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Abstract— Equipping an Intelligent Tutoring System (ITS)
with the ability to interpret affective signals from students
could potentially improve the learning experience of students by
enabling the tutor to monitor the students’ progress and provide
timely interventions as well as present appropriate affective
reactions via a virtual tutor. Most ITSs equipped with affect
modeling capabilities attempt to predict the emotional state of
users. However, the focus in this work is instead on trying
to directly predict the learning outcomes of students from a
stream of video capturing the students faces as they work on
a set of math problems. Using facial features extracted from a
video stream, we train classifiers to directly predict the success
or failure of a student’s attempt to answer a question while
the student has just begun to work on the problem. In this
work, we first introduce a novel dataset of student interactions
with MathSpring, a popular ITS. We provide an exploratory
analysis of the different problem outcome classes using typical
facial action unit activations. We develop baseline models to
predict the problem outcome labels of students solving math
problems and discuss how early problem outcome labels can
be forecasted and utilized to provide possible interventions.

I. INTRODUCTION

An interesting research question for automated affect

analysis in the education domain is to inquire about how

modeling student affect during digital learning experiences

can be utilized to positively impact the student’s overall

learning experience. Intelligent tutoring systems (ITSs) have

been developed with the aim of providing individualized

learning experiences to users. One of the goals of an ITS

is to build models of the student engaged in learning and

the ITS adapting its support mechanisms to personalize the

teaching [13]. Students experience a variety of emotions,

such as interest, surprise, boredom, frustration, confusion and

anxiety, during learning [8] and these displayed emotions

correlate well with their achievement in the learning task

[17]. Equipping an ITS with the ability to interpret such

affective signals could potentially enable it to monitor the

students’ progress, provide timely interventions and present

appropriate affective reactions via a virtual tutor. For exam-

ple, machine learning classifiers can be trained to recognize

the subtle differences in facial behavior when a student

requires hints to solve a problem (Figure 1), so that the ITS

can intervene accordingly.

Affective tutoring systems (ATSs) are ITSs that use one or

Fig. 1. Example images of student when she solved problem on first
attempt (SOF) (top row), and when she required hints to solve the problem
(SHINT) (bottom row).

more sensors to observe the student in order to infer his or

her emotional state while using the ATS. For example, ATSs

such as EER-Tutor [20] and FERMAT [21] automatically

recognize basic emotions, such as happiness, anger and

disgust. In addition to the basic emotions, some ITSs (e.g.

AutoTutor [8], Guru Tutor [16]) can classify learning-specific

emotional states, such as engagement, concentration, confu-

sion, boredom and frustration. Vision-based sensors such as

webcams are suitable for capturing the facial dynamics of

students as they are readily available in the most common

platforms used for interacting with ITSs (e.g. phones, tablets,

laptops) and are less invasive than other sensors, such as

wearable devices that measure physiological signals like skin

conductivity, heart rate, muscle activity or pressure-sensitive

chairs that measure posture.

The availability of domain-specific education datasets that

can be shared by researchers to develop, improve, and evalu-

ate affect-sensing machine learning algorithms can accelerate

development of effective affect analysis algorithms. Con-

sidering the dearth of large-scale, publicly available affect

datasets in learning and education settings, we first collected

a facial affect dataset of videos of students interacting with

MathSpring [1], a web-based mathematics ITS. Most ATSs

equipped with affect modeling capabilities attempt to predict

the emotional state of users. However, our focus is instead on

trying to directly predict the learning outcomes of students.

That is, using facial features extracted from a video stream,

we train classifiers to directly predict the success or failure

of a student’s attempt to answer a question.

In this paper, we describe how and why we collected a978-1-7281-0089-0/19/$31.00 c©2019 IEEE



new dataset of student interactions with MathSpring. We

processed this raw data into a supervised machine learning

dataset, where each data instance corresponds to a videoclip

of a student working on a single problem and its correspond-

ing label is the student’s problem solving behavior (e.g. ask

for hints, solves the problem). We provide an exploratory

affective analysis of the different problem outcome classes

using average facial action unit activations and discuss a

few observed trends. Finally, we present baseline models

to investigate the problem of trying to directly predict the

learning outcome of students solely from affect signals.

Our contributions in this paper are twofold. First, we

introduce a unique and novel dataset consisting of students

videos of 1596 interactions, extracted from more than 30

hours of raw video data. We wish to make this dataset

publicly accessible in order to encourage and foster research

in the intersection of the education and computer vision

communities. We also provide a set of baseline results

of predicting student learning outcomes solely from facial

affect signals and provide a preliminary analysis of the

data, discussing potential proactive interventions such affect-

sensitive models would enable.

II. RELATED WORK

One goal of ITSs is to provide a platform capable of

delivering a personalized learning experience as per the

requirements of the student [13]. A popular example of an

ITS is MathSpring [1], formerly known as Wayang Outpost,

which is a web-based ITS for learning mathematics concepts

for middle and high school students.

An important source of information upon which to pro-

vide personalized feedback is the student’s affective state.

Students display a variety of emotions, such as interest,

flow, surprise, anger, boredom, frustration, confusion and

anxiety, during learning [8]. Emotions felt and displayed

by students correlate well with their achievement in the

learning task [17]. In recent years, advances in computer

vision and machine learning have led to the development of

fast and robust facial expression analysis tools [3]. Adapting

to student affective states as measured by ITSs has been

shown to improve their effectiveness [4], [7]. Grafsgaard et

al. [12] showed that different facial expressions correspond

to different learning experiences.

Student affect has been modeled using a variety of signals

including student self-reports [19] and log data [5]. A com-

mon signal channel used by ITSs to model affective states is

camera-based captures of students’ faces. For example, EER-

Tutor [20] and FERMAT tutor [21] track the facial features

of the users with a video camera to classify the user’s face

to basic emotional states such as happy, smiling, angry and

neutral. In contrast to the well-studied basic emotions, it has

been shown that learning-centric emotions such as boredom,

engagement and confusion feature more prominently during

the process of interacting with ITSs [2], [10]. AutoTutor [8]

uses a video camera as well as a pressure-sensitive chair

to recognize learning-centric emotional states such as flow,

confusion, boredom, frustration and eureka. Guru Tutor [16]

Fig. 2. Example images of dataset collected from different modalities:
A front facing webcam captures the subject while she looks at the screen
(top row), a secondary GoPro camera is placed at an angle on the laptop
trackpad in order to capture the student’s face when she faces down to work
on the problem at hand (bottom row).

utilizes a video camera and eye tracker to measure a student’s

level of interest and boredom. Whitehill et al. [18] presented

computer-vision based techniques for automatic engagement

detection. D’Mello et al. [9] introduced an advanced, analytic

and automated approach to measure engagement at fine-

grained temporal resolutions.

Although research in automated affect analysis has a long

history, the few publicly available datasets in the education

and learning domain are often limited to user engagement

prediction [6], [15]. Instead of using affect signals to predict

the user’s emotional state, we wish to directly forecast

student learning outcomes, which makes our dataset unique.

III. DATASET COLLECTION AND ANNOTATION

The dataset consists of video recordings of college stu-

dents participating in problem-solving sessions in Math-

Spring, a popular browser based ITS intended to aid students

in the learning of mathematics concepts. A total of 30 under-

graduate college students (4 males, 26 females) participated

in the study, with several students taking part in multiple

sessions, each of which lasted approximately one hour. In

total, 38 student sessions were recorded, from which 1596

problem samples were extracted.

The data was collected in a classroom setting, where the

students were asked to solve MathSpring problems on a

laptop, while being recorded by two cameras: the laptop

webcam along with an auxiliary GoPro camera placed on

the trackpad of the laptop (Figure 2). The webcam has a

good view of the participant’s face while they read problems

and interact with the ITS, but usually loses view of the face

when students look down to work on problems on paper

on the desk. The secondary camera captures the faces of

participants during the time while they are looking down and

their faces are not visible to the webcam. All participants

provided consent for their recordings to be included in

a public dataset. The protocol was approved by IRBs at

the participating institutions. In addition, mouse location

trajectories and clicks were also captured and logged by

the MathSpring interface. A third video stream captured the

activity on the screen, including the user interface of the ITS

and the user’s mouse interactions with it.

Each data instance consists of a video clip of the student

working on a single problem. These were obtained by



Fig. 3. Average Action Unit Occurrence distributed according to effort labels. For each subplot, the x-axis represents the 7 student learning
outcome classes whereas the y-axis represents the mean AUO score as defined in Eq. 11. Grayscale images depicting the AUs were obtained from
https://www.cs.cmu.edu/?face/facs.htm

TABLE I

THE NUMBER OF OCCURRENCES AND AVERAGE TIME TAKEN TO

COMPLETE FOR EACH CLASS IN THE DATASET.

Class Frequency Average Time
ATT 172 38 seconds
GIVEUP 13 64 seconds
GUESS 148 39 seconds
NOTR 81 10 seconds
SHINT 159 87 seconds
SKIP 99 18 seconds
SOF 919 28 seconds

trimming the raw videos based on problem start and end

times recorded in MathSpring’s log file. The class label for

each data instance is the problem-solving effort outcome

label, which is automatically generated by MathSpring. The

labels are: ATT (student did not see any hints but solved

the question after 1 incorrect attempt), GIVEUP (student

performed some action but did not solve the problem at all),

GUESS (student did not see hints, but solved the question

after greater than 1 incorrect attempts), NOTR (student

performed some action, but the first action was too rapid for

him to have read the problem), SHINT (student eventually

got the correct answer after seeing one or more hints), SKIP

(student skipped problem with no action) and SOF (student

answered correctly in first attempt, without seeing any hints).

IV. EXPLORATORY DATA ANALYSIS

We visualized how often and with what intensity various

Facial Action Units (AUs) occurred on average for the

different effort classes of the entire dataset. For each data

instance, we aggregated AU presence values weighted by

their respective intensity values and normalized them by the

total number of frames in which the face was detected:

AUOa =
1

N

∑

j

AUIja ×AUP j
a , (1)

where, AUOa represents the mean Action Unit Occurence

for AU a of the video, N represents the number of frames

in the video in which the face was detected and AUIja and

AUP j
a represent the presence and intensity values of AUa

for frame j respectively.

For all videos, we computed the mean AUO for 17 AUs

whose presence and intensities were detected by OpenFace

[3] and plotted them separated by effort classes (Figure 3).

From the mean AUO plots, we can observe some interesting

trends. AUs 4 (Brow lowerer), 7 (Lid tightener) and 17

(Chin raiser) are activated comparatively highly across all

effort labels, whereas AUs 2 (outer brow raiser), 5 (upper

lid raiser) and 20 (lip stretcher) are not. It is interesting to

note that AUs 2, 5 and 20 are associated with the emotions of

fear and surprise. Moreover, the mean AUOs across all AUs

tend to be higher for instances labeled SHINT compared

to inputs labeled SOF, indicating that participants display

more affective expressiveness when requiring hints to solve

a problem compared to when they solve them at first attempt.

V. BASELINE MODELS

The input to our baseline models consists of variable-

length webcam videoclips of participants working on Math-

Spring problems. A significant proportion of the frames

contain full frontal faces of the subject, representing times

when they are interacting with the ITS (i.e., reading the

problem, thinking about the solution, answering the question

and interacting with the on-screen educational avatar). For

the baseline models, frames where the frontal face of the

subject could not be detected due to occlusion by the hand

or severe out-of-plane rotation of the head were discarded

from the training and testing procedures.

Feature Representation: For each frame of all the videos

in the dataset, 18 AU presence and 17 AU intensity values,

along with head-pose and eye-gaze vectors, are extracted

using OpenFace [3]. In order to compute an aggregate feature

representation, we used statistics (mean, standard deviation,

min and max) for each feature as well as statistics for their

derivatives to produce a uniform length 376-dimensional



Fig. 4. Mean F-scores for a multiclass classifier (Left), Confusion matrix for the 7-class student effort prediction (Middle), and mean F-scores for
one-vs-all binary classifiers trained for different problem outcome labels (Right).

feature representation. The derivatives capture the change

in feature activations at each timestep. The mean, standard

deviation, min and max are representative summary statistics

of the variable-length features and capture the distribution

and range of values for each feature, which can be used by

the classifier to distinguish samples from different classes.

Experiments: Due to class imbalance, we trained and

tested our models on 5 random, stratified 75/25 splits of

the data for all our experiments. We trained a multi-layer

perceptron with 2 hidden layers, each with 100 activation

nodes, using Adam [14].

Ideally, an affect-sensitive model should be able to accu-

rately predict the effort label of the user as early as possible,

in order to enable quick and effective interventions by the

ITS. Therefore, we tested our classification models when

only a fraction of the data is observed during test time. In

order to do so, we first trained models on the first 1, 5, 10

and 30 seconds, as well as the entire length of the input and

tested them on corresponding test conditions.

We first trained a model for the multi-class effort predic-

tion task. Our baseline model trained and tested on the entire

length of the input obtained a mean accuracy of 0.54 and a

mean F-score of 0.27. Given that our dataset is imbalanced

with more than half the samples corresponding to the ‘SOF’

label, the predictions of our model are heavily biased towards

that label, as is evident in the figure depicting the normalized

confusion matrix (Figure 4 Middle).

We also trained individual one-vs-all binary classifiers for

all effort labels. A model capable of predicting each of these

indicators can help the ITS make decisions with regard to

providing proactive interventions. For example, a model that

can successfully predict whether a student can answer the

question on the first attempt can prompt the ITS to increase

difficulty levels of subsequent questions. Similarly, if the

student is predicted to require hints to solve the problem,

the ITS can proactively offer a hint before the student

asks for it. We find that baseline binary models perform

better when predicting SHINT, NOTR and SOF, indicating

that facial affect signals displayed during problem-solving

corresponding to these labels are the most discriminative.

In Figures 4 Left and 4 Right, we plotted the F-scores

for the various problem outcome labels, as obtained by the

models, when predicting problem outcomes after observing

1 second, 5 seconds, 10 seconds, 30 seconds as well as the

entire length of the data instance, for the multiclass and

binary classification settings respectively. We can observe

that model performance, expectedly, increases as features

computed from longer temporal sequences are available.

Based on these experiments, our baseline models are better

at accurately predicting SHINT, NOTR and SOF compared

to predicting ATT, GIVEUP, GUESS and SKIP.

VI. CONCLUSIONS AND FUTURE WORKS

We investigated the problem of trying to predict the

learning outcome of students from facial affect signals, based

on a novel dataset of videos of students interacting with

MathSpring, a popular web-based ITS. We developed models

to directly predict the learning behavior of students from

concise action unit-based feature representations that capture

the facial affect dynamics of the input video.

There are several avenues for improving performance

obtained by the baseline models. A multi-modal model that

utilizes signals from all streams of information in the dataset

including the GoPro video stream, the mouse movements and

clicks, as well as the video stream of the screen activity will

probably result in better predictive performance. Moreover,

training models that explicitly utilize the temporal dynamics

of how facial behavior evolves over the duration of the

student’s interaction with the ITS could potentially yield

further improvements in model performance. Finally, the

biggest challenge in ATSs is to utilize these affect-sensitive

models to provide appropriate and effective interventions

that quantifiably improve the learning experience. There have

been some recent works that have ventured in this direction

[11]. In future work, we plan to provide personalized inter-

ventions in MathSpring based on the proposed affect analysis

models, and conduct experiments to validate the effectiveness

of the interventions. Lessons learnt from this initial analysis

will also inform future data collection strategies. We intend

to use richer data sets to investigate whether the system can

predict changes in student learning behaviors and strategies.
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