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Abstract. Hidden State Shape Models (HSSMs) were previously pro-
posed to represent and detect objects in images that exhibit not just
deformation of their shape but also variation in their structure. In this
paper, we introduce Dynamic Hidden-State Shape Models (DHSSMs)
to track and recognize the non-rigid motion of such objects, for exam-
ple, human hands. Our recursive Bayesian filtering method, called DP-

Tracking, combines an exhaustive local search for a match between
image features and model states with a dynamic programming approach
to find a global registration between the model and the object in the
image. Our contribution is a technique to exploit the hierarchical struc-
ture of the dynamic programming approach that on average considerably
speeds up the search for matches. We also propose to embed an online
learning approach into the tracking mechanism that updates the DHSSM
dynamically. The learning approach ensures that the DHSSM accurately
represents the tracked object and distinguishes any clutter potentially
present in the image. Our experiments show that our method can recog-
nize the digits of a hand while the fingers are being moved and curled to
various degrees. The method is robust to various illumination conditions,
the presence of clutter, occlusions, and some types of self-occlusions.
The experiments demonstrate a significant improvement in both effi-
ciency and accuracy of recognition compared to the non-recursive way
of frame-by-frame detection.

1 Introduction

The radar literature describes mature algorithms for tracking targets that esti-
mate the state of the targets within a dynamic system using recursive Bayesian
filters [1]. The computer vision community has extended these algorithms to
track objects in images – a much more difficult problem because the appearance
of deformable and articulated objects in images can vary enormously. Our work
moves beyond the limit of what has been accomplished so far by formulating and
solving the task of tracking objects that have a variable shape structure (in addi-
tion to being rigid or deformable, and/or articulated). We present a model-based,
recursive Bayesian estimation algorithm that tracks such objects in images with
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heavy clutter and simultaneously recognizes the various components of the ob-
ject. Since the object has a variable structure, our method does not know a priori
if any of these components appear or disappear in the video and what shape they
will exhibit. An example of an object with variable structure is a hand, whose
components, the fingers, may or may not appear in an image and may be curled
to various degrees, resulting in self-occlusion (Fig. 1(a)). Our tracking method
uniquely identifies and outlines each finger in the video, regardless of the degree
of curling motion. Moreover, it concurrently handles dense clutter and illumina-
tion changes, and recovers automatically from occlusions by other objects. Our
contributions are:

• We introduce dynamic hidden-state shape models (DHSSMs) to model
classes of moving objects of variable structure (Fig. 1). DHSSMs are a gen-
eralization of (static) hidden-state shape models (HSSMs) [2,3], where the
model description will be updated through time.

• We propose a dynamic programming (DP) approach, called DP-Tracking,
to find an optimal registration between the model states of a DHSSM and
the features extracted from each video frame. DP-Tracking speeds up the
model registration by two orders of magnitude compared to Wang et al.’s
approach [3] and tracks hands in near real time. We achieve this by intro-
ducing a grouping technique that takes advantage of the spatial coherence
of features in the DP table during tracking.

• We embed an online learning approach into the tracking mechanism that
captures appearance changes through time and produces tracking results
that are significantly more accurate than the results obtained with DP-

Tracking without online learning or Wang et al.’s approach [3].

Our data contains a large number of candidate features (about 3,000 edge
points per frame). We need to process both the contours of the object to be
tracked and background objects (clutter) or occluding foreground objects (also
clutter). Our method tracks each feature at position p on the contour of the
moving object by assigning it to a feature in the next frame that is near to p.
This straightforward recursive Bayesian tracking approach is particularly suited
for such data, more so than the Kalman, kernel-based, or particle filters [1,4,5].
It is challenging to use the latter in real time processing, since the number
of particles required would increase exponentially with the dimension of the
state space. The hand DHSSM, for example, has 20 states including position,
orientation, scale and feature duration (i.e., finger’s length). Nevertheless, our
framework for tracking objects with DHSSMs in principle allows adoption of any
Bayesian algorithm, and others may explore this in the future.

Related Work. Tracking algorithms typically assume smoothness: the state
or the appearance of an object component does not change much from one
image frame to the next. This assumption helps to overcome problems with
tracking when the interpretation of image data is ambiguous. Successful systems
have used graphical models for modeling non-rigid 3D objects [6,7]. These sys-
tems, however, require a manual initialization of the object to be tracked (our
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Fig. 1. Recognizing hands in images using HSSMs. (a) Hand contours with variable
shape structure. (b) State transition diagram of the HSSM “hand.” State s1 models the
right boundary of the palm, s20 the left. States s2,...,s4 model the thumb; in particular,
state s2 the right side of the thumb; state s3 the thumb tip, and state s4 the left side
of the thumb. States s5,...,s7, s9,...,s11, s13,...,s15 , and s17, s18 respectively model the
contour of the other four fingers. States s8, s12, s16, s19 model the occluding boundary
when the fingers are totally bent. (c) An edge image with segments of the hand contour
and clutter. (d) Registration of hand model states to contour segments, resulting in
the recognition of the hand structure. Figure courtesy of Wang et al. [3].

system does not), and there is no guarantee that the systems can recover when
the previous frame is interpreted falsely. An alternative way to overcome the
problem of losing track is to treat tracking as the problem of detecting the ob-
ject in each frame [8,9,10], also known as tracking by detection [11]. Thus, poor
tracking in one frame will not affect any subsequent results, and the problem of
drifting is also prevented [12]. Our DHSSM-based method extends the tracking-
by-detection idea by adding “gating” [1], and is able to recover from tracking
errors as we show in the experiments.

A popular approach for tracking-by-detection is template matching (e.g., [10]).
To deal with object deformation, multiple templates can be organized in a tree
structure so that exhaustive search for the best match can be replaced by hi-
erarchical matching [10]. Although template matching is efficient, it may be
difficult to use it to identify clutter or deal with large within-class variations
in object shape. Recognition approaches that exploit contour-based informa-
tion recently received considerable attention in the object detection literature
(e.g., [13,14,15]). These algorithms either use static boundary templates or code-
books of appearance parts. Note the difference to our contour-based work: these
representations model standard object configurations and do not explicitly ac-
count for the variable structure of the objects (e.g., fingers that are totally ex-
tended, partially bent, or completely hidden, as in Fig. 1). Another classic work
of tracking 2D silhouette deals with the problem of discontinuous shape changes
by explicitly modelling wormholes in shape space [16], but the contour extraction
is not designed to handle cluttered images.

It is desirable to use rich models that can capture a large range of possible
object variations and efficient methods that can register the image data to such
models in tracking scenarios. In this paper, we propose such models, DHSSMs,
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and apply them with an efficient DP search algorithm to perform detection,
recognition, and tracking of human hand in heavily cluttered images.

2 Dynamic Hidden-State Shape Models

We extend (static) Hidden-State Shape Models (HSSMs) [3], which are based on
HMMs [17], to Dynamic Hidden-State Shape Models (DHSSMs) to include the
index of the current frame, denoted by superscript t. A DHSSM is defined by

– a set S = {s1, . . . , sM} of states modeling object components.
– a subset E of S that defines legal end states,
– the probability π(t)(si) that state si is the initial state at time t,
– the state transition function A(t)(si, sj) = p(t)(sj |si) that represents the

probability of transiting from state si to state sj at time t,
– the state observation function B(t)(fu, si) = p(t)(fu|si) that represents the

probability of observing feature fu in state si at time t,
– the feature transition function τ (t)(fv, fu, sj , si) = p(t)(fv|fu, sj, si) that rep-

resents the probability of observing feature fv in state sj given some other
feature fu was previously observed in state si at time t, where si could be
equal to sj if both fu and fv belong to the same object part, and

– the state duration function D(t)(�, si, ω) = p(t)(�|si, ω) that represents the
probability of continuously observing � features in state si at time t, given
the prior object scale ω.

To recognize the structure of an object modeled by a DHSSM in a frame I(t), we
use the approach by Wang et al. [3] to extract K features O

+ from the image,
recognize the L features O⊆O

+ that represent the object contour, and separate
them from the K−L features Oc ⊂O

+ that represent clutter. This is achieved
by finding an ordered match between the object features O = (o1, ..., oL) and
their corresponding DHSSM states and a match between the features Oc =
(oL+1, ..., oK) that are not on the object contour and a special state qc /∈ S that
is introduced to represent clutter. By (oj : qi), we denote the match between
an observed feature oj ∈ O

+ and a state qi ∈ Q
+= S ∪ {qc}. Since several fea-

tures on the contour may be assigned to the same state, we use the notation
(O(d)

j : qi) to describe the ordered match between d observed features O
(d)
j =

(oj , ..., oj+d), forming a single contour segment (e.g., side of a finger), and state qi.
A registration R of n contour segments to a sequence of n states is then

R
(t)
O,Q = [(O(d1)

1 : q1), (O(d2)
d1+1 : q2), . . . , (O(dn)

L−dn+1 : qn)](t),

where Oj, qi, di, n, and L are considered random variables. To recognize the ob-
ject in the t-th video frame, the registration algorithm must find values for these
random variables that maximize the joint probability p(O+, Q+) of observations
and states. By extending the derivations of Wang et al. [3] in a straightforward
manner to include the index t, we can show this to be equivalent to minimizing
the registration cost function
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C(t)(R(t)
O,Q) = − lnπ(t)(q1) −

∑n
i=1{ln A(t)(qi−1, qi) + ln D(t)(di, qi, ω)

−ξ(di) +
∑ζ(i)+di

j=ζ(i)+1 [ln B(t)(oj ,qi)

B(t)(oj ,qc)
+ ln τ (t)(oj , oj−1, qi, qi′)]}, (1)

where A(t), B(t), D(t) and τ (t) were introduced above, ξ(di) = di ln p(qc), ζ(i) =
∑i−1

k=1 dk, and i′ = i − 1 when j = ζ(i) + 1 and i′ = i otherwise. Recognition of
the object in the presence of clutter is achieved by finding the globally optimal
registration R

(t)
opt = arg min C(t)(R(t)

O,Q). More details about HSSMs can be found
in Wang et al. [3].

For (static) HSSMs, a DP algorithm for minimizing the cost function C was
proposed [3], which has the computational complexity of O(MCsK

2�max), where
M and K are the number of states and features, Cs is the average number of
legal state transitions out of each state, and �max is the maximum number of
features that can be observed in a state. The C++ implementation of this algo-
rithm processed a 160x120 image in about 25 minutes (AMD Opteron 2.0 GHz
processor) to determine the size and pose of a single object of variable structure.
This included an exhaustive search among eight possible object orientations and
no feature pruning (K is up to 3000). Thus, a frame-by-frame application of
Wang et al.’s HSSM-based algorithm [3] to track objects in long video sequences
is computationally inefficient. Here we show how DHSSMs and a new DP-based
registration algorithm can be combined into a fast and robust object tracking
system. The essential steps of our DHSSM-based method comprise hierarchical
dynamic programming and online model updates.

2.1 Specification of a DHSSM for the Hand

We define the hand DHSSM similar to the hand HSSM introduced by Wang et
al. [3] (Fig. 1). An image feature f ∈ O

+ is a local image patch surrounding
an edge pixel, measured by its appearance φ and location y, i.e., f = (φ, y).
The appearance φ is specified by the color distribution φχ of the 5 × 5 pixels
patch (a vector that stores weighted average rgb values for each of the two half
patches separated along the edge direction in the patch center) and the intensity
gradient orientation φg at the patch center (a scalar that ranges from 0 to 2π).
For each object state s ∈ S, we model the color distribution s

(t)
χ of an object

boundary patch and the gradient s
(t)
g at the center of the patch at t.

The state transition function A(t) can be simplified as a uniform distribution.
We define the object/clutter observation likelihood ratio as

B(t)(f, s)
B(t)(f, c)

=
p(t)(o = f | q = s)
p(t)(o = f | qc = c)

≈ e− γ h(t)(φχ)p(φg|s(t)
g ), (2)

where p(φg|s(t)
g ) is a Gaussian distribution with mean s

(t)
g and variance σ2

g . Func-
tion h(t), for given input φχ, outputs a decision value, which is approximated by
a two-class Support Vector Machine (SVM). The scalar factor γ is determined
experimentally. The feature transition probability

τ (t)(f, f ′, s, s′) = e−α(‖y′−y‖)e−β|Δ(φg,φg′)−Δ(s(t)
g ,s

(t)
g′ )| (3)
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is an exponential distribution, where ‖y − y′‖ represents the Euclidean distance
between the centers of the two patches f and f,′ and Δ(φ, φ′) represents the
angle in radians between orientations φ and φ′. The weighting scalars α and β
can be learned from the training data by maximum likelihood estimation. The
state duration probability D(t) is defined as the Gaussian model

D(t)(�, s, ω) = p(� | μ(t)(ω), σ(t)(ω)) p(μ(t)(ω)|s) (4)

where ω is an input parameter to specify the reference scale, p(� | μ(t)(ω), σ(t)(ω))
is a normal distribution with the mean μ(t)(ω) and covariance σ(t)(ω), and
p(μ(t)(ω) | s) is the conditional prior for the Gaussian distribution.

3 Tracking with DHSSMs

An overview of our tracking system for the application of hand and finger track-
ing is given in Fig. 2. The system contains the hand DHSSM that is updated
to capture appearance changes through time, for example, due to the occluding

Fig. 2. Overview of tracking system. Each input image is first processed to extract
features (edges) and feature patches (image regions centered around edges), pruned by
a learned skin color model. The two-class SVM determines which features are likely to
belong to the object contour (foreground) and which not (background clutter or oc-
cluding foreground clutter). Hand and finger detection is achieved by finding a globally
optimal registration between DHSSM states and likely features. The locations of recog-
nized object components (finger tips, sides, palm, etc.) are the frame-by-frame output
of the tracking system and used to update the DHSSM online. After each frame, the
probability densities of each state of the DHSSM are updated by feeding back the es-
timated orientation of the hand, and the relative orientation and amount of curling of
each finger (the latter via updating the state duration variable). From time to time, a
new collection of object and clutter patches are sampled to train a new SVM classifier
that better models the current imaging scenario.
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motion of curling fingers or some other objects (short-term update) or changes
in illumination and background (long-term update). Pseudo-code of our DP-

Tracking algorithm is given in Sec. 3.2.

3.1 Updating the DHSSM During Tracking

We first explain how to update DHSSM in tracking. The temporal information
is used to update the DHSSM in the short term, i.e., after processing each frame,
and the SVM in the long term, i.e., after processing a number of frames.

The appearance description s
(t)
g , μ(t)(ω), σ(t)(ω) of the DHSSM is updated

for each state s by sampling from its posterior distribution. For each object
state q = s ∈ S of the DHSSM, the posterior distribution of the image gradient
sg at the center of an object boundary patch is estimated from the optimal
registration in the previous frame t−1, denoted as R

(t−1)
opt :

p(s(t)
g |R(t−1)

opt ) ∼ N (μ(φ(t−1)
g ), σ2(φ(t−1)

g )) (5)

where μ(φ(t−1)
g ) is the mean gradient direction of feature set {o(t−1)

j , . . . , o
(t−1)
j+d }

that mapped onto state s and σ2(φ(t−1)
g ) the variance. This step captures the

change of orientation of each state.
The posterior distribution of the duration mean μ(ω) for each state s is esti-

mated from the optimal registration during the past N frames,

p(μ(t)(ω)|R(t−1)
opt ) ∼ N (μ(d(t−1)), σ2(d(t−1))) (6)

where R
(t−1)
opt is the history of the past N optimal registrations, μ(d(t−1)) is the

mean number of contour points mapped onto state s during the past N optimal
registrations, and σ2(d(t−1)) is the variance. We set σ(t)(ω) to be σ(d(t−1)) for
simplicity.

The long-term update of the tracking system focuses on the color distribution
sχ of a boundary patch for each object state s. As mentioned in Sec. 2.1, we ap-
proximate this log-likelihood ratio by the output of a two-class SVM. However,
it is challenging to build a color model that is robust and sufficiently discrimina-
tive under various illumination conditions and background scenes [18]; defining
a robust skin color model remains a research topic by itself. It is therefore nat-
ural to perform online learning, where the training set comprises of “positive
patches” sampled along the detected hand boundary, and “negative patches,”
sampled from clutter. Note we only train a new classifier every few dozens of
frames, so that training time is still acceptable for a classifier like an SVM. We
adopted two conservative strategies when we rebuild the classifier:

(1) Avoid sampling negative patches located close to the object boundary,
where they could be misclassified due to shadows, occlusion, noise, etc.

(2) Add a validation step before training samples are collected to ensure that
the samples are labelled correctly. To validate our registration result in the cur-
rent frame, we assume that the registration result of the previous frame is trust-
worthy and create a hand contour template from it. We then perform chamfer
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matching between this contour template and the contour found in the current
frame. A matching cost above a certain threshold is considered suspicious, and
it is then decided to suspend all model updates.

3.2 Exploiting the Hierarchical Structure in DP

Our hand DHSSM resembles a left-to-right HMM (no state-transition loops are
allowed) and we can build a 2D dynamic programming table to organize the
matching process (Note the general DHSSM can have state-transition loops).
The table has two axes. The state axis represents an ordered sequence of model
states and each state contains multiple rows showing the state duration; the
feature axis represents an unordered sequence of input features. We do not have
ordered sequences in both axes as for Dynamic Time Warping [19].

To ease the explanation, we assume the state transition is a single Markov
chain. The DP process can be seen as finding the shortest path between s1 and
sM (e.g., right and left side of the palm) in a directed graph. Each node in
the graph represents a matching pair (fj : si,l), where feature fj is observed
in state si with duration l. Each edge that links two matching pairs (fj : si,l1)
and (fn : sm,l2) represents a possible jump from the observation fj in si with
duration l1 to the next observation fn in sm with duration l2. The weight of an
edge is defined by the matching cost. To avoid the case of a loop, i.e., explaining
one feature by more than one state, we restrict the selection of a set of features
in the next jump, excluding those features that have already been chosen to
belong to the shortest path. A DP algorithm to find the shortest path in this
table generally has to consider all possible paths through the graph and therefore
requires O(MK2�max) operations, where M and K are the number of states and
features, and �max is the length of longest segment that can be observed. Since
we use patches around edge points to represent image features, K typically is
quite large, even in moderate sized images (up to 3,000 in the 160x120 video
frames in our experiments, see Sec. 4). Gating [1] in the next frame will reduce
the number of candidate features. In addition, we can exploit information from
the spatial arrangement of the edge points in the local search neighborhood to
help speed up the dynamic programming approach.

A benefit from tracking is that we can group neighboring edge points in the
current frame based on the registration result in the previous frame. This yields
groups of unordered input features. For example, in Fig. 3, the locations of
feature points possibly matching onto states s1 and s2 are constrained by their
respective local neighborhoods or gates (light and dark gray regions). A state
transition can only happen in the intersection of the light and dark gray regions.
when constructing the DP table, all the feature points are now sorted into groups
where the group order corresponds to the state order. During the matching
process, only feature transitions within the same group will be considered. Any
valid shortest path must pass through all the intersection regions. In other words,
within each group, we constrain the valid start and end points to be located in
intersection regions.
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DHSSM-based Tracking Algorithm:

Given Initial DHSSM description: {S, E, π(1), A(1), B(1), τ (1), D(1)}, skin color model,

SVM classifier, and optimal registration in first frame R
(1)
opt computed by [3].

For frame t = 2...N :

1. Data Preparation
– Extract and prune features O

+ from frame t by gating and skin color model;
– Grouping based on R

(t−1)
opt ;

– Construct DP table.
2. Model Registration

– For each group of features, running DP to find k candidate shortest paths;
– For each group, detect occlusion by comparing histograms of gradients along

candidate paths with corresponding segment in R
(t−1)
opt . If occlusion exists, label

such groups invalid;
– Run DP by linking one candidate valid path from each group to find the

optimal shortest path R
(t)
opt.

3. DHSSM Update
– Short-term update:

Sample s
(t)
g , μ(t)(ω) according to Eqs. 5 and 6 and set σ(t)(ω) to be σ2(d(t−1));

– Long-term update: Collect Q
+, O

+ from R
(t−1)
opt to train a new SVM.

Fig. 3. Feature candidates mapped onto state s1 are constrained by the light gray
search region (gate), while feature candidates mapped onto state s2 are constrained by
the dark gray region. State transition can only happen in the intersection s1∩s2 of the
two regions.

If there are G groups, the average number of feature points within each group
is K

G , and we need O(MK2lmax

G2 ) operations to find the optimal registration. A
careful design of the DHSSM is critical to achieve the proposed reduction in
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computation. If more than two group regions overlap each other, there is no
guarantee that the optimal path will not contain feature transitions between
non-adjacent groups. One way to deal with multiple overlapping regions is to
insert duplicated features when grouping, which causes the input feature size to
increase. Usually a proper choice of the size of the gate or neighborhood and an
appropriate design of the states that correspond to large segments of the object
boundary can alleviate the problem of redundant representation of feature points
that fall into multiple overlapping regions.

Another benefit from the proposed grouping is that dynamic programming
can be applied within each group independently. This step produces a number
of candidate paths that correspond to boundary segments in the image. Then
DP can be applied one more time by selecting one segment from each group and
linking them together to form the final shortest path corresponding to the whole
object boundary. The hierarchical DP algorithm allows the freedom to model the
deformation within each segment locally and enforces spatial coherence between
segments globally.

Moreover, it provides the opportunity to detect occlusions and help solve the
problem of partial matches. While running DP within each group, our method
compares histograms of gradients along each of those candidate paths with that
of corresponding segments detected in previous frame. Intuitively, when occlusion
occurs in some group, the candidate paths are noisy shapes so that the gradient
histogram is quite different from that in the previous frame. If our method
determines that occlusion occurs in some groups, candidate paths within these
groups are excluded from participating in the second DP calculation. Then an
incomplete hand contour can still be fitted well to the DHSSM model.

4 Experiments and Results

We implemented our DHSSM-based method in C++ and tested it on an AMD
Opteron 2.0 GHz processor. The datasets are challenging: 1) the background
contains dense clutter so that the edges of the hand boundary and edges of
clutter objects are difficult to distinguish; 2) the background is affected by illu-
mination changes and other moving objects; 3) some scenes contain faces which
means that skin-color-based hand detection must overcome ambiguities; 4) the
shape structure of the hands in the videos changes due to the curling motion
of the fingers, 5) the hand might be occluded so that there is no guarantee
that a complete hand boundary exists in the scene. We assert that our datasets
are sufficiently representative to demonstrate the performance of our system in
tracking hands and fingers in real environments.

We used two quantitative measures of detection accuracy: (1) Hand local-
ization: the algorithm correctly located the hand’s position and orientation.
This can be considered as the minimum requirement for all tracking systems.
(2) Finger identification: the algorithm not only correctly located the hand’s
position and orientation, but also identified the state of each finger. We re-
quired that every visible finger was registered correctly to the respective states
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Fig. 4. Four 160x120 input images (left), edge maps after pruning with the skin color
model (middle), and likelihood ratio maps predicted by the SVM classifier (right) with
likely hand contour edges in green and clutter in blue. Samples include curled fingers
(1), skin-color clutter (2), occlusion (3), and out-of-plane rotation (4).

of the hand DHSSM. Such registration information would be valuable for solv-
ing advanced image understanding tasks, such as sign language recognition. Four
datasets, collected in a laboratory environment, were used in our experiments:

(1) Data with large motion of the hand and fingers (260 frames): the hand ap-
peared in the video in different positions, orientations, and scales because of its
translation, rotation, and movements towards and away from the camera. De-
formation due to different degrees of curling of fingers was included.
(2) Data with dense clutter (510 frames): the background contained other mov-
ing objects (walking people) and skin-color patches (faces).
(3) Data with illumination changes (182 frames): the scene and object color
changed significantly due to newly-appearing light sources.
(4) Data with occlusions (167 frames): a part of the hand was occluded by the
motion of a background object so that partial matching of the hand was required.

Our DHSSM-based method correctly localized the hand in almost all tested
situations that involved a large amount of motion and clutter (98% and 92%
among all frames in test dataset 1 and 2, respectively). The shape of each of the
five fingers was also detected in these situations (89% and 85%, respectively).
Illumination changes and occlusion reduced the recognition percentages by about
20 percentage points (Table 1). Online learning contributes to increasing
the accuracy of finger identification (85%) by 10 percentage points when the
skin color varies due to changing lighting conditions (Table 1, Fig. 5, middle).
Our method was particularly useful in interpreting the hand in the presence of
occluding objects whose appearance strongly interfered with feature detection,
e.g., the corner of the notebook in Fig. 5, right.

Our DHSSM-based method processes each video frame in near real time.
The running time is proportional to the number of edge points that must be
processed, e.g., for datasets with less than 2,000 edge points on average per
frame, it was 1 s and with 3,000 edge points 1.5 s (Table 1).

To compare our method to a previously published method, we reimplemented
Wang et al.’s [3] HSSM-based method. For a fair comparison of both methods,
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Table 1. Comparison of our DHSSM-based method with DP-Tracking (DPT) and
with and without Online Learning (OL), and Wang et al.’s [3] method (HSSM)

Dataset Large Dense Partial Illumination
Motion Clutter Occlusion Change

Avg. # of features 1,200 1,800 3,000 3,000

HSSM DHSSM HSSM DHSSM HSSM DHSSM DHSSM DHSSM
Method +DPT +DPT +DPT +DPT +DPT

+OL

Hand Localization 96% 98% 92% 92% 55% 75% 83% 83%

Finger Identification 75% 89% 79% 85% 40% 65% 58% 68%

Avg. time/frame 160 s 1 s 160 s 1 s 250 s 1.5 s 1.5 s 2 s

Fig. 5. Tracking results for images with clutter (left) due to a face, a chair, and a person
moving in the background, and illumination changes (middle), and occlusions (right).
The colors of the boundary pixels indicate which part of the boundary was detected
as the finger tips (red), thumb (blue), index finger (orange), middle finger (olive), ring
finger (yellow), little finger (pink), and outer boundary of the little finger and wrist
(green). DP-Tracking with online learning produced the best recognition results.

we used the same size of the local search window for each feature point (40× 40
pixels). Using Wang et al.’s method, we registered the static HSSM of the hand to
the image data in each frame separately. Only the global orientation of the hand
was passed from frame to frame. The processing time of our method compared
to Wang et al.’s method [3] was more than two orders of magnitude shorter
(Table 1). The improvement in localizing the hand was up to 20 percentage
points and in identifying the fingers up to 25 percentage points (Table 1 and
Fig. 5). The system has the ability to recover from tracking errors, which can
occur due to severe occlusions or self-occlusions.
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5 Discussion and Conclusion

We developed a near-real-time system that not only tracks a fast-moving hand
in a cluttered environment but, at the same time, recognizes and labels the state
of each moving finger. These tasks would be extremely difficult for a simple hand
or finger blob tracker. Our experiments highlighted the strengths of our system:

- Robustness to cluttered backgrounds. Our system finds the optimal model
registration between image features and states in the DHSSM or the unique clut-
ter state qc. By incorporating qc into the registration formulation, our detection
method becomes powerful and can handle heavy clutter. Success in scenes with
clutter was not demonstrated for an existing real-time hand tracker [10] that
was based on matching between boundary templates and object silhouettes.
- Robustness to illumination and background changes. Our online learn-
ing step updates the classifier so that it can best discriminate the object bound-
ary from clutter. The need for online learning was shown most succinctly in our
experiments where the appearance of the object color changed due to lighting
changes. Such changes are captured by the DHSSM update.
- Handling occlusions. The DP registration process is decomposed into two
stages. The first DP stage aims at detecting boundary segments that correspond
to states of the DHSSM. Missing segments can be detected during this stage,
so that they are not considered in the second stage during which boundary seg-
ments are connected to create the boundary of the whole hand.
- Computational efficiency. We exploit the spatial coherence between features
obtained from temporal information so that we can significantly reduce the size
of the DP table. The average processing time per frame for 160× 120 images is
1–2 s and the SVM training step takes typically 3–5 s. This compares favorably
to other tracking approaches that use graphical models and for which running
times of several minutes per frame were reported [6].

Our future work will extend the DHSSM framework to enable us to insert
or delete model states through time. Unlike the current version, where every
possible structure change is described by the DHSSM, a more powerful DHSSM
should be able to learn unpredicted object deformations online. This may al-
low us to apply the model to complicated deformable objects, such as cells in
microscopic images.
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