average times it took
to respond to an audio request to either hold up a certain number of fingers from one through five
or type a key from “1” through “5” on the keyboard.

Table 1: Response Times

 Finger Counter Keyboard
Average 2.72 seconds 2.16 seconds

Standard Deviation 0.86 seconds 0.53 seconds

We tested the interface under varied lighting and background conditions, from a fluorescent-
lighted laboratory to a sunny coffee shop in Santa Barbara, California. With minimal training, test
subjects achieved response times with Finger Counter comparable to those with the familiar

keyboard. Figure 3 demonstrates how response times were distributed among test subjects and
also shows a Finger Counter user.

2 2.5 3 3.5 4

0

2

4

6

8

10

Users

Seconds

Keyboard
Finger Counter

Figure 3: Histogram of response times (left) and a Finger Counter user (right)

For applications that require a user to choose between five or fewer options, Finger Counter is a
viable keyboard replacement. Moreover, because Finger Counter does not require the user to
touch any equipment, it is well suited to applications where the user’s hands are engaged in other
activities or are dirty (e.g., an auto mechanic) or sterile (e.g., a medical worker). Finger Counter
may also be useful for those who, because of physical limitations, find it difficult to use a
keyboard.

6 Conclusion

Finger Counter works with an inexpensive webcam to provide a fun and easy human-computer
interface. Future research will focus on recognizing additional hand postures and developing
further applications. Future experiments will include computer users with physical disabilities.
The ultimate goal is an intuitive human-computer interface for everyone, regardless of computer
expertise or physical ability.

References

Bretzner, L., Laptev, I., Lindeberg, T., Lenman, S., & Sundblad, Y. (2001). A prototype system

for computer vision based human computer interaction. Retrieved February 13, 2003, from
http://www.nada.kth.se/cvap/abstracts/cvap251.html

Freeman, W., Anderson, D., Beardsley, P., Dodge, C., Roth, M., Weissman, C., & Yerazunis, W.
(May/June 1998). Computer vision for interactive computer graphics. IEEE Computer
Graphics and Applications, 18(3), 42-53.

Jain, R., Kasturi, R., & Schunck, B. (1995). Machine vision. New York: McGraw-Hill.
Jennings, C. (1999). Robust finger tracking with multiple cameras. Retrieved February 13, 2003,

from http://www.cs.ubc.ca/spider/jennings/ratfg-rts99/cj99.pdf
Prewitt, J. (1970). Object enhancement and extraction. In B. Lipkin & A. Rosenfeld (Eds.),

Picture Processing and Psychopictorics (pp. 75-149). New York: Academic Press.
Silberschatz, A. & Galvin, P. (1997). Operating system concepts (5th ed.). New York: Wiley.
Yang, M.-H. (2002). Extraction of 2D motion trajectories and its application to hand gesture

recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24, 1061-74.

