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Abstract
Raster-image PDF files originating from scanning or photographing paper documents are inaccessible to both text search
engines and screen readers that people with visual impairments use.We here focus on the relatively less-researched problem of
converting raster-image files withArabic script intomachine-accessible documents. Ourmethod, called ECDP for “Ensemble-
based classification of document patches,” segments the physical layout of the document, classifies image patches as containing
text or graphics, assembles homogeneous document regions, and passes the text to an optical character recognition engine
to convert into natural language. Classification is based on the majority voting of an ensemble of support vector machines.
When tested on the dataset BCE-Arabic [Saad et al. in: ACM 9th annual international conference on pervasive technologies
related to assistive environments (PETRA’16), Corfu, 2016], ECDP yielded an average patch classification accuracy of 97.3%
and average F1 score of 95.26% for text patches and efficiently extracted text zones in both paragraphs and text-embedded
graphics, even if the text is rotated by 90◦ or is in English. ECDP outperforms a classical layout analysis method (RLSA) and
a state-of-the-art commercial product (RDI-CleverPage) on this dataset and maintains a relatively high level of performance
on document images drawn from two other datasets (Hesham et al. in Pattern Anal Appl 20:1275–1287, 2017; Proprietary
Dataset of 109 Arabic Documents. http://www.rdi-eg.com). The results suggest that the proposed method has the potential
to generalize well to the analysis of documents with a broad range of content.

Keywords Arabic document analysis · Physical layout analysis · Page layout analysis · Optical character recognition (OCR) ·
Screen readers · Classifier ensemble · Page zone classification · Creation of structured meta data

1 Introduction

In our digital world, the pervasive file format for data trans-
fer and sharing is the portable document format (PDF). It is
supported by prevailing operating systems and application
programs and enables us to search for text within a digitally
derived (“born-digital”) document. We can add navigation
tags to make digitally derived documents specifically acces-
sible for people with disabilities. However, if the document
was not digitally derived but resulted from scanning or pho-
tographing a hard copy of a paper document, its contents are
merely stored in a raster graphics PDFfilewithout searchable
text streams or embedded navigation tags.
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The problem of converting a raster-image PDF file into a
machine-accessible PDFdocument that facilitates text search
and supports navigational assistance to PDF readers for
people with visual impairments has not been solved in gen-
eral. Commercial solutions are provided by optical character
recognition (OCR) software for the special case of interpret-
ing document images that contain text in machine-created
script in simple page layouts. Currently available OCR soft-
ware interprets text in the Latin alphabet relatively reliably
but does not solve the general conversion problem for a vari-
ety of reasons:

(1) The original hard copy may be of poor quality (e.g.,
contain ink bleeding or may be ripped), (2) the document
imaging process may yield text in insufficient resolution or
may have introduced skew or extraneous lines, (3) the OCR
engine may not be able to handle certain fonts, printed text
in non-Latin script, decorative drop caps, or handwritten
text, (4) the document may contain various non-text ele-
ments, such as diagrams and images, and (5) the layout of
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the document elements may be complex, including head-
lines, footnotes, tables, and lists. The document layout is
particularly complex if it contains both text elements and
illustrations, a non-uniform background, text regions with
different orientations, non-rectangular regions, curved text,
or more than one text column.

Our contribution, described in this paper, is a supervised
machine learning method for the document layout anal-
ysis (DLA) that may be incorporated into an end-to-end
system pipeline for making raster-image PDF files accessi-
ble. The literature on DLA (e.g., [1]) distinguishes physical
layout analysis (PLA), also called geometric layout anal-
ysis, and logical layout analysis (LLA). Physical layout
analysis includes segmenting of the image into a set of
non-overlapping homogeneous regions, called “zones” or
“blocks,” and labeling each region according to its content
class (text or graphic). Logical layout analysis (LLA) inter-
prets the function of the text within the document (e.g., title,
text body, caption, page number) and determines a reading
order of the layout regions, which is required by PDF reading
software for people with visual impairments. An end-to-end
system for converting document images into accessible PDF
files may include both types of layout analysis. The PLA
component interprets the rawpage content and identifies zone
types, whereas the LLA component provides descriptive tags
and navigational aids needed for fully accessible PDF files.
Our work provides a solution for PLA, segmenting layout
zones, so that the text in the document can be made accessi-
ble with an OCR engine.

Research on document layout analysis has mostly focused
on English text. Exceptions include documents in medieval
German and Latin [2], as well as Arabic [3–5]. Analysis of
documents in Arabic are also the focus of our work. Arabic is
spoken by more than 300 million people world-wide. Devel-
oping methods to analyze documents in Arabic script serves
not only the Arab world, but also cultures in Asia (Urdu,
Persian, Pashto, Kurdish) and North Africa (Swahili, Berger,
Hausa) whose languages use Arabic characters.

While language-independent solutions are desirable, exist-
ing DLA methods have been developed for documents in a
particular language or language group. This way, the auto-
matic interpretation of the document can take into account
the printed characters or handwritten scripts, symbols, text
layouts, reading order (left-to-right, right-to-left, or vertical),
etc., of the specific language.

Leveraging language-specific features for DLA requires a
sufficient supply of training data in that language, especially
if the DLA system uses supervised machine learning. The
dearth of large datasets of Arabic documents and their layout
annotations to train DLA systems was recently described by
Saad et al. [6], who, as a result of their study, were motivated
to collect and introduce a new, publicly available dataset,

BCE-Arabic [7]. In our work, we use BCE-Arabic, as well
as two proprietary datasets collected by others [8,9].

1.1 Problem definition

In summary, the problem that we solve here is to design a
method that takes as input a raster image of an Arabic doc-
ument, which may contain text and graphic elements, and
produces as output an XML file that contains the location
and type information of every homogeneous zone in the doc-
ument. Themethodmust enable an OCR engine to access the
text stream in each text zone of the document, thus making
the text in the previously inaccessible PDF file now accessi-
ble.

2 Related work

2.1 Layout segmentation

Typically, the first step of physical layout analysis is the
task of segmenting the document image into homoge-
neous regions. This is usually performed using one of two
approaches: (1) the ‘top-down approach’ initially considers
the page to formonehuge zone and then conducts a number of
successive divisions until no zone is left that could be further
segmented into homogeneous zones, and (2) the ‘bottom-up
approach’ that starts at the smallest element level (i.e., pixel
level or the connected component (CC) level) and clusters the
neighboring elements to form larger homogeneous clusters
until no more homogeneous zones can be built.

Examples of top-down approaches, also called know-
ledge-based approaches, are the XY cut algorithm [10]
and white-space algorithm [11]. The algorithms depend on
computing the horizontal and vertical histograms of the fore-
ground pixels and finding the maximum number of large
white rectangles. The top-down approach may be the most
time-efficient approach in cases of noise-free and skew-free
documentswith “Manhattan layouts” (rectangular zones) and
plain backgrounds.

Examples of bottom-up approaches, also called data-
driven approaches, are the Docstrum algorithm [12], Voronoi
algorithm [13], ridge-based constrained text line detection
[14], the run-length smearing algorithm (RLSA) [15], and
others [16,17]. These approaches work well in cases where
the top-down approach fails like arbitrary/complex shape
layouts, skewed or curved document images, and noisy or
degraded images. The algorithms may have a considerably
long processing time when the number of clustered elements
on the page is large.

Researchers have proposed modifications to overcome
the drawbacks of basic top-down and bottom-up approaches
(e.g., [14,18]). Two additional variants for separating text
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and non-text page zones have been proposed: (1) A hybrid
approach that has both top-down and bottom-up elements
[19], and (2) a multi-scale resolution algorithm where text
feature maps are analyzed for the same document image at
different resolutions [20].

2.2 Layout segments classification

For the second step of physical layout analysis, the task of
classifying the derived document zones into certain cate-
gories, various solutions exist. Some researchers proposed
the use of k-means clustering and heuristic rules for the clas-
sification task [21]. Others prefer machine learning tools,
such as neural networks and support vector machines, to dis-
tinguish text and graphic zones [3,5,22], or different types
of text zones, such as main text and handwritten side notes
in historical documents [4] or handwriting in text boxes of
official printed forms [23].

Some researchers reversed the traditional order of the two
steps of physical layout analysis [22,24,25]: Their methods
first apply machine learning tools to the pixels or connected
components of the original document and classify them as
representing text or non-text, and then build up homogeneous
clusters or zones. The approach we propose in this paper
also uses a reversed order for PLA. Our method first classi-
fies small image regions as containing text or non-text and
then groups neighboring patches of the same class into larger
image zones.

Our approach to use an ensemble of classifiers was moti-
vated by an observation by Rahman and Fairhurst [26] that
combining multiple expert (classifier) decisions can produce
more robust, reliable, and efficient recognition performance
than using a single expert classifier. They also warned that
a single classifier with a single feature set and a single
generalized classification strategy often does not comprehen-
sively capture the large degree of variability and complexity
encountered in many practical task domains. Accordingly,
we experimented with an extensive feature set to feed into
our classifier ensemble.

2.3 Layout analysis datasets

In the literature, the datasets used for DLA system construc-
tion and evaluation vary widely. The number of document
images in a dataset is typically in the order of hundreds. Some
researchers used publicly available datasets like UW-III [27],
UNLV [28], IUPR [20], DFKI-1 [29], or subsets of these that
are appropriate to the task at hand. Other researchers col-
lected their own private datasets, which are typically limited
in size or variability (e.g., [3,30]). For the task we addressed
in this paper, localizing and classifying text and graphic
regions in Arabic document images, BCE-Arabic-v1 [6] is
the only dataset we know that is publicly available.

2.4 Layout analysis of Arabic documents

The task we address in this paper, layout analysis of scanned
pages of printed modern books and newspapers, has not
received much attention in the literature. Research on lay-
out analysis of Arabic documents has mostly focused on
historical, handwrittenmanuscripts [4,22,31,32], which pose
different challenges (document degradation, ink bleeds, elab-
orate decorations, etc.). We here highlight the work by
Boussellaa et al. [32], who performed multi-scale image
analysis to segment image blocks and then classify them
as belonging to the foreground or background. Misclassified
blocks are corrected and smoothed using 8-nearest-neighbors
pixel voting. A fuzzy c-means classifier discriminates text
pixels from graphics pixels for the obtained foreground pix-
els. Our methodology differs in that we do not differentiate
foreground and background specifically and is similar in the
use of image blocks and 8-nearest-neighbor voting. We also
note the work by Belaïd and Ouwayed [31] who analyze
small subimages with Fourier descriptors to determine hand
writing orientation in text-only manuscripts. Our proposed
system also works on small subimages (“patches”) and uses
a Fourier descriptor among others.

Few efforts described in the literature are directed to
documents with printed Arabic script and complex layouts
[3,5,33]. Bukhari et al. [33] presented a document layout
analysis system for Arabic documents that performs page
decomposition (using multi-resolution morphology-based
segmentation), text line detection (using anisotropic Gabor
filter image smoothing and ridge detection with white-space
finding), and detection of the reading order. They modi-
fied a multi-resolution method by Bloomberg [34] and used
a white-space-finding algorithm by Breuel [35]. What is
remarkable about their work is the robustness of their textline
detection method regardless of the amount of border noise
present in the image. The proposed algorithm was shown
to outperform the X–Y algorithm on a dataset containing 25
Arabic and 20 Urdu documents.

Hadjar and Ingold focused on Arabic newspapers with
complex layouts. Their initial work [36] presented methods
for thread recognition, frame recognition, image text separa-
tion, text line recognition, and line merging into blocks. In
subsequent work [5], they created the semiautomatic plat-
form PLANET using neural networks. They applied their
previous page decomposition technique and then followed
it with an interactive correction phase, where users are able
to interactively correct over and under-segmentation errors
generated in the previous phase. Their dataset includes 50
pages from three different newspapers (Annahar, AL Hayat,
and AL Quds).

To achieve Arabic newspaper layout analysis, Alshameri
et al. [3] used run-length smoothing for block building and a
support vector machine for labeling connected components
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as text or non-text. The logical reading order of text lines
was defined using modified topological sorting rules. The
combined method contains various heuristic rules and was
tested on 50 images.

The three systems for Arabic newspaper layout analysis
described above predate the large publicly available BCE-
Arabic-v1 [6] dataset. They were tested on relatively small
proprietary datasets (45 or 50 pages), forwhich they achieved
high classification results (97–99%). Note that the subset of
the BCE-Arabic dataset that we use here is one order of mag-
nitude larger, which helps with overfitting issues.

2.5 State of the art in layout analysis

Recent publications on physical layout analysis show that
progress is made with three types of approaches: deep learn-
ing, classical machine learning, and traditional rule-based
image processing. None of these approaches can solve the
general problem of layout analysis for all document domains.

Deepnetworks have beenproposed to solve specific layout
analysis problems like text line extraction in historical docu-
ments [37–39], table extraction [40], newspaper article seg-
mentation [41], layout analysis of scientific publications [42],
census record counting [43], and logical analysis of born-
digital documents [44]. Deep networks that interpret layout
shape rather than components have been proposed to cate-
gorize documents [45–48], e.g., letters, resumes, invoices.
Deep learning has also been used to extract document fea-
tures that are then interpreted for layout classification tasks by
traditional machine learning approaches that employ SVM
classifiers [49–51].

The state of the art that uses traditional image process-
ing techniques includes rule-based morphological methods
that segment Chinese documents with complex layouts using
top-down image projections [52], detect textlines in degraded
English historical documents [53], and extract text in histori-
cal Tibetan document images [54]. A recent publication that
uses a combination of morphological tools and traditional
machine learning is the work by Hesham et al. [8]. Their
method can extract textlines in modern and historical Ara-
bic books using an SVM to classify text and non-text zones.
For such a two-class problem, an SVM classifier is appropri-
ate because it maximizes the margin around the separating
hyperplanes. Among the many related works that we dis-
cussed here, only Hesham et al. consider the same problem
as we do. Instead of using one SVM, however, we use an
ensemble. Another difference is that our method does not
first segment zones and then classify them but instead first
classifies small, overlapping patches that are then gathered
to build homogeneous zones.

Fig. 1 Creating patches in a document from BCE-Arabic-v1 that con-
tains text and images. The enlarged details show neighboring patches
with 50% vertical and horizontal overlap. In each case, a patch with
a dashed (orange) outline overlaps another patch with a solid (green)
outline (color figure online)

3 Materials andmethods

Our method analyzes the physical (geometric) layout of a
grayscale document image by working with small square-
shaped subimages, called patches. Since we use an ensemble
of classifiers to process the document patches, we call our
solution ECDP—ensemble-based classification of document
patches. Examples of overlapping patches in the text zone of
an Arabic book page are shown in Fig. 1. In this section,
we first describe the document datasets and then explain our
method.

3.1 Datasets

We report experiments with three datasets of raster-image
Arabic documents. The largest, BCE-Arabic [7], is a collec-
tion of 1833 annotated documents. We used a 567-document
subset of this collection, which is defined by all the doc-
uments in the database that contain both text and images.
In particular, we used 383 document pages to train and test
the system presented in this paper, and the subset of data
that contain both text and graphic elements (charts or dia-
grams), 184 pages, to evaluate the robustness of our system
to a new type of page content. The remaining documents in
BCE-Arabic are text-only documents. We excluded them to
ensure a balance between the number of text and graphics
training patches and prevent our machine learning system to
simply learn anomalies.

The second dataset is a proprietary collection by Hesham
et al. [8]. It contains 85Arabic document pages and comprises
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Fig. 2 Block diagram of the proposed ECDP system

of 60 book pages, 10 scanned historical documents, and 15
magazine pages. The third dataset, provided by RDI [9], is
a proprietary collection that contains 109 Arabic book and
magazine pages. We used the Hesham and RDI datasets only
for testing, not for training of our system.

Ground truth for the location and type of layout zones in
the documents of BCE-Arabic [7] were provided in XML
files by Saad et al. [6]. The ground-truth segmentations, used
by Hesham et al. [8] to evaluate their SVM system on their
dataset as well as the RDI dataset, were not made available
to us. We therefore needed to recreate ground-truth annota-
tions for the Hesham and RDI datasets. We used the Alethia
tool [55] to segment the document image into text paragraphs
and graphics zones. We even segmented marginal text like
headers, footers, and page numbers.

3.2 ECDP system overview

The ECDP system pipeline has seven steps (see Fig. 2: (1)
Image borders due to the document scanning process are
removed and a cropped image of the document is obtained.
(2) Overlapping patches are created in the cropped image
and their features extracted. (3) Patches are classified as
“text” or “non-text,” based on the interpretation of their
features by the majority of an ensemble of SVM classi-
fiers. (4) Patches may be re-classified if their class differs
from the class of the majority of the surrounding patches,
which are the eight immediate neighbors. The majority rule
is also used to resolve potentially occurring conflicts when
overlapping patches have opposite class labels. (5) Patches
of the same class are combined into larger image zones.
(6) The resulting text zones are passed to the Tesseract
OCR package (https://github.com/tesseract-ocr) to obtain a
machine-accessible transcript, stored in the first ECDP out-
put file. (7) A second output file is produced in XML format
that contains the location information of the zones and thus
links to the searchable text stream for each text zone.

3.3 Trainingmethodology and data labels

To choose an appropriate model for our ECDP system from
numerous rivaling trained models, we conducted extensive
validation experiments on these models. We built our sys-
tem using 383 documents with text and graphic elements.
We divided them into 250 pages for training, 33 pages for
validation, and 100 pages for testing. Since our classifiers
use the features extracted from image patches (and not full
documents) and we use overlapping patches, the actual num-
bers of data points used for training, validation, and testing
depend on the patch size and the patch overlap ratio. The
smaller the patch size is chosen, the larger the training and
validation sets become. With an overlap ratio of 50%, they
range from tens of thousands to hundreds of thousands of
patches (see Table 1). The ground-truth label for each patch
is automatically retrieved from the ground-truth labels of the
zone that the patch belongs to.

Our idea to use of overlapping patches is noteworthy
because it serves as a data augmentation step. A 50%overlap,
specifically, ensures sufficient augmentation without provid-
ing too much redundancy.

Section 4 describes the experiments we conducted to
investigate the best patch size to use in our system. Section 4
also describes our experiments on the validation dataset to
discover which type of patch features to select.

The data files are available in the form of gray scale
jpg images and corresponding XML annotations in PAGE
format [56]. The annotations include information of the fore-
ground regions, such as the bounding box of the region and
its label, i.e., a “text” or “image” region.

3.4 Features

To find out the most descriptive feature set to be used for
ECDP with image patch input, we investigated four types of
features:

– Edge operators: Canny (Fig. 3), Sobel, Prewitt, Roberts,
and the Laplacian of Gaussian approximation;

– Transforms: Fourier (FFT), discrete cosine (DCT),
Hough, and Radon;

– Texture features: Gray-level range and standard devia-
tion, entropy of the gray-level distribution, and the prop-
erties of the gray-level co-occurrence matrix (GLCM):
contrast, correlation, energy, and homogeneity;

– Moments: Hu’s seven moments and Zernike moments.

These features are particularly suited for patch analysis, in
particular, distinguishing patches that contain text fragments
versus graphics regions.

Canny’s edge detection algorithm is known to find both
strong andweak edges, the Laplacian gradient enhances both
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Table 1 Number of training and
validation examples for different
patch sizes (empty background
patches are excluded)

Size 30 × 30 50 × 50 60 × 60 70 × 70 80 × 80 90 × 90

Training 883,031 289,214 172,623 113,344 87,339 74,133

Validation 212,530 83,302 59,482 44,725 34,940 28,438

Fig. 3 Canny edge feature for patches of text (top) and graphic (bottom)

the lowandhigh contrast information (e.g., [57]). TheFourier
and DCT coefficients may serve as shape descriptors to the
patch content [58]. The Hough transform can be used to
detect the lines in the imagepatch, and theRadon transform to
compute projections onto different rotation axes. The GLCM
has been used successfully to measure texture [59,60].

Even the smallest patcheswe tested contain a large number
of pixels that can be used for measuring a feature. Due to the
grid-based sampling of the image into patches, a patch may
contain an incomplete connected component (e.g., a part of a
character) or multiple connected components (characters or
parts of characters). A patch may contain arbitrarily sized,
rotated, or translated connected components.

A patch that does not contain any connected components
is deemed to belong to the document background. Features
are only computed for foreground patches.

3.5 Training stage

The training stage starts by parsing the annotation XML file
and extracting the bounding box information of each fore-
ground region. Each foreground region is segmented into
adjacent overlapping patches according to the pre-defined
patch size. Features vectors are extracted for each patch,
labeled as text or non-text, and used as training examples
for the selected classifier.

We designed a five-SVM-classifier ensemble by partition-
ing the training documents into five cohorts of 50 documents.
We needed an odd number of classifiers so that we can use
majority voting to fuse the decisions of the ensemble. Five
classifiers can capture the data variance better than three and
are computationally cheaper to use than seven. Each SVM

classifier was trained using patches from the 50 documents
in its corresponding cohort. We conducted experiments (see
Sect. 4) on the validation data to tune SVM parameter values
and select the best-performing SVM kernel (linear, polyno-
mial, RBF).

3.6 Test stage

Each document image in the test dataset is processed by our
ECDP system as shown in Fig. 2. An example image and a
visual representation of the ground truth labels of the image
patches, which we created by parsing the annotations of the
input image as provided by BCE-Arabic-v1 [6], are shown
in Fig. 4a, b, respectively. The results by the five SVMs of
ECDP are shown in Fig. 4c–g. A second example is shown
in Fig. 5, which shows the regions of a document image that
were classified to contain text, the OCR transcription of this
text, and the corresponding XML output file.

3.7 Evaluationmetrics

We used two performance evaluation metrics to judge the
classification performance of ECDP. The first is the binary
classification accuracy A of foreground document patches:

A = Cg + Ct

Tf
, (1)

where Cg is the number of correctly classified graphic
patches, Ct the number of correctly classified text patches,
and Tf the number of foreground patches.

The number Tf of detected foreground patches might
exceed the number of annotated patches if residual noise
(e.g., an ink stain) escaped the noise removal stage of ECDP.
An example is seen in Fig. 4, where the SVMs classified
a noise patch to the right of the image on the page as text
(red). To dealwith this problem, our second evaluationmetric
measures accuracy only with respect to the class of interest,
which are text patches. We use the F1-score, which accounts
for precision P and recall R:

F1 = 2 · PR

P + R
, and P = Ct

(Ct + Ft)
, R = Ct

(Ct + Mt)
,

(2)
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Fig. 4 Visual representation of the reference patch labels and the 5-SVM output labels of a test document image. Red image regions represent
patches classified as “text” (lighter gray in non-color media), blue as “graphic” (darker gray) (color figure online)

Fig. 5 Sample output of our ECDP system: extracted text zones (left),
Tesseract OCR output (upper right), and XML file (lower right)

where Ft is the number of patches misclassified as text (false
alarms) and Mt the number of text patches misclassified as
graphic patches (false negatives).

4 Experiments and results

This section describes two sets of experiments with ECDP
and one comparison experiment with the run-length smear-
ing algorithm (RLSA) [15]. The first set of experiments was
conducted to select features and tune ECDP system param-
eters using the validation dataset (Sect. 4.1). The resulting
best-performingmodel was then used to conduct ECDP eval-
uation experiments on three test datasets (Sect. 4.4), which
show system robustness toward new document layouts and
contents.

4.1 Methodology of validation experiments

We first tested each document in the validation dataset indi-
vidually. For all documents in the validation dataset, we then
computed four statistics of the patch classification accuracy
A: average, standard deviation, maximum, and minimum
value.

To find the best-performing set of features among the
options we considered, we fixed other experimental param-
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Table 2 Patch classification
accuracy (%) statistics for
edge-descriptor features

Fusion Canny Sobel Roberts Laplacian Prewitt

Avg. Vote Avg. Vote Avg. Vote Avg. Vote Avg. Vote

Avg. 87.10 92.79 57.63 69.26 74.31 83.30 82.51 88.69 57.90 69.40

SD 7.68 5.68 13.96 11.54 8.16 4.46 7.62 4.91 13.90 11.53

Max. 95.24 98.57 89.80 92.14 89.56 91.94 92.70 95.45 89.69 92.00

Min. 63.79 79.71 2.90 21.61 41.44 65.42 54.93 68.59 2.87 21.61

Table 3 Patch classification
accuracy (%) statistics for
transform features

Fusion FFT DCT Hough Radon

Avg. Vote Avg. Vote Avg. Vote Avg. Vote

Avg. 87.78 92.43 60.85 72.70 82.43 84.88 82.16 89.53

SD 8.54 5.18 11.64 8.08 9.52 5.55 12.06 9.09

Max. 97.04 99.03 92.18 94.34 94.47 95.29 91.98 97.32

Min. 62.08 77.52 22.83 53.81 50.38 70.29 43.64 54.86

eters, such as patch size (90 × 90) and the SVM kernel type
(polynomial) with the default parameter values of the LIB-
SVM library (no further fine tuning was performed to avoid
overfitting to the current dataset). We compared the accuracy
statistics using the features introduced in Sect. 3.4: five edge,
four transform, and seven texture descriptors, as well as two
kinds of moment descriptors. We also tested a combination
of texture features (gray-level range and standard deviation,
entropy) and a combination of the four GLCM statistics.
We evaluated the low-order and high-order Zernikemoments
separately and in combination. Furthermore, we paired the
best-performing feature of each of the four feature types,
which yields six pairs, grouped the three best-performing
features of each type, which yields three triplets, and finally
combined the best-performing features of all four types into
a single quadruple. As a result, we tested 10 combined sets
of features.

We experimented with two fusion schemes to combine
the decisions of the ensemble of five SVM classifiers: (1)
averaging and (2) majority voting. It was quickly obvious
when testing edge and transform features thatmajority voting
outperformed averaging, so the remaining validation exper-
iments used majority voting only.

We then kept features and patch size fixed and compared
the performance of three kernel types.We also tested the best
two kernels with seven sizes of patches.

We tested the impact of the re-classification, step (4) of
the ECDP system pipeline, which re-classifies a patch if the
majority of surrounding patches belong to a different class.
In this ablation experiment, we compared the statistics of A
and F1 when ECDP is used with and without this step.

4.2 Implementation details

Extracting edge features or Fourier/DCT transform coeffi-
cients fromapatchyields 2D featurematrices of the same size
as the patch. Reshaping an n × n matrix to a 1-dimensional
1 × n2 input vector to train the SVM classifiers is computa-
tionally expensive. A computationally more efficient process
is to concatenate the vertical and horizontal summation of the
n × n feature matrix to produce a 1 × 2n input vector. This
modification generated size and translation-invariant feature
representations and gave us similar performance.

The Hough transform matrix is typically very sparse. A
90 × 90 text patch, resulting in a 505× 360 = 181,800 ele-
ment matrix, for example, had 146,928 zeros. For efficiency,
our method therefore concatenates the vertical and horizon-
tal summations of the Hough matrix of a patch, producing
two 1 × 360 length feature vectors.

The Radon transform produces 1D output, and validation
experiments were done using the projections of a patch on
axes at 0, 45, 90, 135, 180, 225, 270, and315degrees. The tex-
ture filters (gray-level range and standard deviation, entropy)
applied to a n × n patch yield 1 × n feature vectors. Each
GLCMstatistics (contrast, correlation, energy, homogeneity)
is just one scalar. The magnitudes of Zernike moments were
extracted for low (32 elements) and high-order (32 elements)
values with repetitions, as explained by Tahmasbi et al. [61].

4.3 Results of validation experiments

The results of our extensive validation experiments with sin-
gle features and their combinations, as described in Sect. 4.1,
are given in Tables 2, 3, 4, 5 and 6 (notable numbers in bold-
face). Canny edge features yielded by far the most accurate
average performance among five edge descriptors (Table 2)
and the Fourier transform among four transforms (Table 3).

123



Making scanned Arabic documents machine accessible using an ensemble of SVM classifiers 67

Table 4 Patch classification
accuracy (%) statistics for
texture features

Texture filters GLCM statistics

Range SD Entropy All Contr. Corr. Energy Homog. All

Avg. 89.18 88.08 92.00 92.77 93.19 92.31 91.30 91.29 92.53

SD 8.69 6.14 7.63 8.27 7.58 8.97 8.60 8.60 7.63

Max. 96.51 95.37 98.86 99.76 99.76 99.43 99.43 99.43 99.59

Min. 55.50 66.50 69.00 66.73 72.28 68.00 67.09 68.00 72.55

Table 5 Patch classification
accuracy (%) statistics for
moments features

Moments Hu Zernike

All 7 Low order (3:10) High order (10:17) All 64 moments

Avg. 88.18 82.16 79.62 80.65

SD 10.56 5.34 6.78 6.52

Max. 97.40 89.20 89.61 89.77

Min. 47.70 66.88 63.80 64.45

Table 6 Patch classification Accuracy (%) statistics for different fea-
ture set combinations: Set 1: Canny and FFT; Set 2: Canny, FFT and
3 texture filters; Set 3: Canny, FFT and GLCM contrast; Set 4: Canny,
FFT, 3 texture filters and GLCM contrast; Set 5: FFT, 3 texture filters

and GLCM contrast; Set 6: FFT and 3 texture filters; Set 7: FFT and
GLCM contrast; Set 8: Canny, 3 texture filters and GLCM contrast; Set
9: Canny and 3 texture filters; Set 10: Canny and GLCM contrast

Set 1 2 3 4 5 6 7 8 9 10

Avg. 94.25 93.65 94.23 93.64 92.91 92.85 93.59 93.14 92.98 93.48

SD 6.11 6.84 6.15 6.83 7.39 7.45 6.27 7.07 7.13 5.81

Max. 99.76 99.51 99.76 99.51 99.27 99.27 99.51 99.35 99.27 99.19

Min. 80.18 75.06 79.92 75.06 72.91 72.51 74.94 72.73 72.82 80.36

The nine texture features produced similar results, with the
GLCM contrast slightly winning (Table 4). A combination
of all seven Hu moments yielded more accurate results than
each one individually or combinations of Zernike moments
(Table 5). The Hu feature combination, however, did not out-
perform the best edge and transform features, and somoment
features were not further tested.

We presume that the Fourier transform and Canny edge
features outperform the other features in distinguishing
patcheswithArabic script frompatcheswithout because they
can represent high-frequency information and long edges
without gaps. We also note that the performance of the
features is highly correlated (between 0.72 and 0.89). In
particular, the correlation of accuracy values between the
Canny and FFT descriptors was 0.89. We measured this by
comparing the accuracy values obtained per document of the
validation dataset for two features (Fig. 6).

Experiments of the 10 feature combinations (Table 6)
revealed that a combination of Canny edge features and
Fourier transform magnitude and frequency descriptors
yielded the most accurate results on our validation dataset.
This means that, while there is a correlation between the per-
formance when the Canny and FFT descriptors are applied
separately, applying them in combination still left sufficient

Fig. 6 Example of correlated performance results for Canny and FFT
descriptors: (1) original, (2) ground truth with text (red or light gray)
and graphic (blue or dark gray) patches, and results based on (3) Canny
descriptor only (accuracy 87.7%), and (4) FFT only (accuracy 88.5%)
(color figure online)

room for performance improvement. For example, we dis-
covered that, for documents with text and line drawings or
diagrams with dotted backgrounds (halftones) and gradient
shading, the Canny descriptor yielded several percent points
higher-accuracy results than the FFT descriptor. For such
documents, the combination of Canny and FFT descriptors
yielded even higher-accuracy results.

The RBF SVM kernel yielded a slightly higher average
accuracy than the polynomial or linear kernels for the patch
size 90 × 90 (Table 7). The results for polynomial and RBF
kernels are similar for other patch sizes and generally degrade
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Table 7 Patch classification
accuracy (%) statistics for
different SVM kernels

90 × 90

Poly RBF Linear

Avg. 94.25 94.31 93.52

SD 6.11 6.16 6.75

Max. 99.76 99.84 99.59

Min. 80.18 80.18 77.24

for large patches, 100×100 (Table 8). The 70×70RBFkernel
model was selected for the ECDP system (very comparable
to the highest performing model ‘60 × 60 Poly’) because it
enabled faster training and tuning of fewer parameters.

The ablation experiment, which evaluates the effect of
the patch re-classification step (step 4 of ECDP), shows that
this step improves the average F1-score and accuracy A only
by a percent point or two (Table 9). The power of the re-
classification step lies in its benefit of creating homogeneous
text and non-text regions for the subsequent zone-building
step, as shown in Fig. 7.

The final model used for our ECDP system processes
Canny and FFT features of 70 × 70 size patches and uses
the RBF SVM kernel, majority voting for the ensemble, and
patch re-classification. With this model, 28 of the 33 valida-
tion documents (84.8%) have a patch classification accuracy
of ≥ 95%, and only three ≤ 87% (Fig. 8).

Visual inspection of the ECDP-processed validation data
showed that some border noise and ink stains remained.
Visual inspection also revealed that cases with low perfor-
mance had particularly challenging non-text regionswith line
drawings, faded illustrations, or rotated graphics.

Low performance was also measured due to insufficiently
fine-grained labeling of the ground truth.We found that anno-
tators often chose not to label small text regions within maps
and diagrams as text. For example, the ground-truth anno-
tation of the bottom image shown in Fig. 9 was too coarse.
The rotated text in the legend of the linedrawn map was not
hand-labeled as text but detected by ECDP as text.

Although trained on Arabic documents, ECDP was able
to detect some English text (Fig. 10).

Table 9 Effect of the re-classification step on F1-score and patch clas-
sification accuracy statistics

Re-classification

Without With

F1-score Accuracy F1-score Accuracy

Avg. 91.03 95.18 93.56 96.91

SD 14.48 5.14 12.89 4.67

Max. 99.70 99.66 100.00 100.00

Min. 40.00 83.22 49.10 80.26

Fig. 7 Two examples of the effect of the re-classification step: original
image (left), SVM fusion output (center), and re-classification output
(right)

4.4 Methodology and results of experiments on test
data

We used our final model of ECDP (patches with 70 × 70
pixels and 50% overlap, RBF SVM kernel, Canny and FFT
features) for our experiments on test data. Our MATLAB
implementation of ECDP processes each document in 1:14
min on average. This run time can be reduced by recoding
the system in a high-level language and code optimization.

Table 8 Patch classification accuracy (%) statistics for different patch sizes

100 × 100 80 × 80 70 × 70 60 × 60 50 × 50 40 × 40 30 × 30

Poly Rbf Poly Rbf Poly Rbf Poly Rbf Poly Rbf Poly Rbf Poly Rbf

Avg. 67.19 67.19 94.05 94.12 95.25 95.18 95.30 95.25 95.14 94.76 94.90 93.79 94.36 93.76

SD 14.43 14.43 5.52 5.54 5.13 5.14 4.94 4.72 5.12 4.20 4.63 3.30 4.60 3.67

Max. 91.02 91.02 99.42 99.35 99.85 99.66 99.75 99.47 99.56 98.68 98.85 97.04 98.45 97.49

Min. 27.50 27.50 81.87 81.14 83.43 83.22 84.04 83.39 81.15 83.13 83.09 85.27 83.86 84.98

123



Making scanned Arabic documents machine accessible using an ensemble of SVM classifiers 69

Fig. 8 Histogram of accuracy results for validation dataset documents

Fig. 9 Two challenging validation documents with line drawings and
faded-rotated graphic: original image (left), ground truth from BCE-
Arabic-v1 (center), and ECDP system output (right). In the second
example, the ECDP system was able to separate the rotated text
embedded within the figure and so arguably provides a more valuable
annotation than the ground-truth annotation

Fig. 10 Examples of detected text, including English

Table 10 ECDP results on the
test dataset

F1-score Accuracy

Avg. 95.26 97.3

SD 8.42 5.01

Max. 100.00 100.00

Min. 35.63 58.28

Fig. 11 HistogramofECDPaccuracy results for the 100 test documents
from BCE-Arabic

We conducted six test experiments with ECDP, four with
a different subset of the BCE-Arabic [7] and the remaining
two with the Hesham [8] and RDI [9] datasets.

Our first experiment involves a comparison between the
performance of ECDP and two other methods, the classical
layout analysis method RLSA, short for run-length smearing
algorithm [15], and the start-of-the-art commercial product
(RDI-CleverPage) [62]. For this experiment, we used 100
of the 383 pages of BCE-Arabic-v1 that contain both text
and images as our test set. We implemented the run-length
smearing algorithm (RLSA) [15] with the following tuned
thresholds: run-length for horizontal smearing tsh = 500
pixels, vertical smearing tsv = 800, horizontal smoothing =
30, and the thresholds for classifying text, ftr = 3, and fth =
3. We provided the company RDI our dataset and received
the RDI-CleverPage was applied by RDI on our 100-page
dataset, and computed zone location and type information
was provided to us in XML files.

Note that ECDP was trained on 250 and validated on 33
different pages of this dataset. The 100 test documents con-
tain 129,781 foreground patches (i.e., non-empty patches).
ECDP classifies them with high average accuracy values
(F1 = 95.26% and A = 97.3), see Table 10. Ninety-one
of the 100 test documents with text and images have a patch
classification accuracy≥ 95%,while only 4/100 have a patch
classification accuracy ≤ 88% (Fig. 11).

Results of RLSA and RDI-CleverPage on our 100-page
test dataset are summarized in Table 11 for segmentation
performance and Table 12 for classification performance.

Our comparison of RLSA, RDI-CleverPage, and ECDP
yielded the following results for the seven segmentation
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Table 11 Segmentation performance of the classic RLSA, the state-of-
the-art RDI- CleverPage (CP), and the proposed ECDP on a 100-page
test dataset with text and graphic content, measured in terms of average

black pixel rate (AvgBPR), over-segmentation error (OSE), under-
segmentation error (USE), missed segmentation error (MSE), correct
segmentation (CS), false alarm rate (FA), and block error rate (ρ)

AvgBPR (%) OSE USE CS MSE FA ρ

RLSA 89.89 6.52 0.00 0.43 0.04 4.31 6.57

RDI-CP 91.37 0.67 0.20 0.43 0.15 0.57 1.02

ECDP 98.88 0.02 0.62 0.35 0.02 0.59 0.66

Table 12 Classification performance of RLSA, RDI-CleverPage, and ECDP with respect to the metrics precision (Pr), recall (Rec), F1-measure
(F1) and average text versus non-text accuracy (Acc) over the test dataset of 100 document images with text and image content

Pixels (%) Blocks (%)

Text Non-Text Avg. Text Non-Text Avg.

Pr Rec F1 Pr Rec F1 PixAcc. Pr Rec F1 Pr Rec F1 BlkAcc.

RLSA 55.07 99.35 70.86 99.90 88.81 94.03 90.09 96.17 81.03 87.95 25.58 66.92 37.02 79.78

RDI-CleverPage 32.7 96.43 48.84 99.34 72.99 84.15 75.80 72.30 71.47 71.88 52.52 53.55 53.03 64.82

ECDP 95.48 97.56 95.73 97.09 94.97 97.75 96.67 97.18 96.37 96.27 92.86 93.54 94.06 95.31

metrics, introduced by Shafait et al. [63] to compare seg-
mentation algorithms:

– The average black pixel rate (AvgBPR) represents the
number of black pixels contained in segmented blocks
compared to the corresponding blocks in the ground-
truth image. The rate is higher for ECDP than for RLSA
and RDI-CleverPage, which indicates more consistently
accurate segmentation.

– Theover-segmentation error (OSE) compares the number
of over-segmented blocks to the number of ground truth
blocks. RLSA massively over-segmented our test data
since it works on the level of text lines, RDI-CleverPage
is in second place, and ECDP rarely oversegments text
blocks.

– The under-segmentation error (USE) compares the num-
ber of under-segmented blocks to the number of ground-
truth blocks. ECDP is more likely to merge text blocks
thus it has a slightly larger USE than RLSA or RDI-
CleverPage.

– The correct segmentation (CS)metric compares the num-
ber of correctly segmented blocks to the number of
ground truth blocks. RLSA and RDI-CleverPage outper-
form ECDP.

– The missed segmentation error (MSE) compares the
number ofmissed segments to the total number of ground
truth blocks. ECDP has a lower MSE than both RLSA
and RDI-CleverPage.

– The false alarm error (FA) compares the number of false
alarms to the total number of ground truth blocks. RLSA
has very large number of false alarms compared to ECDP,
RDI-CleverPage is in second place.

– The overall block error rate ρ combines OSE, MSE,
and USE and compares the result to the total num-
ber of ground truth blocks. The overall ECDP error is
significantly less than RLSA and also lower than RDI-
CleverPage.

Our comparison of RLSA, RDI-CleverPage, and ECDP with
respect to classification performance uses four metrics: pre-
cision (Pr), recall (Rec), F1-measure (F1), and average text
versus non-text accuracy (Acc). We applied these metrics to
both pixel- and block-based results. The results, summarized
in Table 12, show the superior classification performance of
ECDP in 12 of the 14 metrics.

The remaining five experiments were conducted to exam-
ine the robustness of our ECDP system and reveal its
limitations. We designed the experiments so that we could
analyze the performance of ECDP on documents with con-
tent types that were not used in training or validating ECDP.
In particular, fromBCE-Arabic-v1,we used (1) 79 newpages
of BCE-Arabic-v1 with text and charts, (2) 100 pages with
text and diagrams, and (3) a few document images with com-
plexmulticolumn layouts. From theHeshamdataset, we used
all the 60 book pages, 10 historical document pages, and 15
magazine pages. From the RDI dataset, we used all 109 book
and magazine pages.

We found that ECDP can classify BCE-Arabic pages with
chart content accurately, even locating text on the chart axes
(Figs. 12, 13). For 79 documents with charts, we obtained
average accuracy values of A = 90.94 and F1 = 90.19%.
We found that ECDP handles bar charts (Fig. 12) better than
line charts (Fig. 13). Straight lines in the chart frame or
grid were often misclassified as text especially if the chart
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Fig. 12 ECDPperformance onBCE-Arabic documentswith bar charts.
Text (center) and non-text (right) zones are detected in the two sample
test images (left). Only the chart axes are mislabeled as text

Fig. 13 ECDP performance on BCE-Arabic documents with line
charts. Text (center) and non-text (right) zones are detected in the two
sample test images (left). The diagram axes are mislabeled as text, as
well as the function plot in the first example

background is plain. Similarly, line drawings may also be
misinterpreted as containing text regions. Furthermore, we
found that detected zones boundaries were not smooth since
theywere built using square image patches (e.g., the staircase
pattern of the boundary of the non-text zones in Fig. 12).

Testing ECDP on the 100 pages of BCE-Arabic with text
and diagrams revealed that the overall performance did not
degrademuch (Fig. 14).Weobtained average accuracyvalues
of A = 87.89 and F1 = 87.69%.

Testing ECDP on five pages of BCE-Arabic-v1 with
multiple columns and complex layouts showed that this clas-

Fig. 14 ECDP performance on BCE-Arabic documents with diagrams.
Text (center) and non-text (right) zones are mostly detected in the two
top sample test images and partially in the bottom two (left)

sification task was beyond the capability of ECDP (Fig. 15).
The font size of the text in these pages was significantly
smaller than the font size in the training data (Fig. 16). Resiz-
ing the image to four times its original size was not helpful
since the pixel resolution of the characters in these images
was poor. For ECDP to work on complex layouts, the input
image has to bemosaicked, resized, resolution-enhanced and
the model has to be modified to work on smaller patch sizes
and also trained on inverse images (dark background and
light text) and various font sizes.

ECDP achieved an average patch classification accu-
racy of 74.26% and average F1-measure of 76.08% when
introduced to the Hesham dataset, and an average patch clas-
sification accuracy of 87.32% and average F1-measure of
89.4%when introduced to the RDI dataset. Hesham et al. [8]
report higher performance numbers for their system on these
datasets. A quantitative performance comparison between
their system and ECDP, however, is not meaningful due to
the use of (1) different ground-truth segmentations and (2)
different segmentation evaluation metrics (e.g., Hesham et
al. did not take into consideration segmentation errors of
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Fig. 15 ECDP did not perform well on documents with complex lay-
outs: original image (left), detected text (center) and non-text (right)
zones

Fig. 16 Text patches of the complex layout document on the left have
small fonts and look more like graphics patches (zoomed subimage,
left), compared to the text patches in a book document image on the
right for the same patch size (zoomed subimage, right)

region overlaps and splits).Visual inspection ofECDP results
showed that the diacritic marks, dots that are associated with
15 out of the 28 characters in theArabic alphabet, contributed
to misclassification of patches (the system by Hesham et al.
circumvents the problems diacritics cause by removing dia-
critics from further consideration at an early stage). Our error
analysis furthermore revealed that the fonts and inter-line dis-
tances in the documents of Hesham and RDI datasets with
low ECDP performance were significantly different from
those of our BCE-Arabic training data. Adding documents
with smaller inter-line distances and with a wider variety of
font types and sizes to the training set of ECDP would likely
boost its performance, especially on the Hesham dataset.

5 Discussion

This paper presents the first component of an end-to-end
machine learning system for analyzing the layout of Ara-
bic documents, specifically, scanned book pages in untagged
raster-image PDF format. The results suggest that the pro-
posed method has the potential to generalize well to the
analysis of documents with a broad range of content.

The contributions in this paper can be summarized as fol-
lows:

– Amachine learning approach for physical layout analysis
of Arabic documents was proposed that uses an ensemble
of support vector machine classifiers to categorize text
and non-text image regions.

– The approach is unique in classifying small, overlap-
ping images patches. Edge andFourier descriptors,which
work particularly well for analyzing Arabic script, are
applied to the patches, and then neighboring patches of
the same class are grouped into larger image zones.

– Re-classification turned out to be a successful strategy.
Context information from overlapping and neighboring
patches is used to check the potential need for re-
classification of patch labels, before patches are grouped
into homogeneous document zones.

– Accurate classification results were obtained on images
from BCE-Arabic, a recently created dataset of Ara-
bic document images that include rotated text and text
embedded in graphics and figures.

– Reasonably accurate classification results were obtained
on images from the RDI and Hesham datasets.

– The proposed method outperforms a traditional method
(RLSA) and a state-of-the-art commercial product (RDI-
CleverPage).

It is important to note that our ECDP system works on a
patch level rather than pixel or connected-component level.
It can thus exploit information in the vicinity of each pixel,
its “context.” Working with patches also enables our system
to use connected-component edge/stroke features together
with the pixel-based texture features. It avoids the draw-
backs of methods based on grouping connected components,
which are less likely to succeed with degraded document
images where these components are broken. Moreover, there
are far fewer patches than pixels or connected components,
and so it is more time efficient to work on patches. Context
information is also represented by the overlap of neighbor-
ing patches—this adds a small amount of useful redundancy,
constructively contributing to the classification result.

Our choice to compare our ECDP system to the classi-
cal run-length smearing algorithm (RLSA) [15] was guided
by the work of Shafait et al. [63]. The authors noted that
RLSA was, at the time, the only algorithm that includes a

123



Making scanned Arabic documents machine accessible using an ensemble of SVM classifiers 73

block-classification step in addition to the segmentation step.
To conduct a fair comparison to ECDP, we had to choose a
method that performs both steps.

ECDP showed superior pixel-based and block-based per-
formance compared to RLSA, except for the precision of
non-text pixels and recall of text pixels. For these two
metrics, both methods produced almost perfect pixel-based
results, with RLSA winning by about two percentage points
(Table 12) (RLSA > 99% vs. ECDP > 97%). As a pixel-
based method, RLSA misclassified fewer speckles of pixels
(single pixels or very small collections) than the patch-based
ECDP method. In particular, it misclassified fewer border-
noise pixels as non-text rather than background (higher
non-text precision) and fewer graphics pixels as text (higher
text recall). For larger collections of pixels (and, even more
so, blocks), ECDP outperforms RLSA since a patch-based
approach forces all encountered pixels in the collection to
have the same label as the patch label.

Comparing system performance is difficult due to the lack
of benchmarking datasets that include Arabic documents in
general, and “Arabic DLA benchmarking datasets” specifi-
cally, even in the form of a limited competition dataset. Until
recently, before BCE-Arabic-v1 was published, the lack of a
publicly available benchmark containing Arabic documents
meant that researchers could only report their DLA sys-
tem results on relatively small proprietary datasets (e.g., the
RDI and Hesham datasets [8]) or small customized subsets
they chose from public datasets matching the problem they
address [3,4]. Now that BCE-Arabic-v1 is publicly available,
we hope that our ECDP system can serve as a baseline sys-
tem so that the performance of future systems (designed by
others or ourselves) can be compared against a baseline.

In the PLA literature in general, and the learning-based
PLA literature in particular, researchers have reported a wide
variety of methods, datasets, evaluation metrics, and targets
for the final system output. This is notable when both tasks
of PLA are addressed, segmenting of the image into a set
of non-overlapping homogeneous zones and labeling each
zone according to its content class. System performance on
the segmentation task only can be more readily compared
to that of “classic algorithms.” Mao et al. [64], for example,
compared their segmentation solution to the output of three
classic segmentation algorithms (XYcut [10], Docstrum [12]
and Voronoi [13]). Oyedotun et al. [65], who used a related
approach to ours by extracting textural features from image
segments by 4 × 4 sliding mask on the image regions, used
a dataset of only 35 documents and classified features with
a multi-layer perceptron neural net. The authors could not
compare their results (84% average segment identification)
against other PLA systems, so they implemented two tra-
ditional algorithms (the run-length smearing algorithm and
adaptive k-means clustering) to compare the performance
of their approach. The trend to compare a new system to

classic algorithmsmight be acceptable for segmentation eval-
uation, but is less helpful when classification evaluation is
also needed.

Finally, PLA solutions in the literature are typically not
accompanied by published source code and reimplementing
them is a non-trivial task, hindered by the fact that implemen-
tation details are often not published. We here, at least, were
able to provide a performance comparison of our system to
a state-of-the-art commercial product (RDI-CleverPage). By
making our source code publicly available at http://www.cs.
bu.edu/fac/betke/research/ECDP, we aim to contribute to a
culture of code sharing in our community that might propel
research forward.

6 Conclusion

This paper presented a solution to an important document
analysis problem—how to make scanned PDF documents
machine accessible. The proposed system ECDP performs
physical layout analysis for Arabic scanned book pages in
PDF format that contain text and non-text elements using
a machine learning based method. ECDP classifies image
patches using an SVM-ensemble trained on edge features
and shape descriptors. It builds up the extracted text zones
from the classified patches and recognizes the text stream
with the Tesseract OCR package. The input document image
is made machine accessible through processing of the two
system output files: the XML hierarchy transcript file (layout
description) and the recognized text file.

The system results are promising—accurate patch clas-
sification accuracy values were achieved, on average, for
documents in three different datasets. Our experimental
methodology proved to be successful. Testing the system
on document samples with the content similar to the train-
ing examples showed particularly high performance. Testing
ECDP on content of a nature previously not seen revealed
good performance in detecting text zones, even if the text was
embedded within graphics regions or rotated by 90 degrees.
ECDP also succeeded in detecting some English text.

Our system needs some modification to address more
complex layouts with low-resolution text, differing font
types, font sizes, and text line distances, and a larger vari-
ety of non-text types. Thus, as a future work, we intend to
proceed with further enhancements:

– Adjust the system to detect and processmore challenging
layouts and awide variety of page contents like tables and
line drawings by adding experts to the ensemble.

– Include training data with different layouts, including a
wide variety of text properties and non-text elements.

– Try different classification approaches for performance
comparison.
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– Train different models on multi-lingual documents and
build a language detection stage to obtain a language-
independent solution.

In future work, we will also explore how transfer learning
might be applied to solve the physical layout analysis of
Arabic documents when a deep neural network has been
pre-trained with English documents. To accomplish this, one
must collect and annotate a larger dataset ofArabic document
images. Our ultimate research goal is to arrive at a system
that can be shown towork successfully for people with visual
impairments.
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