EyeKeys: A Real-time Vision Interface Based on Gaze Detection from a
Low-grade Video Camera

John J. Magee, Matthew R. Scott, Benjamin N. Waber and Margrit Betke

Computer Science Department, Boston University
111 Cummington St., Boston, MA 02215
{mageejo, mrscott, bwabes, betke}@cs.bu.edu
http://www.cs.bu.edu/fac/betke/

Abstract

There are people that are so severely paralyzed that they
only have the ability to control the muscles in their eyes.
Communication is limited to the interpretation of eye move-
ments. Currently available human-computer interface sys-
tems are often intrusive, require special hardware, or use
active infrared illumination. We present a system that runs
on an average PC with video input from an inexpensive USB
camera. The face is tracked using multi-scale template cor-
relation. Symmetry between left and right eyes is exploited
to detect if the computer user is looking at the camera, or
off to the left or right side. The detected eye direction can
then be used to control applications such as spelling pro-
grams or games. We developed the game “BlockEscape” to
gather quantitative results to evaluate our interface system
with test subjects. We also compared our system to a mouse
substitution interface.

1 Introduction

The ability to control eye muscles is sometimes the only re-
maining voluntary movement paralyzed people have. Com-
munication abilities are severly limited, often to yes and no
responses using eye movements or blinks. Future computer
assistive technologies will someday stop a mind from being
trapped in a body. As progress toward that goal, we present
an interface called EyeKeys based on gaze detection that
exploits the symmetry between left and right eyes.

There has been much previous work in computer assis-
tive technologies. Most of these methods, though successful
and useful, also have drawbacks. Currently available sys-
tems are often intrusive, and use specialized hardware. For
example, the EagleEyes system [4] uses electrodes placed
on the face to detect the movements of the muscles around
the eye. It has been used with disabled adults and children
to navigate a computer mouse. One problem is that the sen-

0-7695-2158-4/04 $20.00 (C) 2004 |EEE

sors must touch the user’s face, which may be the only place
the person has feeling, thus making the sensors intrusive.
Another approach [2] uses head mounted cameras to look
at eye movements. It takes advantage of the fact that the
face will always be in the same location in the video image
if the head moves around. However, large headgear is not
suited for all users, especially small children. Given the is-
sues with systems that require the interface to be attached
to the user, is it one of our goals to design a non-intrusive
system that does not need attachments.

Another successful system is the Camera Mouse [3].
Disabled people control a mouse pointer by moving their
head, finger, or other limbs, while the system uses video to
track the motion. This is successful for those who can move
their heads or limbs; however, people who can only move
their eyes are unable to use it. These are the people for
whom we aim to provide a communication device. A sec-
ond goal of our system is therefore to use only information
from the eyes.

Many systems that analyze eye information use special-
ized hardware. The use of active infrared illumination is
one example [5, 7, 8, 9, 10]. Usually, the infrared light re-
flects off the back of the eye to create a distinct “bright eye”
effect in the image. If the light is synchronized with the
camera, the eyes are located by differencing the bright eye
image with the image without infrared illumination. One
technique to find the relative gaze direction is to find the
difference between the center of the bright eye pixel area,
and the reflection off the surface of the eye from the light
source. There are concerns about the safety of prolonged
exposure to infrared lighting. Another issue is that some of
these systems require a complicated calibration procedure
that is difficult for small children to follow.

Avoiding specialized hardware is an important goal of
our system. This means that our system must run on a con-
sumer grade computer. In addition to avoiding infrared light
sources and cameras, we decided to build the system around
an inexpensive USB camera. The system can therefore be

Face Tracker Eye Analysis

Motion stabilization

Color and motion

analysis Projection of
Video Input —» || | difference between . Output:
left and right Left, Right event
Template correlation eye images or Center (Default)

over image pyramid

Comparison of min and
max to thresholds

Figure 1: Major functions of the face tracking and eye analysis system.

run on any computer without the need for an expensive
frame grabber or pan/tilt/zoom camera. Our system must
be able to work with images that have a lower resolution
than the images used in previous approaches [13, 14].

To be a useful human-computer interface, the system
must run in real time. This excludes many existing ap-
proaches that do not run in real time. In addition, the sys-
tem can not use all of the processing power of the computer
because the same computer will have to run both the vi-
sion based interface as well as user programs such as web
browsers or games.

EyeKeys tracks the face using multi-scale template cor-
relation. The left and right eyes are compared to determine
if the user is looking center, or to the left or right side. The
output of our system can be used to control applications
such as spelling programs or games.

We tested EyeKeys on the BlockEscape game. This
game was developed specifically as an engaging way to test
our interface system while reporting quantitative results.
This is important because it motivates users and test sub-
jects to try the system. Since we designed the game, we can
use it to gather statistics on how well the interface works for
various situations that we create.

This paper is organized in the following fashion: Sec-
tion 2 discusses the methods employed in the EyeKeys sys-
tem itself, including a thorough description of the EyeKeys’
modules and the BlockEscape game. Section 3 details our
experiments and results, while section 4 presents an in-
depth discussion of our results, comparisons to other HCI
systems, and plans for future extensions to our system.

2 Method

The system consists of two main modules: (1) the face
detector and tracker, and (2) the eyes analysis module.
Throughout the system, efficient processing techniques
must be used to avoid wasting computing power. Major
components of the system are presented in Figure 1.

In order to facilitate working with the eyes, we devel-
oped a simple but fast 2D face tracker. From the scale and

0-7695-2158-4/04 $20.00 (C) 2004 |EEE

location of the found face, a region of interest for the eye
analysis module is obtained. The eye analysis module then
determines if the eyes are looking towards the center, to the
left, or to the right of the camera.

The output from the eye module can be the input to a
simple computer control interface. Usually, looking center
means “do nothing.” The interface system can then map the
left and right outputs to events such as mouse movements,
left and right arrow keys, or tab and enter (“next link” and
“follow link” for web browsing). Text can be entered in
a variety of ways. An on-screen keyboard can scan to the
correct letter, or letters can be selected by following a binary
search approach. Some of this type of software is already in
use with current interfaces for people with disabilities [3, 4,
6].

2.1 Face tracker

The face tracker itself consists of various modules, some
of which are parts of previous face tracking approaches,
e.g. [16]. Color and motion information is combined to cre-
ate a mask to exclude areas of the search space for the cor-
relation template matching. To deal with different scales,
the system uses image pyramids [1] along each step. The
pyramid consists of the input image at 640 x 480 with 8
stages to the lowest resolution of 32 x 24. The combined
output from the color and motion modules is used as a mask
to exclude regions of the image at every pyramid level from
the search. Normalized correlation is used to match a small
12 x 16 template along each stage of the pyramid.

Color module. Skin color has been used to track faces
previously, e.g. [11]. Here, it is used as a preprocessing
mask. The color input image is converted into the YUV
color space. A binary image is created with a 2D histogram
lookup in UV space. If a pixel’s lookup on the histogram
for the specified UV value is over a threshold, then the pixel
is marked as skin, otherwise not. The binary image is then
decimated into the other levels using Gaussian blurring. A
box filter is applied to the whole pyramid to make each level
represent the color information for the appropriate scale of
the face to search for.

The color histogram was trained on 15 face images. The
images were marked by hand with a rectangle covering
most of the facial regions. In cases where the color seg-
mentation fails to provide good results, the histogram can
be retrained on the fly simply by clicking on areas of skin
in the live video. The histogram can be saved and loaded
so that it can be used again for the same user or lighting
conditions without retraining.

Motion module. A simple assumption is behind the mo-
tion module: if the person moves, then motion detection
should find where they are moving, otherwise the person
should be found in nearly the same location as in the pre-
vious frame. Frame differencing creates a motion image,
which is then thresholded to create a binary image. The bi-
nary image is then decimated into a pyramid as in the color
module, and a box filter is applied to account for scale.

The locations within 5 pixels of the previously found
face location are set to one in the binary motion image. This
prevents the motion mask from excluding the previous face
location from the correlation search in cases when there is
little or no motion. The two adjacent motion pyramid lev-
els are also modified in this way to account for movements
towards or away from the camera that are not caught by the
motion segmentation. The area modified is proportional to
the scale represented by the respective pyramid level.

Correlation module. Normalized correlation template
matching is used to find the exact location of the face. A
12 x 16 face template is then correlated over all levels of
the greyscale input pyramid (Y channel from the YUV color
image).

The small face template allows the correlation to find a
general face in the image, which is created by averaging
the brightness values of 8 face images. Matching this tem-
plate over the pyramid allows for faster correlation while
preserving the relevant information in each level. The max-
imum correlation peak among all of the levels indicates the
location of the face. The scale of the face is known by the
level of the pyramid at which the maximum is found.

The template can be updated from the current video feed
by clicking on the nose and then selecting the correct scale
of the face from a slide bar.

2.2 Eye analysis

From the output of the face tracker, approximate location
and scale of the eyes are known based on common anthro-
pomorphic properties. Two images around the region of in-
terest are cropped out from the highest resolution level in
the pyramid. Movement of the head in the image plane or
into different scale levels of the pyramid are accounted for
to keep eyes near the center of the cropped images. The im-
ages are scaled using linear interpolation to 80 x 60 pixels.

0-7695-2158-4/04 $20.00 (C) 2004 |EEE

Motion analysis and stabilization. Ideally, the two eye
images would stay perfectly still even as the head moves.
However, slight movements of the head by a few pixels may
not be accurately tracked by the face tracker. A method
must be used to stabilize the images for comparison, since
motion will occur during blinks and eye movements. The
method chosen here to locate the center of the eyes is frame
differencing to make a motion image as in Figure 3, and
then computing the first order moments. These “center”
points are used to stabilize the image by adjusting location
of the region of interest in the face image so that the eyes
appear in the same locations in the eye images. Using this
method, the eye images do not need to have as high resolu-
tion as required by many feature based location methods.

Figure 2: Motion detected by frame differencing is thresh-
olded and used as a mask for the left-right image differenc-
ing.

Left-right eye comparisons. The left and right eyes
are compared to determine where the user is looking. The
left eye image is mirrored and subtracted from the right eye
image. If the user is looking straight at the camera, the dif-
ference should be very small and the system determines that
the user is looking straight. On the other hand, if the eyes
are looking left, then the mirrored left eye image will be
looking right as shown in Figure 3.

The signed difference between the two images show dis-
tinct pixel areas where the pupils are in different locations
in each image. The unsigned difference can be seen in Fig-
ure 4. To further reduce extra information from the image
areas outside of the eyes, the images are masked by their
thresholded motion images. To determine the direction, the
signed differences are projected onto the x-axis. The results
of these projections can be seen in Figure 5. The signed dif-
ference will create peaks in the projection because the eye
sclera pixels are lighter than pupil pixels. When the eyes
look straight, these values nearly cancel themselves out cre-
ating low differences. When the person looks left, there will
be an area of sclera minus pupil pixels followed by an area
of pupil minus sclera pixels along a horizontal axis. This
computation is thus a light area minus dark area resulting
in an area with large positive values, followed by dark area
minus light area, resulting in an area with large negative val-
ues. The opposite order holds true for right-looking eyes.

A strong positive peak followed by a negative peak in
the projection indicates left direction, while a strong neg-
ative peak followed by a positive peak indicates right di-

rection. If the positive or negative peaks do not exceed a
certain threshold, then the default (looking center) value is
the output.

(a) Right eye looking left (b) Mirrored left eye looking left

Figure 3: Eye images automatically extracted from input
video by face tracker and aligned by motion analysis.

Figure 4: Difference between right and mirrored left eyes.
Left: Eyes are looking to the left; arrows highlight large
brightness differences. Right: Eyes are looking straight
ahead.

Let I, and I,. be the m x n left and right eye im-
ages masked by motion information. The projection of the
signed difference onto vector a = ay, ..., a,, is computed
by:

n

a; =Y (I(i,5) = Ie(m — i,). (1)

Jj=1

Two thresholds T, and Ty, are used to evaluate whether
a motion occurred to the right, left, or not at all. The thresh-
olds can be adjusted to change the sensitivity of the system.
First, the maximum and minimum components of the pro-
jection vector a and their respective indices are computed:

Umin = min (a;) and amax = max (a; 2)
i={1,..., m}() i={1,..., m}()
imin = argmin (a;) and ipax = argmax (a;). (3)
i={1,....m} i={1,....m}

The minimum and maximum values are then compared to
the projection threshold 7T},:

Omin < =1 and amax > Tp. 4)

This threshold assures that there is a sufficient brightness
difference to indicate a left or right motion. The second

0-7695-2158-4/04 $20.00 (C) 2004 |EEE

Projection during a Left Look

Brightness difference «;

Eye image width

Projection during a Right Look

Brightness difference «;

Eye image width

Figure 5: Results of projecting the signed difference be-
tween right and mirrored left eyes onto the x—axis. The top
image is the result of left-looking eyes. The bottom image
is the result of right—looking eyes.

threshold 7} is used to guarantee a minimal spatial differ-
ence between the minimum and maximum projection values
when motion is detected. The direction of motion is deter-
mined as follows:

imax — min > Tyq = ‘right motion’ (5)
imax - imin < _Td = ‘left motion’. (6)

2.3 C(lassification

Information from both the motion and comparison analysis
are combined to determine if there was an intentional look
to the left or right. The system searches for motion to the
left, followed by eye direction to the left in order to trigger
the “user has looked left” event. The corresponding right
event is similarly triggered.

A limit was set on how frequently events can be triggered
in order to avoid the system from becoming confused and
triggering many events in quick succession. In the future
however, it may be preferable to let the user keep looking to
one side in order to trigger many events in a row to simulate
holding down an arrow key. Audio feedback or multiple

Figure 6: Screenshot of the game BlockEscape. The player
navigates the block through the holes by moving the mouse
left or right as the block falls towards the bottom of the
screen.

monitors would be needed to let the user know when events
are triggered.

2.4 BlockEscape game

BlockEscape is an easy to learn game which allows for an
interactive and engaging user experience while concurrently
providing a useful framework for testing HCI techniques.
Its development was motivated by the fact that many appli-
cations whose primary goal is testing an HCI system ignore
that the test subject cannot be expected to remain attentive
for long periods of time. Providing an enjoyable game as
a statistics gathering device allows subjects to play for long
stretches of time, and thus allows for us to retrieve a large
amount of data while tests subjects use EyeKeys. Figure 6
shows a screenshot of BlockEscape.

The rules of the game are as follows. The wall levels,
which are the black rectangles in Figure 6, are fixed ob-
jects that move upwards at a constant rate. The user, who
only controls the white block, must lead it into the holes be-
tween these walls, where it will “fall through” to the next
wall level. The user is restricted to move the white block
horizontally in two directions: left and right. The block
movement is triggered by issuing a ‘left motion’ or ‘right
motion’ command. The command can be issued using the
EyeKeys interface, the mouse, or the left/right keys on the
keyboard. The block will continue to move in that direction
until the wall level is exited or a key in the opposite direc-
tion is pressed. When the block reaches the bottom of the
screen, the user wins. Conversely, if the block ever reaches
the top of the screen, the game ends.

There are numerous ways to configure game play. The
significant configurations are game speed and distance be-
tween walls. The game speed specifies the how often the

0-7695-2158-4/04 $20.00 (C) 2004 |EEE

game state is updated: by increasing this setting, the game
is made slower and therefore more easy to play. The game
difficulty can be similarly be modified by setting the dis-
tance between successive walls. These settings allow the
game to be configured appropriately for the abilities of the
user with a chosen interface method.

Methods for gathering statistics. Incorporated within
BlockEscape is the functionality to gather detailed usage
statistics that are generated and recorded during game play.
These statistics offer a detailed view of the blocks move-
ments throughout the game, including a score that gauges
the users movement “mistakes” compared to “good” move-
ments.

Suppose that the block is on the rightmost side of the
screen, and that there is one hole on the leftmost side of the
screen. It would be a mistake, then, if the user moved to
the right at any time, since there is clearly only one possible
movement that will lead to success. In cases with multiple
holes on a particular wall level, if there is a clear choice
which direction to choose, then statistics can still be re-
ported. The following equations are used to determine these
player deviations:

dij = |z35 — Ry (7)

Dij_{ 0 lfdij<dij,1,0r]:0 (8)

1 otherwise

where h; is the hole’s position on wall level ¢ and zj; is
the block’s position on wall level 4 at time j. Distance d;;
is defined as the distance from the block’s current position
to the hole and Dj; determines whether the block is closer
or farther away from the nearest hole. We also define the
normalized deviation for wall level ¢ as:

1 &
i=—> Dj 9
o Sgg j ©)

where s is the current block speed in pixels, g represents
the width of the game board in pixels, and W is the number
of cycles the block is on wall level ¢. The standard devia-
tion 04y, averaged over all wall levels, was approximately
zero in our tests with users employing a keyboard. There-
fore, we can assume that all movement errors encountered
during testing are not due to user error resulting from diffi-
culty of the game itself, but are instead due to the interface
system being employed. These errors are represented by a
deviation score in the final statistics report, which displays
the number of deviations for each individual wall level, and
a coordinate-pair listing denoting the pixel extents of each
individual wall in the wall level.

This information may then be used to reconstruct the ex-
act wall level sequence as was seen in a previous game, al-
lowing the user to play the same game multiple times. This

is useful in that it we can now use the same wall level se-
quence on multiple users, and thus get results that are com-
parable.

3 Experiments and results

3.1 EyeKeys performance evaluation

Experimental setup. EyeKeys is designed to be used by a
person sitting in front of a computer display. The camera
is mounted on the end of an articulated arm, which allows
the camera to be optimally positioned in front of a computer
monitor. The USB camera we used is a Logitech Quickcam
Pro 4000, with a retail price of $79.99. The tests were run
on an Athlon 2100.

Tests were created to determine if the system can detect
when a user intentionally looks to the left or to the right.
The average face template used by the tracker was first up-
dated to include the test subject. Testers were told to look
at the computer monitor. When asked to look left, the tester
should move their eyes to look at a target point to the left
of the monitor. A similar target was to the right side of the
monitor. After the look was completed, the user should look
back at the monitor.

We created a random ordered sequence of twenty looks:
ten to the left and ten to the right. The same sequence was
used for all the test subjects. If the system did not recognize
a look, the user was asked to repeat it. The number of tries
required to make a recognition was recorded. If the system
made an incorrect recognition, that fact was recorded and
the test proceeded to the next look in the sequence.

Results. Our system was tested by 8 people. All of the
faces of the test subjects were correctly tracked in both lo-
cation and scale while moving between 2 and 5 feet from
the camera. Our system correctly identified 140 out of 160
intentional looks to the left or right. This corresponds to an
87.5% success rate. For the system to detect and classify
160 looks, the users had to make 248 attempts. On average,
1.55 actual looks are made for each correctly identified look
event. The results are summarized in Table 1.

Table 1: Results of testing the user interface system on a
sequence of left and right looks.

Actual
Left | Right | % Correct
Observed | Left 72 12 90.0%
Right 8 68 85.0%
Missed | 40 48

Some of the test subjects were more successful than oth-
ers. One subject had all 20 looks correctly identified while
making 24 actual looks. Cases where an incorrect recogni-

0-7695-2158-4/04 $20.00 (C) 2004 |EEE

tion occured were due to a problem with alignment of the
right and mirrored—left eyes. The number of extra look at-
tempts is probably due to high thresholds that were chosen
to avoid false detection of looks, since it is better to miss
a look than to misclassify a look. Other incorrect recogni-
tions were due to the system missing a look in one direction,
but detecting eye movement back to the center position as a
move in the opposite direction.

3.2 BlockEscape experiment

Experimental setup. Four test subjects participating in this
experiment were read the rules of BlockEscape, followed by
two demonstrations of the game using a mouse. We chose to
test the Camera Mouse in this experiment in order to gauge
the effectiveness of EyeKeys against a previously developed
HCI system for people with disabilities. The keyboard was
chosen as a control against the HCI systems. All subjects
were unfamiliar with BlockEscape, EyeKeys, and the Cam-
era Mouse.

In the “practice” phase, the subjects were allowed to
become familiar with the game and the interfaces. They
played up to three trial games, or for up to three minutes,
on the keyboard, Camera Mouse and EyeKeys. They were
then asked to play at least one game for 30 seconds with
each device.

For the “trial” phase, the test subjects played three games
on each input device, the results are shown in Table 2.

Table 2: Results of four users employing three devices to
play BlockEscape. Units are percetage of game playing
area.

Device
EyeKeys | Camera Mouse | Keyboard
Cavg 2.9 2.27 0
Median 2.54 0 0
Std. Dev. | 4.01 2.68 0
Wins 19 (83%) | 15 (83%) 5 (100%)

Results. Notice that the win percentage of EyeKeys
compared to the Camera Mouse was the same, although
EyeKeys had a higher 0,5, median, and standard devia-
tion. It is also of interest that a Camera Mouse failure re-
quires manual intervention to correct, while an EyeKeys
user could merely look in the appropriate direction to cor-
rect a mistake. The keyboard control is obviously the most
accurate way to play the game for those that are able, how-
ever, the results demonstrate that our system works well
enough as an interface to play this game, and that it is com-
parable to an existing interface that is in actual use.

Users had different levels of success with EyeKeys. One
user mastered EyeKeys quickly, winning all three games,

but had trouble with the Camera Mouse: losing one game
and performing poorly on another. With EyeKeys, all
the other users improved their performance on succeeding
games. This did not hold true for the Camera Mouse.

3.3 Initial experience: A test user with severe
disabilities

We were able to hold a preliminary test of the EyeKeys sys-

tem with a user with cerebral palsy. This user can control

his eyes and has some control over head movements. How-

ever, he also has involuntary head movements.

We asked him to use the EyeKeys system to move a win-
dow left and right across the screen. We observed that he
was able to move the block in the direction that we asked
him to in most cases. Sometimes, involuntary head motion
would cause the system to detect an unintentional eye event.
Adjusting the thresholds in future tests may allow the sys-
tem to work better with these unpredictable changes in the
location of the head.

3.4 Real-time performance of system

Our system achieves real-time performance at 15 frames
per second, which is the limit of the USB camera at 640 x
480 resolution. The BlockEscape game had no problem
running concurrently with the real-time vision interface sys-
tem. Our experience indicates that the performance of our
system easily enables it to run concurrently with other ap-
plications such as spelling programs and web browsers.

4 Discussions and future work

Real-time performance. The correlation module of the
face tracker is the most computationally expensive function
required in our system. The face tracker employs multi-
scale techniques in order to improve real-time performance.
The template correlation over the image pyramid is more ef-
ficient than performing multiple correlations with a scaled
template. In addition to improving accuracy, the color and
motion information is used to reduce the search space of the
template correlation, further improving efficiency.

The eye analysis is relatively computationally inexpen-
sive. The eye direction is computed in time linear to the
size of the eye image.

Design motivations. The ability to update the average
face template is important for the correlation tracker. This
can help fix two problems. The average face template al-
lows most people to use the system without manual ini-
tialization. However, if the user’s face does not correlate
well with the current template, the updated template will be
more specific to the user and will work better. A template

0-7695-2158-4/04 $20.00 (C) 2004 |EEE

from one person generally works well in finding another
person since the information contained in the template is
non-specific. Another significant benefit of being able to
change the template is that an updated template will allow
the correlation to work better under different lighting condi-
tions. The template can be saved and loaded so that it does
not have to be retrained for the same user or lighting condi-
tions. While normalized correlation can work with uniform
intensity changes, it has problems if the user becomes more
brightly lit from one side. Updating the template solves this.

The approach of EyeKeys to exploit symmetry works
well even though the eye images are of low resolution.
Other more sophisticated approaches of gaze detection that
model the eye features require higher resolution eye images.
In the cases where eye features such as corners of the eyes
or curve of the iris cannot be used, the difference mirror-
ing approach allows eye direction classification to still be
successful.

The two thresholds that determine when the user looks
right or left are adjustable. Increasing 7}, makes the system
more likely to miss an intentional look, but less likely to
misclassify a look. Increasing T}; has the effect of requiring
that the looks be faster and more deliberate. While this can
decrease false detections, it also makes the system difficult
and uncomfortable to use.

Testing experience and comparisons. Our test subjects
had little difficulty learning the EyeKeys interface. After
only a minute of practice, users were able to play Block-
Escape. In addition, most subjects improved after each
game, leading us to believe that EyeKeys users will become
as proficient as Camera Mouse users over time. With further
testing we may determine if experienced users of EyeKeys
outperform those users of the Camera Mouse.

In comparison to the Camera Mouse, our system per-
formed well. When the mouse tracker gets lost in the Cam-
era Mouse, the performance decreases dramatically. In our
system, a false detection can be easily rectified by a correct
detection. This, however, is specific to certain applications.
For instance, if our system caused a web browser to follow
a hyperlink in error, then it would be difficult to return to
the original page without manual intervention. A possible
solution would be to detect other events, such as blinks, to
serve as an undo command. Another solution would be to
add a “confirm” step.

Since this system was designed as an HCI application,
it was expected that the user would be cooperative and try
to make it work. This is in contrast to a surveillance appli-
cation where the subject may not know about the system.
The face in the images is thus assumed to be frontal to the
camera. Head turns or rotations can cause the face tracker
or eye direction classification to break. Future tests will de-
termine the limitations of head orientations and the use of
eye glasses with this approach.

Future work and improvements. EyeKeys has the po-
tential to become an integral part of a complete HCI sys-
tem [12, 15]. Combining EyeKeys with other HCI applica-
tions would give the user greater control over the computer,
and if utilized with other facial processing techniques, could
prove to be an all-purpose command interface. While the
current research is focused on creating an interface system
for people with severe disabilities, gaze detection systems
such as EyeKeys can be useful in other areas such as lin-
guistic and communication research, or monitoring a vehi-
cle driver’s attention.

The system could be improved with an algorithm to more
precisely locate the eyes. This would allow the left-right
detection to be more robust during head movements. It
would also possibly allow detection of the degree that the
eyes are looking to the side. Analysis of the difference pro-
jection could be done in a more sophisticated manor: fitting
a function to the curve may improve detection accuracy.

Our system should also work better with head motion.
One solution could be to not allow eye movement detection
when the head is moving. However, that may cause a prob-
lem for disabled users that have involuntary head move-
ments.

Future possibilities for extending this system include the
addition of a blink analysis module [6], which would give
the interface three events to work with. Unfortunately, many
subjects with severe cerebral palsy cannot control their eye
blinks. Another way to extend the system is with further
analysis of the duration that the user looks left or right to
allow mapping of more events to additional commands.

Eventually, it would be useful to increase the number of
gaze directions that can be detected reliably, but this is a
very challenging problem with the low-grade cameras used
here. This would, however, allow mouse—like control of a
CUISOr.

One extension of BlockEscape would be the actual
saving of an entire game session. It would then be possible
to replay, in a video file, the saved game from beginning to
end, allowing further analysis of gameplay. This will most
likely be available in a future release of BlockEscape.

Acknowledgments

Funding was provided by the National Science Foundation (IIS-
0308213, IIS-039009, IIS-0093367, P200A01031, and EIA-
0202067).

References

[1] E. H. Adelson, C. H. Anderson, J. R. Bergen, P. J. Burt, and
J. M. Ogden. Pyramid methods in image processing. RCA
Engineer, 29:33-41, 1984.

[2] Applied Science Laboratories, Bedford, MA. http://www.a-
s-l.com.

0-7695-2158-4/04 $20.00 (C) 2004 |EEE

[3] M. Betke, J. Gips, and P. Fleming. The Camera Mouse: Vi-
sual tracking of body features to provide computer access for
people with severe disabilities. IEEE Transactions on Neural
Systems and Rehabilitation Engineering, 10(1):1-10, March
2002.

[4] P.DiMattia, F. X. Curran, and J. Gips. An Eye Control Teach-
ing Device for Students without Language Expressive Ca-
pacity — EagleEyes. The Edwin Mellen Press, 2001. See
also http://www.bc.edu/eagleeyes.

[5] A. Gee and R. Cipolla. Determining the gaze of faces in im-
ages. Image and Vision Computing, 12(18):639-647, 1994.

[6] K.Grauman, M. Betke, J. Lombardi, J. Gips, and G. Bradski.
Communication via eye blinks and eyebrow raises: Video-
based human-computer interfaces. Universal Access in the
Information Society, 2(4):359-373, November 2003.

[7] T.Hutchinson, K. P. White JR., W. N. Martin, K. C. Reichert,
and L. A. Frey. Human-computer interaction using eye-gaze
input. IEEE Transactions on Systems, Man and Cybernetics,
19(6):1527-1533, 1989.

[8] Q. Ji and Z. Zhu. Eye and gaze tracking for interactive
graphic display. In Proceedings of the International Sym-
posium on Smart Graphics, Hawthorne, NY, June 2002.

[9] A.Kapoor and R. W. Picard. Real-time, fully automatic up-
per facial feature tracking. In Proceedings of the Fifth IEEE
International Conference on Automatic Face Gesture Recog-
nition, pages 10-15, Washington, DC, May 2002.

[10] C. H. Morimoto, D. Koons, A. Amit, and M. Flickner. Pupil
detection and tracking using multiple light sources. Techni-
cal Report RJ-10177, IBM Almaden Research Center, 1998.
domino.watson.ibm.com/library/cyberdig.nsf/Home.

[11] K. Schwerdt and J. L. Crowley. Robust face tracking using
color. In Proceedings of the 4th IEEE International Con-
ference on Automatic Face and Gesture Recognition, pages
90-95, Grenoble, France, March 2000.

[12] R. Sharma, V. I. Pavlovic, and T. S. Huang. Toward multi-
modal human-computer interfaces. Proceedings of the IEEE,
86(5):853-869, May 1998.

[13] S. Sirohey, A. Rosenfeld, and Z. Duric. A method of detect-
ing and tracking irises and eyelids in video. Pattern Recog-
nition, 35(5):1389-1401, June 2002.

[14] Y. Tian, T. Kanade, and J. Cohn. Dual-state parametric
eye tracking. In Proceedings of the Fourth IEEE Interna-
tional Conference on Automatic Face and Gesture Recogni-
tion, pages 110-115, Grenoble, France, March 2000.

[15] M. Turk and G. Robertson. Perceptual user interfaces. Com-
munications of the ACM, 43(3):32-34, March 2000.

[16] M. Yang, D. Kriegman, and N. Ahuja. Detecting faces in
images: A survey. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 24(1):34-58, January 2002.

	Select a link below
	Return to Main Menu
	Return to Previous View

