
International Journal of Computer Vision (2019) 127:1198–1216
https://doi.org/10.1007/s11263-019-01172-6

Predicting How to Distribute Work Between Algorithms and Humans
to Segment an Image Batch

Danna Gurari1 · Yinan Zhao1 · Suyog Dutt Jain1,3 ·Margrit Betke4 · Kristen Grauman1,2

Received: 31 May 2018 / Accepted: 25 February 2019 / Published online: 16 March 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
Foreground object segmentation is a critical step for many image analysis tasks. While automated methods can produce
high-quality results, their failures disappoint users in need of practical solutions. We propose a resource allocation framework
for predicting how best to allocate a fixed budget of human annotation effort in order to collect higher quality segmentations
for a given batch of images and automated methods. The framework is based on a prediction module that estimates the quality
of given algorithm-drawn segmentations. We demonstrate the value of the framework for two novel tasks related to predicting
how to distribute annotation efforts between algorithms and humans. Specifically, we develop two systems that automatically
decide, for a batch of images, when to recruit humans versus computers to create (1) coarse segmentations required to initialize
segmentation tools and (2) final, fine-grained segmentations. Experiments demonstrate the advantage of relying on a mix of
human and computer efforts over relying on either resource alone for segmenting objects in images coming from three diverse
modalities (visible, phase contrast microscopy, and fluorescence microscopy).

Keywords Foreground object segmentation · Interactive segmentation · Hybrid human–computer system · Crowdsourcing

1 Introduction

A common question people ask when needing to annotate
their images is whether automated options are sufficient
or they should instead bring humans in the loop to cre-

Communicated by Gang Hua.

B Danna Gurari
danna.gurari@ischool.utexas.edu

Yinan Zhao
yinanzhao@utexas.edu

Suyog Dutt Jain
suyog@utexas.edu

Margrit Betke
betke@bu.edu

Kristen Grauman
grauman@cs.utexas.edu

1 The University of Texas at Austin, 2317 Speedway, Stop,
D9500, Austin, TX 78712, USA

2 Facebook AI Research, Menlo Park, USA

3 CognitiveScale, Austin, USA

4 Boston University, 111 Cummington Mall, Boston,
MA 02215, USA

ate accurate annotations. We explore this question for the
task of demarcating object regions, i.e., creating foreground
object segmentations. Foreground object segmentation is
important for many downstream tasks including collect-
ing measurements (features), differentiating between types
of objects (classification), and finding similar images in a
database (image retrieval). Our goal is to intelligently dis-
tribute segmentation work between humans and computers
when human effort is limited.

Our work is partially inspired by the observation that
fully-automated algorithms can produce high-quality fore-
ground object segmentations when they are successful, yet
their performance often is inconsistent on diverse datasets.
This is because algorithms embed assumptions about how
to separate an object from the background that are relevant
for particular types of images, yet restrict their widespread
applicability (Ballard 1981; Chan and Vese 2001; Lank-
ton and Tannenbaum 2008; Otsu 1979; Rother et al. 2004).
Consequently, the knowledge of when segmentation algo-
rithms will succeed is currently a highly-specialized skill
often resigned to computer vision experts or applications spe-
cialists who spent years studying the algorithms. Moreover,
many researchers agree that there is not a one-size-fits-all
segmentation solution. Thus, lay persons needing consis-
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Fig. 1 We propose a task of
predicting the quality of an
image segmentation compared
to the unseen ground truth in
order to automatically (a)
predict which among multiple
algorithms will yield the highest
quality segmentation and then
(b) decide when to “pull the
plug” on computers and use
humans instead to create high
quality segmentations

tently high quality segmentations currently face a brute force
approach of reviewing all images with available algorithm-
drawn segmentations to decidewhich algorithm is best-suited
per image (Fig. 1a) and when to enlist human effort to re-
annotate images because the best-suited algorithm produces
a poor quality result (Fig. 1b).

Our work is also inspired by the observation that widely-
used segmentation tools that rely on initialization are often
inefficient because of their exclusive reliance on human
input (Carlier et al. 2014; Grady et al. 2011; Gurari et al.
2014; Jain andGrauman 2013; Lempitsky et al. 2009; Rother
et al. 2004; Wu et al. 2014). Specifically, humans create ini-
tial bounding boxes or coarse segmentations to localize the
object of interest in every image. A motivation for lever-
aging human guidance per image is that a segmentation tool
can only succeed when initializations are sufficiently close to
the true object boundary (Jain and Grauman 2013). A weak-
ness of relying on humans is that for numerous methods,
including level set based methods (Bernard et al. 2009; Chan
and Vese 2001; Lankton and Tannenbaum 2008; Li et al.
2008), users typically have to wait for minutes or more per
image to validate whether the tool successfully converts their
coarse input into high quality segmentations. Intuitively, one
may expect that computers at times can create good enough
segmentations to replace human initialization effort and so
minimize human effort both for initialization and validation
of the results. Still, lay persons typically lack the expertise
to decide which images to distribute to computers.

We propose techniques to predict how to distribute anno-
tation efforts between algorithms and humans for segmenting
images. We address two novel tasks. First, we propose a sys-
tem that intelligently allocates computer effort to replace

human effort in order to create initial coarse object seg-
mentations for refinement by segmentation tools. Second,
we propose a system that automatically identifies images to
have humans re-annotate from scratch by predicting which
images the refinement methods segmented poorly. With both
systems, a user provides a batch of images and indicates
his/her available time for image annotation. In return, the
system automatically decides for each image which algo-
rithm will yield the best results and guides the user to
only annotate images deemed to be most difficult for the
available algorithms. More broadly, our systems could be
exploited to efficiently create segmentations as input for
downstream tasks, such as object recognition and track-
ing. We publicly share our code to support reproducing
this work and future extensions (http://vision.cs.utexas.edu/
HybridAlgorithmCrowdSystems/PullThePlug).

2 RelatedWork

Interactive co-segmentation methods address the issue of
relying on human input to initialize segmentation tools for
every image in a batch (Batra et al. 2010; Cui et al. 2008;
Li et al. 2014). However, unlike our approach, these meth-
ods require that all images in the batch show related content
(e.g., dogs). Moreover, interactive co-segmentation involves
continual back-and-forth with an annotator to incrementally
refine the segmentation. Avoiding a continual back-and-forth
is particularly important for segmentation tools such as level
set methods (Chan andVese 2001; Lankton and Tannenbaum
2008) that take on the order of minutes or more per image to
compute a segmentation from the initialization. We instead
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recruit human input at most once per image and consider
the more general problem of annotating unrelated, unknown
objects in a batch.

Our aim to minimize human involvement while collecting
accurate image annotations is shared by active learning (Set-
tles 2010). Specifically, active learners try to identify the
most impactful, yet least expensive information necessary to
train accurate prediction models (Biswas and Parikh 2013;
Settles 2010; Vijayanarasimhan and Grauman 2011). For
example, some methods iteratively supplement a training
dataset with images predicted to require little human anno-
tation time to label (Vijayanarasimhan and Grauman 2011).
Other methods actively solicit human feedback to identify
features with stronger predictive power than those currently
available (Biswas and Parikh 2013). Unlike active learners,
which leverage human input at training-time to improve the
utility of a single algorithm, our method leverages human
effort at test-time to recover from failures by different algo-
rithms.

Our novel tasks rely on a module to estimate the qual-
ity of computer-generated segmentations. Related meth-
ods find top “object-like” region proposals for a given
image (Arbeláez et al. 2014; Carreira and Sminchisescu
2010; Endres and Hoiem 2010; Jain et al. 2017; Kohlberger
et al. 2012). However, most of these methods are inade-
quate for ranking “object-like” proposals across a batch of
images because they only return relative rankings of propos-
als per image (Endres and Hoiem 2010). Another method
proposes an absolute segmentation difficulty measure based
on the image content alone (Liu et al. 2011). However, this
method does not account for the different performances that
are observed from different segmentation tools when applied
to the same image.

Our prediction framework most closely aligns with meth-
ods that predict the error/quality of a given algorithm-drawn
segmentation in absolute terms (Carreira and Sminchisescu
2010; Kohlberger et al. 2012). In particular, we also perform
supervised learning to train a regression model. However,
prior work trained prediction models using segmentations
created by a single popular algorithm (coming from the
medical (Kohlberger et al. 2012) and computer vision (Car-
reira and Sminchisescu 2010) communities respectively). In
contrast, our model is trained using a diversity of popular
algorithms from different communities applied to images
coming from three imaging modalities (visible, phase con-
trast microscopy, fluorescence microscopy). Specifically, we
populate our training data with 14 algorithm-generated seg-
mentation algorithms per image as well as ground truth data
to capture a rich diversity of the possible quality of seg-
mentations. Our approach consistently predicts well, outper-
forming a widely-used method (Carreira and Sminchisescu
2010) on four diverse datasets. Our experiments demonstrate
the value of our prediction model for intelligently deciding

which amongmultiple segmentation algorithms is preferable
for each image.

More broadly, our work is a contribution to the emerging
research field at the intersection of human computation and
computer vision to build hybrid systems that take advan-
tage of the strengths of humans and computers together.
For example, hybrid systems combine non-expert and algo-
rithm strengths to perform the challenging fine-grained bird
classification task typically performed by experts (Branson
et al. 2014; Wah et al. 2015). Another system decides how
much human effort to allocate per image in order to segment
the diversity of plausible foreground objects in a batch of
images (Gurari et al. 2018). While our hybrid system design
demonstrates the advantages of combining human and com-
puter efforts, our work differs by deciding how to distribute
work between more costly crowd workers and less expensive
algorithms for the image segmentation task.

We initially presented these ideas at the IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR)
2016 (Gurari et al. 2016). This work offers considerable
redesigns to all methods which in turn yields significant
improvements in our experimental results. Specifically, we
propose an improved approach for predicting the quality
of an algorithm-drawn segmentation by employing a larger
training dataset (created using a larger collection of candi-
date algorithms) with an expanded feature set and ensemble
regressionmodel.We also introduce a hierarchical, two-stage
prediction system that predicts which is the best algorithm
per image to produce the initialization fed to the refinement-
algorithm and then predicts the quality of the output from the
refinement-algorithm in order to decide whether to solicit
human input. Experimental results reveal our redesigned
methods yield significant improvements for predicting the
segmentation quality and producing high quality segmen-
tations. We also expanded our experiments to explore the
performance of our models and systems when using differ-
ent feature sets and testing with different datasets in order to
learn when, how, and why they succeed versus fail.

3 Segmentations by Humans or Computers?

Wefirst describe twoprediction systems for creating different
levels of segmentation detail (Sect. 3.1). Then, we describe
the module used by both systems to predict the quality of
algorithm-generated segmentations (Sect. 3.2).

3.1 Batch Allocation of Humans and Computers

Our resource allocation framework predicts for each image
in a batch whether the annotation should come from a human
or computer. We call this framework PTP to reflect that the
systempredictswhether to “Pull The Plug” on computers and
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Fig. 2 Overview of the relationships between the coarse segmentation
system, fine-grained segmentation system, and quality prediction mod-
ule. Given an image, the coarse segmentation system applies multiple
segmentation algorithms and outputs the top-predicted algorithm-

generated result with its quality score. Given the coarse segmentation
output by the coarse-segmentation system, the fine-grained segmenta-
tion system applies a refinement algorithm to it and outputs the resulting
segmentation with its predicted quality score

solicit human effort for each image. We implement two PTP
systems with the goals of creating coarse and fine-grained
foreground object segmentations respectively. We examine
the value of our systems with segmentation tools that require
initialization. These tools are well-suited for studying both
systems because they require coarse object segmentation
input and aim to output high quality, fine-grained object seg-
mentations. Fig. 2 summarizes the relationship between the
coarse segmentation system, fine-grained segmentation sys-
tem, and the segmentation quality prediction method.

Like existing interactive segmentation methods, we
assume the user is interested in a primary foreground
object (Carlier et al. 2014; Grady et al. 2011; Lempitsky et al.
2009; Rother et al. 2004; Wu et al. 2014). That is, there is a
primary object of interest that the user wishes to isolate from
the background. Foreground object segmentation is therefore
distinct fromnatural scene segmentation,wheremethods aim
to segment all objects present in the image or delineate their
boundaries or primary contours (Arbelaez et al. 2011; Ever-
ingham et al. 2010; Martin et al. 2001).

3.1.1 Coarse Segmentation: Computer or Human?

Our first system automatically decides when to delegate the
task of creating coarse segmentations refined by segmenta-
tion tools to computers in an effort to improve upon today’s
status quo of relying exclusively on human input (Batra
et al. 2010; Cui et al. 2008; Li et al. 2014). We intentionally
designed the system to be agnostic to the particular refine-
ment segmentation tool. We implemented the system to run
a refinement segmentation tool exactly once per image with
one input since some tools are time-consuming to run (Chan
and Vese 2001; Lankton and Tannenbaum 2008), requiring
minutes or more to refine a single initialization. In the inter-
est of increasing the chance of computer success, our system
predicts which from a larger list of 14 computer-generated
results is best-suited to create the coarse segmentation input

per image. Then, our system decides for each image whether
to deploy the top-rated computer-generated coarse segmen-
tation versus instead enlist a human to produce the initial
coarse segmentation.

Figure 3 exemplifies the six steps of our initialization
system. First, the system collects 14 algorithm-drawn fore-
ground segmentations per image described in Sect. 3.2, then
predicts the quality of each candidate segmentation using
our proposed prediction system discussed in Sect. 3.2, and
then deploys the top-scoring option as the computer choice
(Fig. 3a). Next, all images are sorted based on the selected
computer choices, from highest to lowest predicted quality
scores, and then the system allocates the available human
budget to create coarse segmentations for the allotted number
of images with the lowest predicted quality scores (Fig. 3b).
In other words, the system relies on human effort only for
the images where the computer is predicted to have the worst
chance to create accurate coarse segmentations. Finally, the
system feeds all coarse segmentations created by humans and
computers to the segmentation tool of interest for refinement.

For the candidate algorithms chosen to produce computer-
drawn coarse segmentations, we were motivated to employ
fully-automated methods that consistently yield high-quality
segmentations across the various image modalities inves-
tigated in this paper (visible, phase contrast microscopy,
fluorescence microscopy). Towards this aim, we rely on 14
variants of six algorithms discussed in current literature for
foreground object segmentation both for the mainstream
computer vision community (Arbeláez et al. 2014; Car-
reira and Sminchisescu 2010; Liu et al. 2011) as well
as the biomedical imaging community (Chittajallu et al.
2015; Glenn et al. 2015; Maitra et al. 2012). Specifically,
included are the top-ranked segmentations output by two
region proposal methods: multiscale combinatorial grouping
(i.e., MCG) (Arbeláez et al. 2014), and constrained para-
metric min-cuts (i.e., CPMC) (Carreira and Sminchisescu
2010). Also included is a salient object segmentation method
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( RE-ANNOTATE )

(b)

Fig. 3 Overview of the segmentation initialization system. Given a
batch of images, (a) the system automatically pairs each image with
the resulting segmentation from multiple algorithms that is predicted
to be the highest quality (highlighted in red). Shown are the 14 options
per image in the following order: top-3 MCG proposals (Arbeláez
et al. 2014), top-3 CPMC proposals (Carreira and Sminchisescu 2010),
salient object segmentation (Liu et al. 2011), Hough Transform with
circles from radii with 3, 5, and 10 (Ballard 1981), adaptive thresh-

olding and its complement, and finally Otsu thresholding and its
complement (Otsu 1979). (b) Then, the system produces a relative
ordering of all images based on the predicted quality of all selected best
computer-generated results. Finally, the system automatically allocates
the available human annotation budget to images with the predicted
lowest quality segmentations and keeps the automated results for the
remainder of the images (Color figure online)
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which establishes a segmentation using a combination of
local, regional, and global statistics for an image (Liu et al.
2011). Finally, our system produces segmentations using
three popular biomedical image algorithms (Chittajallu et al.
2015; Glenn et al. 2015; Maitra et al. 2012): Hough Trans-
form with Circles (Ballard 1981), Otsu Thresholding (Otsu
1979), and adaptive thresholding. We increase the number of
options by employing the following variants of the aforemen-
tioned methods; i.e., using the top three region proposals per
method (Arbeláez et al. 2014; Liu et al. 2011), augmenting
the image complement of the segmentation for both thresh-
olding methods (Otsu 1979), and employing different radius
values for the algorithm (Ballard 1981) (i.e., 3, 5, 10). Our
system then post-processes each binary mask by filling all
holes and keeping only the largest object.

3.1.2 Fine-Grained Segmentation: Computer or Human?

A related yet more challenging task is predicting whether a
computer-generated segmentation captures the fine-grained
details describing a true object region or whether humans
should instead segment images from scratch. Whereas the
first system above elicits coarse human input to initialize a
segmentation tool, we next propose a second system that elic-
its fine-grained human input to replace segmentation tools
when they segment images poorly. The motivation of the
system design is to offer a better solution than today’s status
quo of humans reviewing all images with associated segmen-
tations to spot algorithm failures.

This system consists of five key steps to segment a given
batch of images. First, a coarse segmentation is automatically
generated for every image using the aforementioned Coarse
Segmentation system to choose the best computer-drawn seg-
mentation per image from 14 options (see Fig. 2, part 1).
Then, each coarse segmentation is refined by a segmenta-
tion tool to produce a final segmentation for each image.
Next, the prediction system discussed in Sect. 3.2 is applied
again to estimate the quality of each resulting segmentation
(see Fig. 2, part 2). Then, the system sorts all images from
highest to lowest predicted quality scores for the resulting
segmentations. Finally, the system allocates the available
human budget to create fine-grained segmentations for the
allotted number of images with the lowest predicted quality
scores.

3.2 Predicting Segmentation Quality

Embedded in both the Coarse and Fine-Grained segmenta-
tion systems above is a module which automatically predicts
the similarity of a given segmentation to an unseen ground
truth segmentation (Fig. 4a). We propose as our prediction
framework a regression model in order to capture that algo-

rithms can produce segmentations that range in quality from
complete failures to nearly perfect.

3.2.1 Training Instances

We aim to populate our training data with segmentation
masks that reflect a large, relatively balanced number of
examples for each segmentation quality from the range of
possible segmentation qualities. Towards this aim,we choose
segmentation masks that capture the transition of segmenta-
tion quality from perfect (i.e., ground truth), to reasonable
human mistakes (i.e., manipulated ground truth), to a vari-
ety of possible failure behaviors (i.e., various algorithms).
Accordingly, for each image, our system produces multi-
ple training examples derived from the human-drawn ground
truth as well as 14 algorithm-drawn segmentations.

For algorithm-drawn segmentation masks, we employ the
same 14 methods used in the Coarse Segmentation system
described in the Sect. 3.1, which includes region propos-
als (Arbeláez et al. 2014; Carreira and Sminchisescu 2010),
salient object segmentation (Liu et al. 2011), and popular
biomedical image segmentation algorithms (Chittajallu et al.
2015; Glenn et al. 2015; Maitra et al. 2012). The variety of
failure behaviors produced by the different algorithms are
exemplified in Fig. 4b, columns 4–6.

Given that the training data may be insufficiently pop-
ulated with higher-scoring segmentations (if all algorithms
consistently fail), our system augments three binary masks
based on the ground truth segmentations. The system uses
the ground truth directly in order to capture during train-
ing the appearance of a perfect segmentation. Our system
also dilates and erodes the ground truth binary mask by
three pixels to simulate a slightly under-segmented and over-
segmented segmentation respectively where fine details may
get smoothed out or chopped off (e.g., Fig. 4b; columns 3–4).

3.2.2 Training Data: Features

Next, our motivation is to use knowledge about algorithm
behavior on everyday and biomedical images to choose
predictive features. We take advantage of the observation
that the chosen algorithms sometimes fail big when they
fail, manifesting appearances unlike what one would expect
from widely meaningful object shapes (Fig. 4b). We pro-
pose nine features that describe the binary segmentation
mask to capture these failure behaviors. We also consider
image descriptors based on convolutional neural networks
(i.e., CNNs). We hypothesize that, in aggregation, these fea-
tures may account for objects of different shapes, sizes, and
appearances. We describe these features below.

Segmentation boundary When algorithms fail, resulting
segmentations often have boundaries characterized by an
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Fig. 4 (a) At test time, given a segmentation of an image, our system
predicts a score indicating its similarity to the unobserved ground truth.
(b) To train our prediction system, we employ images showing fore-
ground objects from three diverse domains: fluorescence microscopy
(row 1), phase contrast microscopy (row 2), and visible spectrum imag-
ing (row 3). Examples of algorithm-generated results illustrate our

training data captures a wide range of segmentation outcomes span-
ning from perfect (i.e., ground truth) to various failure behaviors (i.e.,
from different algorithms). As shown, cues of algorithm failures are
observed in the segmentation’s boundary (highlighted in red), com-
pactness (highlighted in green), location (highlighted in blue) and its
image coverage (highlighted in purple) (Color figure online)

abnormally large proportion of highly-jagged edges. We
implement two boundary-based features to capture this
observation. We compute the mean and standard deviation
of the Euclidean distance of every point on the segmenta-
tion boundary to the centroid. The boundary is defined as all
pixels on the exterior of the object in a binary mask using
an 8-connected neighborhood. The centroid is defined as the
center of mass of the segmentation in the binary mask.

Segmentation compactnessWhen algorithms fail, segmenta-
tions often are not compact. We designate three features to
capture this observation. Two measures compute the cover-
age of segmentation pixels within a bounding region. Extent
is defined as the ratio of the number of pixels in the segmen-
tation to the number of pixels in the area of the bounding
box. Solidity is defined as the ratio of the number of pixels
in the segmentation to the number of pixels in the area of the
convex hull. We also compute the shape factor to capture the
circularity of the segmentation since a pure circle is a good
measure to indicate highly compact objects. It is defined as
the ratio of region area A to a circle with the same perimeter
P: 4π A

P2 .

Location of segmentation in image When algorithms fail,
resulting segmentation regions often lie closer to the edges
of images. This observation stems in part from the center bias

of many existing datasets. We compute the normalized x and
y centroid coordinates of the segmentation centroid in the
image to capture this observation. Specifically, we compute
the x value of the center of mass divided by the image width
and y value of the center of mass divided by the image height.

Coverage of segmentation in image When algorithms fail,
resulting segmentations often cover abnormally large and
small areas in the image. We implement two features to cap-
ture this observation. First, we compute the fraction of pixels
in the image that belong to the segmentation. Second, we
compute the fraction of pixels in the image that belong to the
bounding box of the segmentation.

Image-based CNN features The above features capture ele-
ments likely to be informative for the task, based on domain
knowledge of the binary segmentation mask. As a coun-
terpoint, we also consider feature vectors extracted from
three off-the-shelf CNN architectures in order to describe the
intensity values of the segmentation mask. Specifically, we
use CNN features coming from three classification systems
which were pre-trained on ImageNet: AlexNet (Krizhevsky
et al. 2012), VGG (Simonyan and Zisserman 2014), and
ResNet (He et al. 2016). For AlexNet, we use the last fully
connected layer to create a 4096-dimensional vector. For
VGG, we use the fc7 layer to create a 4096-dimensional vec-
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Table 1 Characterization of
studied datasets to reveal the
diversity of image content with
respect to object area (# pixels),
centroid location (X Loc, Y
Loc), shape (Sect. 3.2; shape
factor), and coverage in image

( FG Area
Image Area ) as well as image

texture (FG Var, BG Var =
variance of Laplacian values for
object and background pixels
respectively)

BU-BIL Weizmann IIS MSRA10K

μ σ μ σ μ σ μ σ

Area 7927 13,109 24,315 16,815 40,119 41,387 26,235 12,489

X Loc 126 129 146 29 251 80 186 52

Y Loc 115 106 158 61 223 63 171 44

Shape 0.48 0.25 0.41 0.2 0.4 0.2 0.50 0.24
FG Area

Image Area 0.12 0.04 0.27 0.14 0.19 0.12 0.22 0.10

FG Var 54 51 1663 1271 2227 1909 1292 1244

BG Var 28 36 540 835 1568 1521 587 829

tor. For ResNet, we use the pool5 layer after global average
pooling to obtain a 2048-dimensional vector. We compute
these feature representations using the image patch created
by using the bounding box of the segmentation.

See Sect. 4 for an analysis of the variability of several of
the mask-based cues measured for objects observed within
diverse datasets. This analysis highlights the variability and
biases available in a range of unrelated datasets.

3.2.3 Training Data: Labels and Regression Model

To create each output label, the system computes a score
indicating the quality of each training instance segmentation.
We use the Jaccard index (i.e., intersection over union, IOU)
which indicates the fraction of pixels that are in common
to the training instance and ground truth segmentation (i.e.,
|A∩G|
|A∪G| ).

For ourmodel,we train a regression tree ensemblewith the
aforementioned training data to predict the quality of a given
segmentation of an image. This model is trained to learn the
unique weighted combinations of the features that each of a
collection of regression trees applies to make a prediction.
This offers a relatively fast, minimally data hungry approach
that can be used with many hardware platforms, making it
accessible to niche communities for easy use and re-training
for their specific algorithms and datasets.We employ 25 trees
and train by sampling one third of the predictive variables per
decision split, sampling training examples with replacement,
and requiring a minimum of five examples per tree leaf.

4 Experiments and Results

Weconduct studies to analyze the reliability of our prediction
framework and its value for deciding when to target comput-
ers or humans to segment images.

Datasets We evaluate our methods on four datasets
that represent three imaging modalities: Boston Univer-
sity Biomedical Image Library (BU-BIL:1-5) (Gurari et al.
2015) includes 271 gray-scale images coming from three

fluorescence microscopy image sets and two phase con-
trast microscopy image sets, Weizmann (Alpert et al. 2007)
consists of 100 grayscale images showing a variety of every-
day objects, Interactive Image Segmentation (Gulshan et al.
2010) (IIS) contains 151 RGB images showing a variety of
everyday objects, and MSRA10K (Cheng et al. 2014) con-
tains 10,000 RGB images showing a variety of everyday
objects. Each dataset contains human-drawn segmentations
that serve as pixel-accurate ground truth segmentations.

Together, the four datasets exhibit large variability with
respect to object and image properties (Table 1). For exam-
ple, the object size is over five times larger in IIS (i.e., 40,119
pixels) than in BU-BIL (i.e., 7927 pixels). The object con-
sumesmore than two times the area of the image inWeizmann
(i.e., 0.27) than in BU-BIL (i.e., 0.12). Moreover, there is
rich diversity of object appearances within each dataset, as
revealed by large σ values. For example, there is a large
Shapeσ for all datasets.Additionally, the variability of object
texture (i.e., FGVar σ ) is relatively large for all datasets. Fur-
thermore, our analysis suggests that image backgrounds can
be complicated and/or cluttered (i.e., large BG Var μ and σ ).
The observed diversity of dataset characteristics is impor-
tant to ensure our method is challenged to learn generic cues
predictive of segmentation failure.

4.1 Quality Prediction for Algorithm Set

We first analyze the predictive power of our proposed frame-
work to automatically estimate the quality of foreground
object segmentations (Sect. 3.2).

BaselineWecompare ourmethod to theCPMC (Carreira and
Sminchisescu 2010) approach that also can predict the qual-
ity of anygiven object segmentation. Specifically, it predicts a
Jaccard score per segmentation. This baseline stresses gener-
ality by learning statistics typical for real world objects. The
method learns to predict Jaccard scores on everyday images
using a combination of shape and intensity-based features.
We use publicly-available code. We do not compare against
methods that return a relative ranking of proposal regions per

123



1206 International Journal of Computer Vision (2019) 127:1198–1216

Table 2 Comparison of CPMC (Carreira and Sminchisescu 2010) with
our method for predicting the Jaccard score indicating the quality of a
foreground segmentation.We report scores for our method learned with
cross-set training (“C-Ours”) and single-set training (“S-Ours”) when
usingmask features alone (“-M”), intensity features alone (“-I”), as well

as both mask and intensity features. For intensity features, we consider
three CNN options: AlexNet (Krizhevsky et al. 2012), VGG (Simonyan
and Zisserman 2014), and ResNet (He et al. 2016). We conduct exper-
iments with four datasets. Higher correlation coefficient (CC) scores
and lower mean absolute error (MAE) scores are better

BU-BIL Weizmann IIS MSRA10K

CC MAE CC MAE CC MAE CC MAE

C-CPMC (Carreira and
Sminchisescu 2010)

0.18 0.30 0.27 0.30 0.23 0.32 0.61 0.25

C-Ours 0.63 0.21 0.61 0.23 0.50 0.26 0.62 0.23

C-Ours-I −0.10 0.33 0.40 0.27 0.41 0.29 0.49 0.26

C-Ours-M 0.66 0.19 0.65 0.21 0.56 0.23 0.59 0.22

S-Ours 0.87 0.10 0.85 0.15 0.83 0.16 0.86 0.12

S-Ours-I 0.84 0.13 0.81 0.16 0.84 0.15 0.80 0.15

S-Ours-M 0.88 0.09 0.79 0.16 0.73 0.19 0.78 0.15

Bold values are used to identify the model with the best performance

image (e.g., Endres and Hoiem 2010), because they are inad-
equate for ranking segmentations across a batch of images.

Evaluation metricsWe evaluate each prediction model using
Pearson’s correlation coefficient (CC) and mean absolute
error (MAE). CC indicates how strongly correlated predicted
scores are to actual Jaccard scores for all foreground object
segmentations evaluated. Values range between +1 and −1
inclusive, with values further from 0 indicating stronger pre-
dictive power. MAE is the average size of prediction errors,
computed as the mean absolute difference between all pre-
dicted and actual Jaccard scores.

Ours: cross-dataset generalization To minimize concerns
that prediction successes may be due to over-fitting to the
statistics of a particular dataset, we first evaluate how well
our predictionmodels trained on three of the datasets perform
on the fourth dataset.1 We enrich our analysis by also exam-
ining the predictive performance of our models when trained
and tested exclusively with the mask-based and intensity-
based features respectively. Table 2 shows our results when
employing both mask-based and intensity-based features
(row 2), intensity-based features alone which is the CNN
features described in Sect. 3.2.2 (row 3), and mask-based
features alone which is all features described in Sect. 3.2.2
except for the Intensity features (row 4). For clarity in pre-
senting the results, we only show results for the overall
top-performing CNN feature, based on testing both with
mask-based features and alone, from the three evaluated
options: AlexNet (Krizhevsky et al. 2012).

Overall, our approach performs well, as indicated by
high CCs and low MAEs (Table 2, row 2). The significant
improvement of our approach over CPMC on the biomedical

1 To afford similar contributions of each dataset, we randomly sample
2000 segmentations for the MSRA10K dataset.

images (e.g., row 2 versus 1 with CC of 0.63 versus 0.18)
shows it is successful even when trained on completely dis-
joint datasets—what the system learned on everyday images
(Weizmann, IIS, MSRA10K) can successfully be leveraged
on biomedical images (BU-BIL). This is possibly because
algorithms tend to create binary masks that have consistent
properties at various levels of success and failure severity,
regardless of the dataset. Our approach also yields improve-
ments over CPMC on the everyday images (Weizmann, IIS,
MSRA10K), highlighting a potential value of populating
training data with images from different modalities (e.g.,
biomedical images) to promote learning generic algorithm
behavior rather than over-fitting to properties of a particular
dataset.

We observe that most of the predictive power of our
model stems frommask-based features.Mask-based features
(Table 2, row 4) perform better than variants of our model
that employ intensity-based features (rows 2–3) for all but
one dataset, when comparing CC and MAE scores. This
reveals a plausible limitation that intensity features do not
generalize as well for different objects observed in images
captured with different image acquisition technologies (e.g.,
microscopes) and parameters (e.g., lighting). This hypothesis
is supported by the observation that relying on the off-the-
shelf CNN feature alone yields negligible predictive power
for the biomedical images (Table 2, row 3). Moreover, we
hypothesize the intensity-based features leads to high MAE
values because of an accumulation of errors from using a
high dimensional feature space. Our findings demonstrate
the characteristics of segmentation errors are robustly and
sufficiently learned from a small set of features describing
the binary mask alone and remain relevant across domains.

Ours: single-dataset analysis Having demonstrated the
advantage of our approach over an existing state-of-art base-
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Fig. 5 Examples of images for
which our prediction system
makes inaccurate predictions.
Shown is the original image in
the left column, ground truth
foreground segmentation in the
middle column, and an
algorithm-drawn segmentation
where our prediction module
fails in the right column

line (i.e., CPMC) for cross-dataset tests, we next examine
the performance gain of using our model when evaluating
our prediction framework for each dataset independently
(i.e., Weizmann, IIS, BU-BIL, MSRA10K). Specifically, we
train and test using ten-fold cross-validation on each dataset
separately. We again enrich our analysis by examining the
predictive performance of our models when also trained and
tested exclusively with the mask-based and intensity-based
features respectively. Table 2 shows results from employing
all features (row 5), intensity-based features alone (row 6),
and mask-based features alone (row 7).

As to be expected, we consistently observe further perfor-
mance improvements when focusing on individual datasets
(rows 5–7) rather than across datasets (rows 2–4); e.g., CC
improves from∼0.60 across each dataset to∼0.85 (Table 2,
row 2 versus 5) when using both mask-based and image-
based features. Interestingly, different sets of features are
more predictive for different datasets. For example, the most
predictive features are mask-based for BU-BIL, intensity-
based for IIS, and the combination of both for Weizmann
andMSRA10K.We hypothesize the predictive features stem
from the distinct biases of individual datasets. For example,
we hypothesize mask-based features matter more for BU-
BIL because the dataset has relatively stronger shape-based
biases; e.g., as observed in Table 1, objects in BU-BIL exhibit
relatively little variation in image coverage (i.e., σ = 0.04).

Our findings also highlight the impact of using different
amounts of data for training. Specifically, when comparing
the performance of utilizing 10,000 images in MSRA10K
versus ∼100–300 images in BU-BIL, Weizmann, and IIS
for all feature combinations, we observe similar outcomes;
i.e., CC scores range from 0.78 to 0.86 for MSRA10Kwhich
is slightly worse than the findings for BU-BIL and Weiz-

mann and slightly better than the findings for IIS (Table 2,
rows 5–7). This suggests that smaller datasets are suffi-
ciently large for learning predictive cues that generalize.2

We also show qualitative results that illustrate some failure
cases of our top-performing single-dataset prediction mod-
ule, which employs mask-based feature vectors extracted
from the AlexNet architecture (Fig. 5). For all the examples,
the predicted segmentation captures the main body of the
object but receives low scores from the prediction module.
While the top and bottom examples are missing some object
parts, the middle example appears to be penalized for captur-
ing the highly-jagged edges on the boundary (excluded from
the ground truth) despite that it still successfully captures the
main body of the object.

Overall, our findings show it is possible to predict the
quality of an image segmentation in absolute terms for a
diversity of data spanning everyday and biomedical images.
As will be shown in the following sections, this capability
offers exciting implications towards deciding which among
multiple algorithms to choose to create the highest quality
segmentations and deciding how to distribute effort between
computers and humans to create high quality segmentations
for a batch of images.

2 For the one dataset large enough to train a deep model, MSRA10K,
we find that fine-tuning off-the-shelf CNNs (namely, AlexNet, VGG,
and ResNet) yields similar or worse performance than the other models
tested in our experiments, including those using the frozenCNNfeatures
without fine-tuning. This suggests that the proposed features are well
matched for the target task.
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4.2 Analysis of Coarse Segmentation System

We now examine the value of our PTP framework for pre-
dicting whether to “Pull The Plug” on computers and solicit
human effort for each image, when segmenting a batch of
images with a given budget for human effort/time. Our focus
is on initializing segmentation tools. The status quo is typ-
ically for humans to create a coarse object segmentation
input for every image. However, computers also are some-
times employed to automatically position rectangles based
on the image dimensions (Bernard et al. 2009; Caselles et al.
1997; Chan and Vese 2001). Our system instead intelligently
decides which amongmultiple automatic initializationmeth-
ods is preferable for each image and then decides whether to
involve humans instead (Sect. 3.1.1).

Implementation For each image, our system deploys either
(a) the algorithm-generated result from 14 options with the
largest predicted Jaccard score or (b) a human-drawn seg-
mentation. We leverage cross-dataset predictions (Sect. 4.1)
from our top-performing mask-based predictors to esti-
mate the quality of algorithm-drawn segmentations so that
our method cannot inadvertently learn and exploit dataset-
specific idiosyncrasies.

Baselines We compare our method to the following hybrid
human–computer methods for creating coarse segmentation
inputs:
- Perfect predictor For each image, this system deploys
the algorithm-generated result from 14 options that has the
largest actual Jaccard score. Human involvement is allocated
to the images with lowest scores. This predictor reveals the
best initializations possible with our system.
- Chance predictor For each image, the system randomly
deploys one algorithm-generated result from the 14 options.
Then, images for human involvement are randomly selected.
For a lay person who lacks specialized knowledge of which
algorithms work well in their domain, this predictor illus-
trates the best (s)he can achieve today with the initialization
options available in our system.
- Rectangle (Bernard et al. 2009; Caselles et al. 1997; Chan
and Vese 2001): This method illustrates the commonly-
adopted automated method of positioning a bounding rect-
angle with respect to the image dimensions. Following Chan
and Vese (2001), we set the foreground region based on the
image boundary. We position the rectangle to occupy the
image region after cropping 5% of pixels from the minimum
image dimension on all sides. We randomly select images
for human involvement.
- Linear (Gurari et al. 2016) This is a variant of our approach,
as implemented in our prior experiments, that uses a linear
regression model instead of the non-linear regression trees.
It predicts which of the original eight segmentation options
to deploy as input.

- No-Refinement This method illustrates the performance of
our prediction system in the absence of refinement. Specif-
ically, the system relies on the input crowd-generated and
algorithm-generated results as is, rather than the output of
the refinement algorithms that modify these inputs.
Experimental design To illustrate the versatility of our ini-
tialization system as a general-purpose approach for use with
refinement segmentation tools, we integrate our initializa-
tion method and the baselines with three tools important in
the computer vision and medical imaging communities—
GrabCut (Rother et al. 2004), Chan Vese level sets (Chan
and Vese 2001), and Lankton level sets (Lankton and Tan-
nenbaum 2008). GrabCut enforces color homogeneity and
spatial proximity. TheChanVese level setmethod uses global
image information to try to separate an image into two homo-
geneous intensity regions while enforcing smoothness of the
object boundary. The Lankton level set method uses local
neighborhood statistics for each pixel to separate an object
from the background so that there are two homogeneous
intensity regions within a band containing the object bound-
ary.

We evaluate each system using all images in Weizmann,
IIS, and BU-BIL as well as a random sample of 174 images
from MSRA10K. We evaluate with a subset of images from
MSRA10K in order tomake it comparable in size to the other
datasets; 174 is the average number of images in Weizmann
(i.e., 100), IIS (i.e., 151), andBU-BIL (i.e., 271).We examine
the performance of each initialization method for all 696
images coming from all four datasets as well as for each
dataset independently.

For human input, we collect segmentations from crowd
workers on Amazon Mechanical Turk. We use the same
crowdsourcing system employed in prior work (Jain and
Grauman 2013) to collect a coarse segmentation per image.

4.2.1 Fully-Automated Initialization

On average, our system takes 14.51 s to generate all candi-
date segmentations, 0.52 s to predict which result is the best,
and 9.01 s for refinement (i.e., average of 1.33 s for Grab-
Cut, 10.17 s for Chan Vese level set, and 15.53 seconds for
Lankton level set).

For each segmentation tool, we compute the average
segmentation quality resulting after the tool refines all ini-
tializations for all images. For this analysis, the reader should
focus on the leftmost points on the plots in Fig. 6 only (i.e.,
0% human involvement).

Predicting a best-suited automated input from 14 options
produces coarse segmentation estimates that the segmenta-
tion tools can refinemore successfully than all baselines (i.e.,
Chance Predictor, Rectangle (Bernard et al. 2009; Caselles
et al. 1997; Chan and Vese 2001), Linear (Gurari et al.
2016), No-refinement). For example, the resulting segmen-
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Fig. 6 Wecompare sixmethods for distributing varying levels of human
involvement to create initializations for three different segmentation
refinement tools (cols 1–3) across four datasets (row 1) and each dataset
independently (rows 2–5). Each plot shows themean quality for the seg-
mentations that resulted after the tools refined the initializations. Brown

circles identify when our predictor achieves quality comparable to rely-
ing exclusively on human input with the least human effort. Compared
to relying exclusively on human input, our approach eliminates 55% of
human effort with no loss to quality (Color figure online)

tation quality improves by 31% points and 15% points over
the Rectangle baseline for the Lankton level set algorithm
and GrabCut algorithm respectively (Fig. 6, “All Images”).

With respect to our Linear approach (Gurari et al. 2016),
we observe the greatest boost from our new approach on
the Weizmann dataset; e.g,. 14% points improvement for the

123



1210 International Journal of Computer Vision (2019) 127:1198–1216

Initialization
(Our Selection)

Chan Vese
OutputImage GrabCut

Output
Lankton
OutputGround Truth

Su
cc

es
se

s
Fa

ilu
re

s

Fig. 7 Illustration of the quality of resulting segmentations created
by three segmentation tools from the initial segmentation selected
by our system from the 14 initialization options. Sample results are
shown for images coming from three imaging modalities: fluores-

cence microscopy (rows 1–2), phase contrast microscopy (row 3), and
everyday images (rows 4–9). These illustrate successes (rows 1–6) and
failures (7–9) in creating high quality output segmentations

Lankton level set algorithm. The only exception where our
proposed algorithm does not yield better results to the base-
lines is with the GrabCut algorithm on the IIS dataset; i.e.,
the Rectangle baseline performs better by approximately 2%
points. We hypothesize this exception is because the images
typically show more complex scenes and backgrounds, as
suggested by the high pixel foreground and background vari-
ance in Table 1, which causes initializations to sometimes

latch on to a region that does not contain the object of inter-
est. Overall, our findings highlight the value of intelligently
predicting a best-suited algorithm per image from multiple
options rather than relying on a single initialization approach.

We show qualitative results that illustrate the versatility of
our system to initialize the three different segmentation tools
in Fig. 7. As shown, given the same initialization, the three
segmentation tools can produce very similar segmentations
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Fig. 8 Performance of the GrabCut algorithm when refining three different initialization approaches (“Input”) into final (“Output”) segmentations

in some cases (e.g., plot of land in row 6) and dramatically
different segmentations in other cases (e.g., spiculated cell
shown in row 3). We also observe that a segmentation tool
can perform well when using a low quality initialization, as
observed for the image of the cell (row 1, GrabCut algo-
rithm). These qualitative results illustrate our quantitative
finding that applying a refinement algorithm typically yields
considerable improvements over using the input as is (“No-
Refinement”); e.g., by over 20% points for the Lankton level
set algorithm (Fig. 6, “All Images”). More generally, our
system can often automatically produce sufficiently accurate
initializations required by segmentation tools to produce seg-
mentations that resemble the ground truth.

We also show qualitative results that illustrate the failure
cases of our system (Fig. 7; rows 7–9). In some cases, none
of the three segmentation tools performwell when initialized
poorly, as observed for the image of the starfish (row 7) and
flower (row 8). Additionally, the refinement algorithms can
perform poorly in refining an initialization, as observed for
the image of the car which has a noisy initialization that
roughly segments it out and refinements that do not restore
the car (row 9).

We also show results comparing the output from the
GrabCut algorithm initialized with our fully-automated seg-
mentation initialization system as well as two baselines in
Fig. 8. As observed, the quality of segmentation results is
higher with our intelligent selection approach than arbitrar-
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ily chosen initial segmentation estimates (i.e., Rectangle,
Chance). Still, our approach does not necessarily ensure all
fine-grained details of the object boundary are captured, as
observed in columns 1 and 4.

Our results highlight that applying the refinement algo-
rithm to the top-predicted coarse segmentation leads to
improvements over “No-Refinement” for all three refine-
ment algorithms: GrabCut, Chan Vese level set, and Lankton
level set. For example, we observe a 26% improvement when
applying the GrabCut algorithm rather than using the coarse
segmentations alone (Fig. 6, “All Images”). This demon-
strates a benefit of applying refinement algorithms to clean
up coarse segmentations.

4.2.2 Reducing Human Initialization Effort

Thus far we have analyzed the impact of ourmethod in a fully
unsupervised setting, i.e., 0% human involvement. We next
examine the impact of actively allocating human involve-
ment to create coarse segmentation input as a function of the
budget of human effort available. For each segmentation tool,
we compute the average segmentation quality resulting after
the tool refines the collection of chosen computer and human
initializations for all images. These results are also shown in
Fig. 6; i.e., all values greater than 0% human involvement.

Our approach typically outperforms random decisions
(i.e., Chance, Rectangle) and our Linear approach (Gurari
et al. 2016) regarding how to distribute the initialization
effort to humans and computers for all budget levels across
all datasets. Our approach also has the potential to outper-
form all three baselines for all segmentation tools by greater
margins given improved prediction accuracy, as exemplified
by the Perfect Predictor.

In the more challenging setting of eliminating human
effort without compromising segmentation quality, our sys-
tem yields exciting results. Specifically, our system achieves
comparable quality to relying exclusively on crowdsourced
input (i.e., 100% human involvement) while using no human
involvement for all images for GrabCut and human involve-
ment for 35% of images for Lankton level sets (Fig. 6; see
browncircles onfigures).Our results reveal that different seg-
mentation tools can tolerate different amounts of unreliable
computer input without compromising the overall segmen-
tation quality attained when relying exclusively on human
input.

Our findings also highlightwhat, if any, benefits arise from
employing refinement algorithms versus using the input seg-
mentations as is. Overall, we observe that two of the three
refinement algorithms yield considerable improvements for
most budget levels across all datasets: GrabCut and Lankton
level sets. However, we found for these algorithms that it
is beneficial to forego refinement when the available human
budget can cover 80% or more of the images; i.e., the No-

Refinement results tend to outperform Our Predictor. Our
findings underscore the importanceof selecting agood refine-
ment algorithm and understanding its strengths in order to
reap the benefit of our coarse segmentation initialization sys-
tem.

Given the scalability of crowdsourcing, we employed
(non-trained) crowd workers to provide human annotations.
However, employing trained experts instead could lead to
higher quality results from human initializations and so
slightly different quality human-effort trade-offs

4.2.3 Peak Segmentation Quality

Relying on a mix of human and computer efforts can out-
perform relying on either resource alone to create initial
segmentations. For example, peak accuracy forGrabCutwith
our initialization approach is achieved with 55% human
and 45% computer involvement (Fig. 6, GrabCut on “All
Images”). There is a 12% point improvement from rely-
ing on a mix of human and computer input over human
input alone. We attribute this finding to the tool’s shrink-
ing bias, which leads GrabCut to perform poorly when the
initial boundary does not entirely subsume the true object
region. We believe this tendency is especially pronounced
for human-drawn course segmentations for the biomedical
images, as suggested by the algorithm consistently perform-
ing poorly when converting these to final segmentations
(Fig. 6, GrabCut on “BU-BIL”; 100% human involvement).
In addition, we observe slight performance gains for the
Lankton level set algorithm, with the tool fluctuating around
a peak plateau value from 35% to 100% human involve-
ment (Fig. 6, Lankton level set on “All Images”).We attribute
the latter performance fluctuations to slight differences when
the tool expands and shrinks the human and algorithm ini-
tializations as needed to recover the desired boundaries.
More generally, our findings reveal that intelligently replac-
ing human effort with computer effort can be desirable not
only to savemoney and time, but to also collect higher quality
segmentations.

Our findings also demonstrate that the best possible per-
formance across all benchmarked methods is obtained with
the Perfect Predictor for two of the three refinement algo-
rithms (GrabCut and Lankton level set) by relying on more
computer effort than human effort. As observed, the peak
performance arises at ∼10% human involvement for both
algorithms. A natural question is why does the performance
increasingly fall with increasing amounts of human effort.
We hypothesize this fall is partially due to the relative lower
quality of human-annotated coarse segmentations compared
to what is possible with a fully automated approach. Specif-
ically, while the average quality for all human annotations
is ∼58% (Fig. 6, “No-Refinement” for “All Images”; 100%
human involvement), a fully-automated approach yields on
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average 71% (i.e., 0% involvement for Perfect Predictor
for GrabCut and Lankton level set algorithms). We also
hypothesize the performance drop arises partially because
of inadequate performance from the refinement algorithms,
since refining reasonably high quality coarse segmentations
can lead to worse performance than using the coarse segmen-
tations as is for all three refinement algorithms; e.g., ∼60%
for “No-Refinement” versus ∼45% for all remaining meth-
ods for the GrabCut algorithm (Fig. 6; “No-Refinement”
versus all other methods for “All Images”; 100% human
involvement).

4.3 Analysis of Fine-Grained Segmentation System

Lastly,we examine the value of ourPTP framework to predict
when to pull the plug on computers and use human annotation
instead to create fine-grained segmentations. For this second
task, given segmentations from algorithms, the system pre-
dicts which images humans should re-annotate in order to
recover from failures (Sect. 3.1.2).

Implementation Our system automatically feeds initializa-
tions from our fully-automated Coarse Segmentation sys-
tem to the GrabCut algorithm, the top-performing method
found in Sect. 4.2.1. Quality estimates of the resulting
segmentations are then predicted using our top-performing
mask-based predictor (Sect. 4.1). To avoid inadvertently
learning and exploiting dataset-specific idiosyncrasies, we
again employ the cross-dataset predictors.

Baselines To our knowledge, no prior work addresses pre-
dicting when to enlist human versus computer effort for
segmentation. We compare our method to the following
related methods for creating fine-grained segmentations:
- Perfect predictor For each image, the system deploys the
initial algorithm-generated result from 14 options that has
the largest actual Jaccard score, as done in Sect. 4.2. Then,
the system ranks the resulting segmentations from the Grab-
Cut algorithm based on the actual Jaccard scores. Human
involvement is allocated to the images with lowest scores.
This predictor reveals the best results possible with our Fine-
Grained Segmentation system.
- Chance predictor For each image, the system deploys the
commonly-adopted initialization of positioning a bounding
rectangle with respect to the image dimensions (Sect. 4.2,
Rectangle). Then, images for human involvement are ran-
domly selected. This predictor illustrates the best a user can
achieve today.
- Jain & Grauman (J & G) (Jain and Grauman 2013) This
method predicts how to best allocate a given budget of human
time to annotate a batch of images. In particular, it predicts
whether to have humans draw a segmentation from scratch
(54 seconds) versus supply a rectangle (7 seconds) or coarse
segmentation (20 seconds) as input to GrabCut. The sys-

tem was trained on everyday images for GrabCut. We use
publicly-available code.

Experimental design To represent images from the three
imaging modalities with a similar number of images per
modality, we conduct studies on all images fromWeizmann,
IIS, and BU-BIL. Following prior work (Jain and Grauman
2013), we budget 54 s for each segmentation a human creates
from scratch. We examine the impact of actively allocating
human effort using a budgeted approach, ranging from no
human involvement (0 min) to getting all images from the
three datasetsmanually annotated (470min).Wecompute the
average segmentation quality resulting for all chosen human-
drawn and computer-drawn segmentations at each allotted
time budget.

For human input, we collect segmentations from online
crowd workers. We measure the quality as the Jaccard simi-
larity of each crowdsourced segmentation to the ground truth.

ResultsOur system typically outperforms the related state
of art J & G interactive method (Jain and Grauman 2013)
for a wide range of budgets (Fig. 9a). The benefit of our
approach is greatest in the range of 0–40% human involve-
ment, typically eliminating 45–100min of human annotation
effort to achieve segmentation quality comparable the J &
G interactive method (Jain and Grauman 2013). A further
advantage of our approach is that, unlike the J & G (Jain and
Grauman 2013) system, our systemworks even when human
involvement is not available for every image. Specifically, as
observed in Fig. 9a, the J & G method (Jain and Grauman
2013) only becomes relevant at the budget level that supports
human-created bounding boxes for all images (i.e., approxi-
mately at 12% human involvement). Our findings highlight
the value of our system to save human effort.

Our findings also highlight the importance of a strong
predictor for our system. For example, with no human
involvement, our proposed approach could improve a fur-
ther 10% points to achieve the performance of the Perfect
Predictor (Fig. 9a). Furthermore, our system would yield
comparable quality to relying exclusively on crowdsourced
workers while eliminating 16% points of human effort, given
a perfect predictor (Fig. 9a, Perfect Predictor). While there
are clear benefits from our approach, a valuable area for
future work is to further improve the predictor. For example,
while our quality prediction system is currently designed to
be agnostic to the refinement algorithm, it could instead be
retrained using masks generated by the refinement algorithm
towards improving its performance.

Our findings also reveal that relying on amix of human and
computer effort can outperform methods that always assume
human involvement. In particular, for the last 55 images
assigned to receive human annotations (i.e., images with
highest predicted algorithm scores), the system appropriately
chooses computer-drawn segmentations over human-drawn
segmentations for 16% of images. For those images, com-
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Fig. 9 Predicting when to replace segmentations created by a semi-
automatic segmentation tool with segmentations created by (a) online
crowd workers for 522 images representing three imaging modalities.
Our system typically achieves state-of-art accuracy (J&Gmethod (Jain
and Grauman 2013)) while saving up to 100 min of human effort (i.e.,

time difference between curves in the human budget range of 0 to 20%
human involvement). (b) Examples of images which computers seg-
ment more similarly to experts than crowd workers. As intended, our
system often avoids involving crowd workers for these images

puters create segmentations more similar to the ground truth
than crowd workers (i.e., higher Jaccard scores). Example
images where algorithms segment better than the crowd are
shown in Fig. 9b.

5 Conclusions

We proposed two novel tasks for intelligently distributing
segmentation effort between computers and humans. Both
tasks rely on our proposed prediction module that predicts
the quality of candidate segmentations from three diverse
modalities (i.e., visible, phase contrast microscopy, fluores-
cencemicroscopy). For thefirst taskof creating initializations
that segmentation tools refine, our proposed system elimi-
nated the need for crowdsourced human annotation effort for
an average of 55% of images while preserving the result-
ing segmentation quality achieved when relying exclusively
on human input. For the second task of creating high qual-
ity segmentation results, our proposed system consistently
preserved the resulting segmentation quality from a state of
art interactive segmentation tool while regularly eliminat-
ing human annotation time. Our work can relieve lay people
from requiring domain expertise to identify which segmenta-
tion algorithm touseby automatically identifyingwhich from
numerous popular algorithms is best.Moreover, it guides end
users to direct their limited time to where their efforts will
be of most value.

Valuable future research would include generalizing this
work by designing a larger-scale system that supports more
algorithms and image sets. Towards this aim, next steps

include creating a centralized, online repository of seg-
mentation algorithms to which anyone can contribute and
identifying the ideal, complementary subset of algorithms to
use in order to avoid the computational overhead of apply-
ing all segmentation algorithms to each image. Next steps
also include generalizing the idea of automatically solicit-
ing human input when algorithms fail for other tasks such
spatio-temporal tracking of objects in videos. Key issues to
address include how to avoid error drift through the 3D image
stack and what amount of 3D context should be presented to
humans to support their video annotation efforts.
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