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Abstract. We present our efforts towards a multi-camera mouse-repieat
system for computer users with severe motion impairments.h&le worked
with individuals with cerebral palsy or multiple sclerosidio use a publicly-
available interface that tracks the user’s head movemattisagingle video cam-
era and translates them into mouse pointer coordinateseoscteen. To address
the problem that the interface can lose track of the useckwlfdeature due to
occlusion or spastic movements, we started to develop a-oautiera interface.
Our multi-camera capture system can record synchronizadésifrom multiple
cameras and automatically analyze the camera arrange¥deneécorded 15 sub-
jects while they were conducting a hands-free interactiggeement. We recon-
structed via stereoscopy the three-dimensional movemaettories of various
facial features. Our analysis shows that single-camerafades based on two-
dimensional feature tracking neglect to take into accohatsubstantial feature
movement in the third dimension.

1 Introduction

Camera-based human-computer interaction via analysi®afl Imovement has been
studied for many years (e.g. [1-3]). Early work has typicédicused on single-camera
interfaces for entertainment, control of electronic desi¢e.g., the remote control of
a TV), and support of automated speech analysis. Cameeattbasnan-computer in-
teraction systems that serve as assistive communicatas tave had an enormous
impact on the lives of individuals with severe motion impaénts [4, 5]. These systems
function as mouse-replacement software that allow usersritrol a computer mouse
pointer with head movements. The movements of the user8 [&@anose [4,5, 7] or
other features [4] are converted into movements of the mpagger on the screen. To
mimic the functionality of a left mouse click, a mouse reglarent system typically
evaluates the length of time that the pointer dwells overcan,ibutton, or menu item
(or its surrounding region) and then issues a selection camaim

Currently available video-based mouse-replacementsgster people with severe
disabilities process the input video captured by a singleera. We propose a multi-
camera approach to alleviate the problems with track faduithat such systems en-
counter in practice. Track failures occur when facial feestbecome occluded during
tracking, for example, when extreme head rotations reswdelf-occlusion of the fea-
ture. Track failures also occur due to involuntary rapid eroents of users with spastic
cerebral palsy. In addition, multiple camera systems magltie to use information
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about the user’s motion in three dimensions to provide betatrol of the mouse
pointer.

Data from more than one camera allows for use of a confidenasune computed
from detecting and tracking the objects in different imaged evaluating if they are
consistent [8]. This may alleviate the problem of featurgslolue to occlusion. For
example, when the feature moves out of the field of vision efaiithe cameras (the left
nostril is occluded because the user turns left), the trackf the feature is continued
in another camera’s field of view. We propose a camera plactthat ensures that the
fields of views of the cameras partially overlap. With thituge if the feature is lost in
one camera view, the tracker can use another camera viemtimae tracking.

To facilitate research on multi-camera assistive techmglave developed a system
that allows processing of images that are captured simediasly from multiple cam-
eras. Our Multi-Camera Capture (MCC) system provides theegd framework for
working with n cameras and has been tested using up to four cameras sienultiyn
The scope of the current project is limited to the followiraptributions:

1. We provide a software system that enables images to bedestdrom multiple
cameras.

2. We created a new database of videos of 15 subjects thatrarkesmeously recorded
from three camera views while they were performing an irttigoa task.

3. We present a preliminary stereoscopic analysis of theeetdimensional trajectories
of facial features during interaction experiments.

Our system uses inexpensive webcams, arranged on a desipina human-computer
interaction environment (Fig. 1), in contrast to expensiakbrated multi-camera cap-
ture systems in controlled laboratory environments. Ther e need in the computer
vision community to create data sets with which 3D face tirsgkystems can be eval-
uated [9]. This applies both to systems that use multipleezam[9-12] or a single

camera [13]. We hope that other computer-vision reseammbg will make use of our

capture system and data, and help move forward the researeliable communication

systems for people with disabilities.

Fig. 1. A setup of the Multi Camera Capture system with three camdras cameras are the
three silver-colored spheres on top of the laptop display.
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2 Methods

Our system divided into three modules, a multi-camera caggunodule that provides

temporal calibration, a module that evaluates the geomedtationship between the
cameras and provides spatial calibration, and a third neotthalt provides stereoscopic
reconstruction of three-dimensional (3D) coordinates.

The first module, the Multi Camera Capture (MCC) programords images from
the cameras simultaneously and stores them. The secondempmitorms camera cal-
ibration, that is to recover each camera’s focal lengtmgipial point, radial distortion
coefficients (the “intrinsic parameters,” which make up taenera matrix¥<) and spa-
tial relationship between objects and cameras (the “esitriparameters” of rotation
R and translatiort). To estimate the intrinsic parameters, we use a plandbsraditon
object chessboard with known physical size (Fig. 2). Theaiseplanar object allows
us to focus on just two coordinates of each three-dimenkmhjact point and deter-
mine the homography7, which maps point$X,Y,1)” on the object plane to points
(z,y,1)T on the image plane, i.e(z,y,1)T = H - (X,Y,1)T. We are interested in
estimatingd because it encodes the camera makixthe rotation matrix?, and the
translation vectot:

H = s K|r ro t], (1)

wheres is a scale factor ang, andr, are first two columns of the rotation matrix
With a sufficient number of pairs of points on the chessboanl their correspond-
ing image points, the matrikl can be estimated using Singular Value Decomposition
(SVD). With several images of the chessboard, oriente@ifftly towards the camera,
we can estimate multiple homography matriégsfor the same camera matrix. The
fact that vectors; andrs are orthonormal provides additional constraints. Maifis
then estimated by solving a system of linear equations [14].

The intrinsic parameters of each camera, given by mdirionly need to be esti-
mated once and can then be used for stereoscopic recoistrbgtour multi-camera
capture system. To estimate the extrinsic parameters, uge the chessboard images
to estimate the “fundamental matrix” that relates the cowigs of a feature in the
image of one camera to the coordinates of the feature in tmegmonding image of an-
other camera. The program automatically estimates theigasiof the corresponding
points of pattern corners in each camera view. In particgigen the two-dimensional
coordinates;; = (x;,y;)” of a point in theith camera view and the two-dimensional
coordinateg; = (z;,y,)" of a corresponding point in thigh camera view, the funda-
mental matrix relates the two via the equation

¢l F;j qj = 0. (2

The entries of the matriX;; can be estimated using the 8-point algorithm [15], whose
name comes from the number of corresponding point paits;;) that are used as
input. Matrix F;; can also be estimated by using significantly more point paicer-
porating the 8-point algorithm into a RANSAC framework [1@]labels point pairs
that do not agree with the most probable result as outlidres& point pairs may have
been incorrectly identified as corresponding points. RARS#a non-deterministic al-
gorithm that iterates through the possibilities of matmtrees until a desired level of
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accuracy is achieved. The desired level of accuracy is ipeéeis a probability that the
computed matrix is the most likely among all possible magicThe set of point pairs
used as input to the RANSAC algorithm may yield a number opa#isible subsets of
8 corresponding points that is so large (e.g., order of omfi) that it is computationally
expensive to compute all matrices exhaustively.

Fig. 2. A screenshot of the Multi Camera Capture system while it é&lue record images simul-
taneously from two cameras in an experiment. In the field ®of the two cameras is a board
with a checker pattern, which is used for spatial calibratibthe cameras.

Our spatial calibration module calls the RANSAC method onpéiht pairs and
uses an OpenCV function [14] to estimate the entries of thedmental matrix. Our
method uses a 99%-probability level as the desired acctinaeghold. If this threshold
yields a number of outlier pairs that exceeds 12 (i.e., 12/480% of the pairs), the
points collected for stereo calibration are deemed to beffiegently accurate, and a
new calibration process is run.

Once the fundamental matri;; is determined, we can estimate the “essential ma-
trix” E;; that encodes the absolute position and orientation of tbectwneras:

Eij = K] F;; K;. (3)

To obtain the coordinates of corresponding points in titiegensional world coordi-
nates, we need to estimate the projection maftix= KR [t] of each camera. We
assign the origin of the world-coordinate system to theeeof projection of our first
camera, which means th&# = K[/ |0]. The projection matrice®; of the other
cameras can then be constructed through SVD factorizafitimeoessential matrices
E,; [15]. The projection matrices are stored by our calibratrwdule and used for 3D
reconstruction through triangulation by the third modulewr system.

Our program relies on the known calibration device, the sbesrd, for the calibra-
tion procedure. As an alternative, we have tracked distieéeatures such as a human
eye through several frames of each camera and used featwesmandences to per-
form self-calibration [15], that is, to estimate both ingic and extrinsic parameters for
all cameras at the same time. The unknown scale can be estirngtmeasuring the
physical distance between tracked features, e.g., thendistbetween a person’s eyes.

3 Experimentsand Results

We used a three-camera version of our multi-camera inferasystem to record 15
subjects while they were conducting a human-computeraotem experiment. The
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Fig.3. Left: A screenshot of the Camera Mouse interface used in xperanents. Right: A
screenshot of the ClickTester program. The user was irtstiio move the mouse pointer into the
target circle, highlighted in red, with head movements thaite detected by the Camera Mouse.
The ClickTester program presented a sequence of targ&gsiethe user that was designed so
that significant mouse pointer movements and changes inmmavedirections were required.

group of subjects included 8 men and 7 women. Most subjedslag hair. Two sub-
jects wore glasses. For each subject, we recorded threeeisgguences using three
Logitech Orbit MP cameras (Fig. 1). The cameras were nobraeirically calibrated
and each used automatic gain control. The recordings waehsynized by our tem-
poral calibration module so that temporally correspondtimages were identifiable.

Prior to the hands-free human-computer interaction erpant, the fundamental
matrices for all pairs of cameras were estimated and staieg our spatial calibration
module. We numbered the cameras from left to right startiitg @ Our system then
provided an estimate of the fundamental matriEgs F1, andFj that relate the image
coordinates of cameras 0 and 1, 1 and 2, and 0 and 2, respediive spatial calibration
module was executed before every subject test was perfamueder to ensure spatial
calibration via the three fundamental matrices. The campes#ions were not disturbed
during the recording.

We used the publicly-available assistive technology “Ceanhdouse” [4, 17] (Fig. 3
left), which is a single-camera mouse-replacement systemeople with severe mo-
tion impairments. We initialized the Camera Mouse usingstamdard mouse by se-
lecting a facial feature (eyebrow corner) to track. Thewaground the corner of an
eyebrow contains significant brightness changes, whichesiéka reliable feature to
track.

Our system recorded three image streams while the testctsljere moving their
heads significantly (Fig. 4). We developed test softwaréedéClick Tester,” that pro-
vided a movement protocol and ensured that all subjects vee@ded with various
head positions and orientations.

The ClickTester software displays eight circles on theestrene of which is high-
lighted (see Fig. 3, right). In our experiments, the subjes asked to move the mouse
pointer onto the highlighted circle using the Camera MoWsken the subject had
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Fig. 4. Images collected at different points in time during the horoamputer interaction exper-
iment. Each row shows the three simultaneously-recordedds as captured by the left, center,
and right cameras. The subject’'s head orientation diffignsificantly from row to row and the
subject’s left eye is occluded in the right camera view ingbeond row. Similarly, the subject’s
right eye is occluded in the left camera view in the third réive lack of radiometrical calibration
of the cameras and the use of separate automated gain samsalted in images with different
intensity levels. This is particularly noticeable in thesiges recorded by the right camera, which
are darker than the images recorded by the left and centesraam

moved the mouse pointer to the highlighted circle, a neweiwas highlighted. The
subject was asked to repeat the process until all circles wisited. The software was
designed as a means to simulate a realistic use of a camsed-bwuse-replacement
system that involved significant head motions. It also résthmne trajectory of the mouse
pointer for further analysis.

Among the head motions that the subjects performed was argest which the
subjects moved their heads first upwards and then diagateeatihe lower left. One of
the subjects performing this gesture is shown in Fig. 5. ldistgre lasted about three
seconds, which corresponded to 17 frames. Ten of theserhé$raas recorded by each
of the three cameras, are shown in Fig. 5. We reconstructe@Ehpositions of the
outer corners of the subject’'s eyes and his nose tip duriadhéad gesture. The 3D
trajectories of the three features are shown in Fig. 6. Wegolgéhe 3D scene coordinate
system so that its andy axes were aligned with the image plane of the left camera and
the z axis was normal to and pointed away from the image plane. Tigenaf the 3D
scene coordinate system was placed at the location of treetipom the first frame of
the left camera view.

During the gesture, the features moved on average 18.5 chmeil3D scene. It
is noteworthy that, during the head gesture, the featurasecthd.6 cm in the direc-
tion away from the left camera when the user directed the m@aénter to the top
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of the computer screen. The features then moved back 3.0wards the left camera
when the user moved the mouse pointer to a region near thedefer of the screen.
This component of a user's head movement cannot be takemadetmunt by a single-
camera mouse-replacement interface that is based on twendional tracking of the
feature projected into the image plane. The conversion froage-feature coordinates
to mouse-pointer screen coordinates is typically impleweas a linear transforma-
tion in single-camera mouse-replacement systems. Thigsrtbat the user is required
to exert more efforts to move the mouse pointer in the outgiores of the computer
screen than to move it within the center region of the scrébis may be particularly
significant for individuals who have very limited head mowets. It motivates imple-
mentations of nonlinear transfer functions [6], for examplased on distance to the
center of the screen.

4 Discussion and Conclusions

We presented our research efforts towards developing a-oanttera mouse-replace-
ment system for computer users with severe motion impaitsnaile have several
years of experience working with individuals who use therft@aa Mouse,” a publicly-
available interface system that tracks the computer useds movements with a single
video camera and translates them into the movements of theemainter on the com-
puter screen. To address the problem that the Camera Moandesmtrack of facial
features due to occlusion or spastic movements, we startdevielop a multi-camera
interface that provides (1) redundant input so that then@is single point of tracking
failure and (2) additional stereoscopic information to i system reliability.

Our current multi-camera capture system can record syncted images from
multiple cameras showing different but, as typically dedjroverlapping views of the
same scene. Our system also automatically analyzes theeggoaf the camera ar-
rangement. It uses inexpensive webcams that can be placeddesk in a typical
human-computer interaction arrangement.

We used a three-camera version of our system to record 1&ctabyhile they were
conducting a hands-free human-computer interaction @xget in real time. For this
experiment, we developed a testing program that guideduhjests in making various
head movements that resulted in significant mouse pointgements and changes in
movement directions. For each subject, we recorded thrageémequences that were
synchronized so that corresponding images were identfiabl

Our system provided the information about the geometry piwir of cameras rel-
ative to one another. We reconstructed via stereoscopitbe-dimensional movement
trajectories of various features such as the eyes and mqmd@ur analysis shows that
single-camera interfaces based on two-dimensional feétacking neglect to take into
account the substantial feature movement in the third déoan
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Fig.5. Cropped images of a user during our human-computer interaekperiment with the
ClickTester program. Each column shows simultaneouslyrosd images from the left, center,
and right cameras with the corresponding frame number ($tauep) on top. During the exper-
iment, the user first selected a target circle at the top obtheen, which resulted in a raising
of his head. He then moved the mouse pointer to a target ciede the lower left corner of the
screen, which resulted in a turning and lowering of his head.
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Fig. 6. Reconstructed 3D feature trajectories. Numbers indi¢ate stamps. Top: 3D points in
thez-y plane that is parallel to the left camera. Bottom: This vieyv@ngle shows the significant
feature movement in thedirection, first away and then towards the camera.

Acknowledgements

We would like to thank the human subjects who spared time figir busy schedules
to participate in the experiments. Funding for this work \wasvided by the National
Science Foundation, HCC grant 11S-0713229.



42

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

A. H. Gee and R. Cipolla. Tracking faces. In R. Cipolla andP&ntland, editorsZomputer
Vision for Human-Machine Interaction, pages 113-122. Cambridge University Press, 1998.
W. T. Freeman, D. Anderson, P. Beardsley, C. Dodge, H. KKg&Kyuma, Y. Miyake,

M. Roth, K. Tanaka, C. Weissman, and W. Yerazunis. Compusgrvfor interactive com-
puter graphics| EEE Computer Graphics and Applications, 18(3):42-53, May 1998.

. M. Turk and R. George. Perceptual user interfaGmsnm. of the ACM, 43(3), 2000.
. M. Betke, J. Gips, and P. Fleming. The camera mouse: Visaeiing of body features to

provide computer access for people with severe disalsilitiEEE Transactions on Neural
Systems and Rehabilitation Engineering, 10(1):1-10, 2002.

. J. Varona, C. Manresa-Yee, and F. J. Perales. Handsi§iea-based interface for computer

accessibility.Journal of Network and Computer Applications, 31(4):357—-374, 2008.

. R. Kjeldsen. Improvements in vision-based pointer aintrin 8th International ACM

S GACCESS Conference on Computers and accessibility (Assets’ 06), pages 189-196, 2006.

. D. O. Gorodnichy and G. Roth. Nouse 'use your nose as a rhpaseeptual vision tech-

nology for hands-free games and interfadesage and Vision Computing, 22(12):931-942,
2004.

. E. A. Cansizoglu and M. Betke. An information fusion agmio for multiview feature

tracking. In20th International Conference on Pattern Recognition (ICPR 2010), Istanbul,
Turkey, 2010. 4 pp.

. T. K. Marks, J. R. Hershey, and J. R. Movellan. Trackingiorgtdeformation, and texture

using conditionally Gaussian process&EE Transactions on Pattern Analysisand Machine
Intelligence, 32(2):348-363, 2010.

C. John, U. Schwanecke, and H. Regenbrecht. Real-tiiuenetric reconstruction and
tracking of hands and face as a user interface for virtuakr@mments. InvVR 2009: |EEE
Virtual Reality Conference, pages 241-242, 2009.

M. Ratsch, C. Blumer, G. Teschke, and T. Vetter. Cotodae particle filters for multi-
object human computer interaction. |EEEE International Workshop on Intelligent Data Ac-
quisition and Advanced Computing Systems: Technology and Applications (IDAACS 2009),
pages 440-445, September 2009.

K. Sidorov, Y. Hicks, D. Marshall, S. Sanei, and J. Chamb&eal time multi camera 3D
tracking system. 1r8rd European Conference on Visual Media Production (CVMP 2006),
page 191, London, UK, 2006.

F. Dornaika and B. Raducanu. Three-dimensional face getection and tracking using
monocular videos: Tool and applicatiohEEE Transactions on Systems, Man, and Cyber-
netics, Part B: Cybernetics, 39(4):935-944, 2009.

G. Bradski and A. KaehleLearning OpenCV, chapter 11-12. O'Reilly, 2008.

R. I. Hartley and A. ZissermarMultiple View Geometry in Computer Vision. Cambridge
University Press, 2003.

M. A. Fischler and R. C. Bolles. Random sample consersparadigm for model fitting
with applications to image analysis and automated carpbyra Communications of the
ACM, 24(6):381-395, 1981.

Camera Mouse — Innovative software for people with diisigls,
http://www.cameramouse.org, accessed April 2010.





