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Abstract. A real-time vision system has been developed
that analyzes color videos taken from a forward-looking
video camera in a car driving on a highway. The system
uses a combination of color, edge, and motion information to
recognize and track the road boundaries, lane markings and
other vehicles on the road. Cars are recognized by matching
templates that are cropped from the input data online and by
detecting highway scene features and evaluating how they
relate to each other. Cars are also detected by temporal dif-
ferencing and by tracking motion parameters that are typical
for cars. The system recognizes and tracks road boundaries
and lane markings using a recursive least-squares filter. Ex-
perimental results demonstrate robust, real-time car detec-
tion and tracking over thousands of image frames. The data
includes video taken under difficult visibility conditions.

Key words: Real-time computer vision – Vehicle detection
and tracking – Object recognition under ego-motion – Intel-
ligent vehicles

1 Introduction

The general goal of our research is to develop an intelligent,
camera-assisted car that is able to interpret its surroundings
automatically, robustly, and in real time. Even in the specific
case of a highway’s well-structured environment, this is a
difficult problem. Traffic volume, driver behavior, lighting,
and road conditions are difficult to predict. Our system there-
fore analyzes the whole highway scene. It segments the road
surface from the image using color classification, and then
recognizes and tracks lane markings, road boundaries and
multiple vehicles. We analyze the tracking performance of
our system using more than 1 h ofvideo taken on American
and German highways and city expressways during the day
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and at night. The city expressway data includes tunnel se-
quences. Our vision system does not need any initialization
by a human operator, but recognizes the cars it tracks auto-
matically. The video data is processed in real time without
any specialized hardware. All we need is an ordinary video
camera and a low-cost PC with an image capture board.

Due to safety concerns, camera-assisted or vision-guided
vehicles must react to dangerous situations immediately. Not
only must the supporting vision system do its processing ex-
tremely fast, i.e., insoft real time, but it must also guarantee
to react within a fixed time frame under all circumstances,
i.e., in hard real time. A hard real-time system can predict
in advance how long its computations will take. We have
therefore utilized the advantages of the hard real-time oper-
ating system called “Maruti,” whose scheduling guarantees
– prior to any execution – that the required deadlines are met
and the vision system will react in a timely manner [56]. The
soft real-time version of our system runs on the Windows
NT 4.0 operating system.

Research on vision-guided vehicles is performed in many
groups all over the world. References [16, 60] summarize
the projects that have successfully demonstrated autonomous
long-distance driving. We can only point out a small num-
ber of projects here. They include modules for detection and
tracking of other vehicles on the road. The NavLab project
at Carnegie Mellon University uses the Rapidly Adapting
Lateral Position Handler (RALPH) to determine the loca-
tion of the road ahead and the appropriate steering direc-
tion [48, 51]. RALPH automatically steered a Navlab vehi-
cle 98.2% of a trip from Washington, DC, to San Diego,
California, a distance of over 2800 miles. A Kalman-filter-
based-module for car tracking [18, 19], an optical-flow-
based module [2] for detecting overtaking vehicles, and a
trinocular stereo module for detecting distant obstacles [62]
were added to enhance the Navlab vehicle performance.
The projects at Daimler-Benz, the University of the Fed-
eral Armed Forces, Munich, and the University of Bochum
in Germany focus on autonomous vehicle guidance. Early
multiprocessor platforms are the “VaMoRs,” “Vita,” and
“Vita-II” vehicles [3,13,47,59,63]. Other work on car detec-
tion and tracking that relates to these projects is described
in [20, 21, 30, 54]. The GOLD (Generic Obstacle and Lane



70 M. Betke et al.: Real-time multiple vehicle detection and tracking from a moving vehicle

Detection) system is a stereo-vision-based massively parallel
architecture designed for the MOB-LAB and Argo vehicles
at the University of Parma [4,5,15,16].

Other approaches for recognizing and/or tracking cars
from a moving camera are, for example, given in [1,27,29,
37, 38, 42–45, 49, 50, 58, 61] and for road detection and fol-
lowing in [14,17,22,26,31,34,39,40,53]. Our earlier work
was published in [6, 7, 10]. Related problems are lane tran-
sition [36], autonomous convoy driving [25, 57] and traffic
monitoring using a stationary camera [11,12,23,28,35,41].
A collection of articles on vision-based vehicle guidance can
be found in [46].

System reliability is required for reduced visibility con-
ditions that are due to rainy or snowy weather, tunnels and
underpasses, and driving at night, dusk and dawn. Changes
in road appearance due to weather conditions have been ad-
dressed for a stationary vision system that detects and tracks
vehicles by Rojas and Crisman [55]. Pomerleau [52] de-
scribes how visibility estimates lead to reliable lane tracking
from a moving vehicle.

Hansson et al. [32] have developed a non-vision-based,
distributed real-time architecture for vehicle applications that
incorporates both hard and soft real-time processing.

2 Vision system overview

Given an input of a video sequence taken from a moving car,
vision system outputs an online description of road parame-
ters, and locations and sizes of other vehicles in the images.
This description is then used to estimate the positions of
the vehicles in the environment and their distances from the
camera-assisted car. The vision system contains four main
components: the car detector, road detector, tracker, and pro-
cess coordinator (see Fig. 1). Once the car detector recog-
nizes a potential car in an image, the process coordinator
creates a tracking process for each potential car and provides
the tracker with information about the size and location of
the potential car. For each tracking process, the tracker ana-
lyzes the history of the tracked areas in the previous image
frames and determines how likely it is that the area in the
current image contains a car. If it contains a car with high
probability, the tracker outputs the location and size of the
hypothesized car in the image. If the tracked image area con-
tains a car with very low probability, the process terminates.
This dynamic creation and termination of tracking processes
optimizes the amount of computational resources spent.

3 The hard real-time system

The ultimate goal of our vision system is to provide a car
control system with a sufficient analysis of its changing en-
vironment, so that it can react to a dangerous situation im-
mediately. Whenever a physical system like a car control
system depends on complicated computations, as are carried
out by our vision system, the timing constraints on these
computations become important. A “hard real-time system”
guarantees – prior to any execution – that the system will
react in a timely manner. In order to provide such a guar-
antee, a hard real-time system analyzes the timing and re-
source requirements of each computation task. The temporal
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Fig. 1. The real-time vision system

correctness of the system is ensured if a feasible schedule
can be constructed. The scheduler has explicit control over
when a task is dispatched.

Our vision system utilizes the hard real-time system
Maruti [56]. Maruti is a “dynamic hard real-time system”
that can handle on-line requests. It either schedules and ex-
ecutes them if the resources needed are available, or rejects
them. We implemented the processing of each image frame
as a periodic task consisting of several subtasks (e.g., distant
car detection, car tracking). Since Maruti is also a “reactive
system,” it allows switching tasks on-line. For example, our
system could switch from the usual cyclic execution to a
different operational mode. This supports our ultimate goal
of improving traffic safety: The car control system could re-
act within a guaranteed time frame to an on-line warning by
the vision system which may have recognized a dangerous
situation.

The Maruti programming language is a high-level lan-
guage based on C, with additional constructs for timing and
resource specifications. Our programs are developed in the
Maruti virtual runtime environment within UNIX. The hard
real-time platform of our vision system runs on a PC.

4 Vehicle detection and tracking

The input data of the vision system consists of image se-
quences taken from a camera mounted inside our car, just
behind the windshield. The images show the environment in
front of the car – the road, other cars, bridges, and trees next
to the road. The primary task of the system is to distinguish
the cars from other stationary and moving objects in the im-
ages and recognize them as cars. This is a challenging task,
because the continuously changing landscape along the road
and the various lighting conditions that depend on the time
of day and weather are not known in advance. Recognition
of vehicles that suddenly enter the scene is difficult. Cars
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a b

Fig. 2. a A passing car is detected by image differencing.b Two model
images

and trucks come into view with very different speeds, sizes,
and appearances.

First we describe how passing vehicles are recognized by
an analysis of the motion information provided by multiple
consecutive image frames. Then we describe how vehicles
in the far distance, which usually show very little relative
motion between themselves and the camera-assisted car, can
be recognized by an adaptive feature-based method. Imme-
diate recognition from one or two images, however, is very
difficult and only works robustly under cooperative condi-
tions (e.g., enough brightness contrast between vehicles and
background). Therefore, if an object cannot be recognized
immediately, our system evaluates several image frames and
employs its tracking capabilities to recognize vehicles.

4.1 Recognizing passing cars

When other cars pass the camera-assisted car, they are usu-
ally nearby and therefore cover large portions of the image
frames. They cause large brightness changes in such im-
age portions over small numbers of frames. We can exploit
these facts to detect and recognize passing cars. The image
in Fig. 2a illustrates the brightness difference caused by a
passing car.

Large brightness changes over small numbers of frames
are detected by differencing the current image framej from
an earlier framek and checking if the sum of the absolute
brightness differences exceeds a threshold in an appropriate
region of the image. RegionR of image sequenceI(x, y) in
framej is hypothesized to contain a passing car if∑
x,y∈R

|Ij(x, y) − Ij−k(x, y)| > θ,

whereθ is a fixed threshold.
The car motion from one image to the next is approx-

imated by a shift ofi/d pixels, whered is the number of
frames since the car has been detected, andi is a constant
that depends on the frame rate. (For a car that passes the
camera-assisted car from the left, for example, the shift is
up and right, decreasing from frame to frame.)

If large brightness changes are detected in consecutive
images, a gray-scale templateT of a size corresponding to
the hypothesized size of the passing car is created from a
model imageM using the method described in [8, 9]. It is
correlated with the image regionR that is hypothesized to
contain a passing car. The normalized sample correlation
coefficientr is used as a measure of how well regionR and

Fig. 3. An example of an image with distant cars and its thresholded edge
map

template imageT correlate or match:
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wherepT is the number of pixels in the template imageT
that have nonzero brightness values. The normalized corre-
lation coefficient is dimensionless, and|r| ≤ 1. RegionR
and templateT are perfectly correlated ifr = 1. A high cor-
relation coefficient verifies that a passing car is detected. The
model imageM is chosen from a set of models that contains
images of the rear of different kinds of vehicles. The average
gray-scale value in regionR determines which modelM is
transformed into templateT (see Fig. 2b). Sometimes the
correlation coefficient is too low to be meaningful, even if a
car is actually found (e.g.,r ≤ 0.2). In this case, we do not
base a recognition decision on just one image, but instead
use the results for subsequent images, as described in the
next sections.

4.2 Recognizing distant cars

Cars that are being approached by the camera-assisted car
usually appear in the far distance as rectangular objects. Gen-
erally, there is very little relative motion between such cars
and the camera-assisted car. Therefore, any method based
only on differencing image frames will fail to detect these
cars. Therefore, we use afeature-based method to detect
distant cars. We look for rectangular objects by evaluating
horizontal and vertical edges in the images (Fig. 3). The
horizontal edge mapH(x, y, t) and the vertical edge map
V (x, y, t) are defined by a finite-difference approximation
of the brightness gradient. Since the edges along the top and
bottom of the rear of a car are more pronounced in our data,
we use different thresholds for horizontal and vertical edges
(the threshold ratio is 7:5).

Due to our real-time constraints, our recognition algo-
rithm consists of two processes, a coarse and a refined
search. The refined search is employed only for small re-
gions of the edge map, while the coarse search is used over
the whole image frame. The coarse search determines if the
refined search is necessary. It searches the thresholded edge
maps for prominent (i.e., long, uninterrupted) edges. When-
ever such edges are found in some image region, the refined
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search process is started in that region. Since the coarse
search takes a substantial amount of time (because it pro-
cesses the whole image frame), it is only called every 10th
frame.

In the refined search, the vertical and horizontal projec-
tion vectorsv andw of the horizontal and vertical edgesH
andV in the region are computed as follows:

v = (v1, . . . , vm, t) =

(
m∑
i=1

H(xi, y1, t), . . . ,

m∑
i=1

H(xi, yn, t), t

)
,

w = (w1, . . . , wn, t) =


 n∑

j=1

V (x1, yj , t), . . . ,

n∑
j=1

V (xm, yj , t), t


 .

Figure 4 illustrates the horizontal and vertical edge mapsH
andV and their projection vectorsv andw. A large value for
vj indicates pronounced horizontal edges alongH(x, yj , t).
A large value forwi indicates pronounced vertical edges
alongV (xi, y, t). The threshold for selecting large projection
values is half of the largest projection value in each direction;
θv = 1

2 max{vi|1 ≤ i ≤ m}, θw = 1
2 max{wj |1 ≤ j ≤

n}. The projection vector of the vertical edges is searched
starting from the left and also from the right until a vector
entry is found that lies above the threshold in both cases.
The positions of these entries determine the positions of the
left and right sides of the potential object. Similarly, the
projection vector of the horizonal edges is searched starting
from the top and from the bottom until a vector entry is found
that lies above the threshold in both cases. The positions of
these entries determine the positions of the top and bottom
sides of the potential object.

To verify that the potential object is a car, an objective
function is evaluated as follows. First, the aspect ratio of
the horizontal and vertical sides of the potential object is
computed to check if it is close enough to 1 to imply that
a car is detected. Then the car template is correlated with
the potential object marked by the four corner points in the
image. If the correlation yields a high value, the object is
recognized as a car. The system outputs the fact that a car
is detected, its location in the image, and its size.

4.3 Recognition by tracking

The previous sections described methods for recognizing
cars from single images or image pairs. If an object can-
not be recognized from one or two images immediately, our
system evaluates several more consecutive image frames and
employs its tracking capabilities to recognize vehicles.

The process coordinator creates a separate tracking pro-
cess for each potential car (see Fig. 1). It uses the initial
parameters for the position and size of the potential car that
are determined by the car detector and ensures that no other
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Fig. 4. a An image with its marked search region.b The edge map of
the image.c The horizontal edge mapH of the image (enlarged). The
column on the right displays the vertical projection valuesv of the horizontal
edges computed for the search region marked ina. d The vertical edge
mapV (enlarged). Therow at the bottom displays the horizontal projection
vector w. e Thresholding the projection values yields the outline of the
potential car.f A car template of the hypothesized size is overlaid on the
image region shown ine; the correlation coefficient is 0.74

process is tracking the same image area. The tracker creates
a “tracking window” that contains the potential car and is
used to evaluate edge maps, features and templates in sub-
sequent image frames. The position and size of the tracking
window in subsequent frames is determined by a simple re-
cursive filter: the tracking window in the current frame is the
window that contains the potential car found in the previ-
ous frame plus a boundary that surrounds the car. The size
of this boundary is determined adaptively. The outline of
the potential car within the current tracking window is com-
puted by the refined feature search described in Sect. 4.2. As
a next step, a template of a size that corresponds to the hy-
pothesized size of the vehicle is created from a stored model
image as described in Sect. 4.1. The template is correlated
with the image region that is hypothesized to contain the ve-
hicle (see Fig. 4f). If the normalized correlation of the image
region and the template is high and typical vehicle motion
and feature parameters are found, it is inferred that a vehicle
is detected. Note that the normalized correlation coefficient
is invariant to constant scale factors in brightness and can
therefore adapt to the lighting conditions of a particular im-
age frame. The model images shown in Sect. 4.1 are only
used to create car templates on line as long as the tracked
object is not yet recognized to be a vehicle; otherwise, the
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Fig. 5. In the first row, the left and right corners of the car are found in the same position due to the low contrast between the sides of the car and
background (first image). The vertical edge map resulting from this low contrast is shown in the second image. Significant horizontal edges (the horizontal
edge map is shown in third image) are found to the left of the corners and the window is shifted to the left (fourth image). In the second row, the window
shift compensates for a 10-pixel downward motion of the camera due to uneven pavement. In the third row, the car passed underneath a bridge, and the
tracking process is slowly “recovering.” The tracking window no longer contains the whole car, and its vertical edge map is therefore incomplete (second
image). However, significant horizontal edges (third image) are found to the left of the corners and the window is shifted to the left. In the last row, a
passing car is tracked incompletely. First its bottom corners are adjusted, then its left side

model is created on line by cropping the currently tracked
vehicle.

4.3.1 Online model creation

The outline of the vehicle found defines the boundary of the
image region that is cropped from the scene. This cropped
region is then used as the model vehicle image, from which
templates are created that are matched with subsequent im-
ages. The templates created from such a model usually cor-
relate extremely well (e.g., 90%), even if their sizes substan-

tially differ from the cropped model, and even after some
image frames have passed since the model was created. As
long as these templates yield high correlation coefficients,
the vehicle is tracked correctly with high probability. As
soon as a template yields a low correlation coefficient, it
can be deduced automatically that the outline of the vehicle
is not found correctly. Then the evaluation of subsequent
frames either recovers the correct vehicle boundaries or ter-
minates the tracking process.
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4.3.2 Symmetry check

In addition to correlating the tracked image portion with
a previously stored or cropped template, the system also
checks for the portion’s left-right symmetry by correlating
its left and right image halves. Highly symmetric image por-
tions with typical vehicle features indicate that a vehicle is
tracked correctly.

4.3.3 Objective function

In each frame, the objective function evaluates how likely
it is that the object tracked is a car. It checks the “credit
and penalty values” associated with each process. Credit and
penalty values are assigned depending on the aspect ratio,
size, and, if applicable, correlation for the tracking window
of the process. For example, if the normalized correlation
coefficient is larger than 0.6 for a car template of≥ 30× 30
pixels, ten credits are added to the accumulated credit of the
process, and the accumulated penalty of the process is set to
zero. If the normalized correlation coefficient for a process
is negative, the penalty associated with this process is in-
creased by five units. Aspect ratios between 0.7 and 1.4 are
considered to be potential aspect ratios of cars; one to three
credits are added to the accumulated credit of the process
(the number increases with the template size). If the accu-
mulated credit is above a threshold (ten units) and exceeds
the penalty, it is decided that the tracked object is a car.
These values for the credit and penalty assignments seem
somewhat ad hoc, but their selection was driven by careful
experimental analysis. Examples of accumulated credits and
penalties are given in the next section in Fig. 10.

A tracked car is no longer recognized if the penalty ex-
ceeds the credit by a certain amount (three units). The track-
ing process then terminates. A process also terminates if not
enough significant edges are found within the tracking win-
dow for several consecutive frames. This ensures that a win-
dow that tracks a distant car does not “drift away” from the
car and start tracking something else.

The process coordinator ensures that two tracking pro-
cesses do not track objects that are too close to each other in
the image. This may happen if a car passes another car and
eventually occludes it. In this case, the process coordinator
terminates one of these processes.

Processes that track unrecognized objects terminate them-
selves if the objective function yields low values for several
consecutive image frames. This ensures that oncoming traf-
fic or objects that appear on the side of the road, such as
traffic signs, are not falsely recognized and tracked as cars
(see, for example, process 0 in frame 4 in Fig. 9).

4.3.4 Adaptive window adjustments

An adaptive window adjustment is necessary if – after a
vehicle has been recognized and tracked for a while – its
correct current outline is not found. This may happen, for
example, if the rear window of the car is mistaken to be the
whole rear of the car, because the car bottom is not contained
in the current tracking window (the camera may have moved

up abruptly). Such a situation can be determined easily by
searching along the extended left and right side of the car
for significant vertical edges. In particular, the pixel values
in the vertical edge map that lie between the left bottom
corner of the car and the left bottom border of the window,
and the right bottom corner of the car and the right bottom
border of the window, are summed and compared with the
corresponding sum on the top. If the sum on the bottom is
significantly larger than the sum on the top, the window is
shifted towards the bottom (it still includes the top side of
the car). Similarly, if the aspect ratio is too small, the correct
positions of the car sides are found by searching along the
extended top and bottom of the car for significant horizontal
edges, as illustrated in Fig. 5.

The window adjustments are useful for capturing the
outline of a vehicle, even if the feature search encounters
thresholding problems due to low contrast between the ve-
hicle and its environment. The method supports recognition
of passing cars that are not fully contained within the track-
ing window, and it compensates for the up and down motion
of the camera due to uneven pavement. Finally, it ensures
that the tracker does not lose a car even if the road curves.

Detecting the rear lights of a tracked object, as described
in the following paragraph, provides additional information
that the system uses to identify the object as a vehicle. This
is benefical in particular for reduced visibility driving, e.g.
in a tunnel, at night, or in snowy conditions.

4.4 Rear-light detection

The rear-light detection algorithm searches for bright spots
in image regions that are most likely to contain rear lights, in
particular, the middle 3/5 and near the sides of the tracking
windows. To reduce the search time, only the red component
of each image frame is analyzed, which is sufficient for rear-
light detection.

The algorithm detects the rear lights by looking for a pair
of bright pixel regions in the tracking window that exceeds a
certain threshold. To find this pair of lights and the centroid
of each light, the algorithm exploits the symmetry of the
rear lights with respect to the vertical axis of the tracking
window. It can therefore eliminate false rear-light candidates
that are due to other effects, such as specular reflections or
lights in the background.

For windows that track cars at less than 10 m distance,
a threshold that is very close to the brightest possible value
255, e.g. 250, is used, because at such small distances bright
rear lights cause “blooming effects” in CCD cameras, espe-
cially in poorly lit highway scenes, at night or in tunnels.
For smaller tracking windows that contain cars at more than
10 m distance, a lower threshold of 200 was chosen experi-
mentally.

Note that we cannot distinguish rear-light and rear-break-
light detection, because the position of the rear lights and
the rear break lights on a car need not be separated in
the US. This means that our algorithm finds either rear
lights (if turned on) or rear break lights (when used). Fig-
ures 11 and 12 illustrate rear-light detection results for typ-
ical scenes.
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4.5 Distance estimation

The perspective projection equations for a pinhole camera
model are used to obtain distance estimates. The coordinate
origin of the 3D world coordinate system is placed at the pin-
hole, theX- andY -coordinate axes are parallel to the image
coordinate axesx andy, and theZ-axis is placed along the
optical axis. Highway lanes usually have negligible slopes
along the width of each lane, so we can assume that the
camera’s pitch angle is zero if the camera is mounted hori-
zontally level inside the car. If it is also placed at zero roll
and yaw angles, the actual roll angle depends on the slope
along the length of the lane, i.e., the highway inclination,
and the actual yaw angle depends on the highway’s curva-
ture. Given conversion factorschoriz and cvert from pixels
to millimeters for our camera and estimates of the widthW
and heightH of a typical car, we use the perspective equa-
tions Z = choriz f W/w and Z = cvert f H/h, whereZ
is the distance between the camera-assisted car and the car
that is being tracked in meters,w is the estimated car width
andh the estimated car height in pixels, andf is the focal
length in millimeters. Given our assumptions, the distance
estimates are most reliable for typically sized cars that are
tracked immediately in front of the camera-assisted car.

5 Road color analysis

The previous sections discussed techniques for detecting and
tracking vehicles based on the image brightness, i.e., gray-
scale values and their edges. Edge maps carry information
about road boundaries and obstacles on the road, but also
about illumination changes on the roads, puddles, oil stains,
tire skid marks, etc. Since it is very difficult to find good
threshold values to eliminate unnecessary edge information,
additional information provided by the color components of
the input images is used to define these threshold values dy-
namically. In particular, a statistical model for “road color”
was developed, which is used to classify the pixels that im-
age the road and discriminate them from pixels that image
obstacles such as other vehicles.

To obtain a reliable statistical model of road color, im-
age regions are analyzed that consist entirely of road pix-
els, for example, the black-bordered road region in the top
image in Fig. 6, and regions that also contain cars, traffic
signs, and road markings, e.g., the white-bordered region in
the same image. Comparing the estimates for the mean and
variance of red, green, and blue road pixels to respective es-
timates for nonroad pixels does not yield a sufficient classi-
fication criterion. However, anHSV = (hue, saturation, gray
value) representation [24] of the color input image proves
more effective for classification. Figure 6 illustrates such
an HSV representation. In our data, the hue and saturation
components give uniform representations of regions such as
pavement, trees and sky, and eliminate the effects of un-
even road conditions, but highlight car features, such as rear
lights, traffic signs, lane markings, and road boundaries as
can be seen, for example, in Fig. 6. Combining the hue and
saturation information therefore yields an image representa-
tion that enhances useful features and suppresses undesired
ones. In addition, combining hue and saturation information

Fig. 6. The black-bordered road region in the top image is used to estimate
the sample mean and variance of road color in the four images below. The
middle left image illustrates the hue component of the color image above,
the middle right illustrates the saturation component. Theimages at the
bottom are the gray-scale component and the composite image, which is
comprised of the sum of the horizontal and vertical brightness edge maps,
hue and saturation images

with horizontal and vertical edge maps into a“composite
image,” provides the system with a data representation that
is extremely useful for highway scene analysis. Figure 6
shows a composite image in the bottom right. Figure 7 il-
lustrates that thresholding pixels in the composite image by
the mean (mean ±3∗standard deviation) yields 96% correct
classification.

In addition, a statistical model for “daytime sky color”
is computed off line and then used on line to distinguish
daytime scenes from tunnel and night scenes.

6 Boundary and lane detection

Road boundaries and lane markings are detected by a spatial
recursive least squares filter (RLS) [33] with the main goal of
guiding the search for vehicles. A linear model (y = ax + b)
is used to estimate the slopea and offsetb of lanes and
road boundaries. This first-order model proved sufficient in
guiding the vehicle search.

For the filter initialization, the left and right image
boundaries are searched for a collection of pixels that do
not fit the statistical model of road color and are there-
fore classified to be potential initial points for lane and road
boundaries. After obtaining initial estimates fora andb, the
boundary detection algorithm continues to search for pix-
els that do not satisfy the road color model at every 10th
image column. In addition, each such pixel must be accom-
panied to the below by a few pixels that satisfy the road
color model. This restriction provides a stopping condition
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Fig. 7. The classification results on RGB and gray-scale images are shown
at the top, the results for the composite image at the bottom. Pixels are
shown in black if classified to be part of the road, in white if above and in
gray if below the corresponding thresholdmean ± 3 ∗ standard deviation.
The RGB and gray-scale representations only yield 55% and 60% correct
classification, respectively. Using the composite of hue, saturation and edge
information, however, 96% of the pixels are classified correctly
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Fig. 8. The RLS line and boundary detection

for the lane pixel search in cases where the lane is occluded
by a vehicle. The search at each column is restricted to the
points around the estimatedy-position of the lane pixel and
the search area depends on the current slope estimate of the
line (a wide search area for large slope values, a narrow
search area for small slope values). The RLS filter, given in
Eqs. 1–7, updates then-th estimate of the slope and offset
ŵn = (ân, b̂n)T from the previous estimatêwn−1 plus the
a priori estimation errorξn that is weighted by a gain fac-
tor kn. It estimates they-position of the next pixel on the
boundary at a givenx-position in the image.

The algorithm is initialized by settingP0 = δ−1I, δ =
10−3, ε0 = 0, ŵ0 = (â0, b̂0)T . For each iterationn =
1,2,3, . . . corresponding to the 10 step intervals along the
x-axis,

un = (xn,1)T , (1)

kn =
Pn−1un

1 + unPn−1un
, (2)

ξn = ŷn − ŵt
n−1un, (3)

ŵn = ŵn−1 + knξn, (4)

en = ŷn − ŵt
nun, (5)

Pn = Pn−1 − knut
nPn−1, (6)

εn = εn−1 + ξnen, (7)

where Pn = Φ−1
n is the inverse correlation matrix with

Φn =
∑n

i=1 uiut
i + δI, and ŷn is the estimatedy-coordinate

of a pixel on the boundary,en is the a posteriori estimation
error, andεn is the cumulative error. The error parameters
indicate immediately how well the data points represent a
line and thus provide a condition to stop the search in case
no new point can be found to fit the line with small error.
Our RLS algorithm yields the exact recursive solution to the
optimization problem

min
wn

[
δ‖wn‖2 +

n∑
i=1

|yi − wT
n ui|2

]
, (8)

where theδ‖wn‖2 term results from the initializationP0 =
δ−1I. Without recursive filtering, the least squares solution
would have to be recomputed every time a new lane point
is found, which is time consuming.

The image in Fig. 8 illustrates the detected lane and
boundary points as black “+” symbols and shows the lines
fitted to these points. The graph shows the slope of lane 2,
updated after each new lane point is detected.

7 Experimental results

The analyzed data consists of more than 1 h of RGB and
gray-scale video taken on American and German highways
and city expressways during the day and at night. The city
expressway data included tunnel sequences. The images are
evaluated in both hard and soft real time in the laboratory.
A Sony CCD video camera is connected to a 200-MHz Pen-
tium PC with a Matrox Meteor image capture board, and
the recorded video data is played back and processed in real
time. Table 1 provides some of the timing results of our
vision algorithms. Some of the vehicles are tracked for sev-
eral minutes, others disappear quickly in the distance or are
occluded by other cars.

Processing each image frame takes 68 ms on average;
thus, we achieve a frame rate of approximately 14.7 frames
per second. The average amount of processing time per algo-
rithm step is summarized in Table 2. To reduce computation
costs, the steps are not computed for every frame.

Table 3 reports a subset of the results for our German
and American highway data using Maruti’s virtual runtime
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Fig. 9. Example of an image sequence in which cars are recognized and tracked. At the top, images are shown with their frame numbers in their lower right
corners. Theblack rectangles show regions within which moving objects are detected. The corners of these objects are shown ascrosses. The rectangles
and crosses turn white when the system recognizes these objects to be cars. The graph at the bottom shows thex-coordinates of the positions of the three
recognized cars

Table 1. Duration of vehicle tracking

Tracking time No. of Average
vehicles time

< 1 min 41 20 s
1–2 min 5 90 s
2–3 min 6 143 s
3–7 min 5 279 s

environment. During this test, a total of 48 out of 56 cars are
detected and tracked successfully. Since the driving speed on
American highways is much slower than on German high-

Table 2. Average processing time

Step Time Average time

Searching for potential cars 1–32 ms 14 ms
Feature search in window 2–22 ms 13 ms
Obtaining template 1–4 ms 2 ms
Template match 2–34 ms 7 ms
Lane detection 15–23 ms 18 ms

ways, less motion is detectable from one image frame to the
next and not as many frames need to be processed.
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Fig. 10. Analysis of the sequence in Fig. 9: The graphs at the left illustrate they-coordinates of the top and bottom and thex-coordinates of the left and
right corners of the tracking windows of processes 0, 1, and 2, respectively. In the beginning, the processes are created several times to track potential cars,
but are quickly terminated, because the tracked objects are recognized not to be cars. The graphs at the right show the credit and penalty values associated
with each process and whether the process has detected a car. A tracking process terminates after its accumulated penalty values exceed its accumulated
credit values. As seen in the top graphs and in Fig. 9, process 0 starts tracking the first car in frame 35 and does not recognize the right and left car sides
properly in frames 54 and 79. Because the car sides are found to be too close to each other, penalties are assessed in frames 54 and 79

Table 3. Detection and tracking results on gray-scale video

Data origin German American

Total number of frames ca. 5572 9670

No. of frames processed (in parentheses: every 2nd every 6th every 10th
results normalized for every frame)

Detected and tracked cars 23 20 25
Cars not tracked 5 8 3
Size of detected cars (in pixels) 10×10–80×80 10×10–80×80 20×20–100×80
Avg. No. of frames during tracking 105.6 (211.2) 30.6 (183.6) 30.1 (301)
Avg. No. of frames until car tracked 14.4 (28.8) 4.6 (27.6) 4.5 (45)
Avg. No. of frames until stable detection 7.3 (14.6) 3.7 (22.2) 2.1 (21)
False alarms 3 2 3



M. Betke et al.: Real-time multiple vehicle detection and tracking from a moving vehicle 79

0

50

100

150

200

0 50 100 150 200 250 300 350x
 
c
o
o
r
d
i
n
a
t
e
s
,
 
p
r
o
c
e
s
s
 
0

frame number 

"l"
"r"
"ll"
"rl"

0

20

40

60

80

100

120

140

160

180

0 50 100 150 200 250 300 350y
 
c
o
o
r
d
i
n
a
t
e
s
,
 
p
r
o
c
e
s
s
 
0

frame number 

"car bottom"
"rear lights"

0
5

10
15
20
25
30
35
40
45
50

0 50 100 150 200 250 300 350

c
a
r
 
d
i
s
t
a
n
c
e
s

frame number 

"process 0"
"process 1"

Fig. 11. Detecting and tracking two cars on a snowy highway. In frame 3, the system determines that the data is taken at daytime. Theblack rectangles show
regions within which moving objects are detected.Gray crosses indicate the top of the cars andwhite crosses indicate the bottom left and right car corners
and rear light positions. The rectangles and crosses turn white when the system recognizes these objects to be cars. Underneath the middle image row, one
of the tracking processes is illustrated in three ways: on the left, the vertical edge map of the tracked window is shown, in the middle, pixels identified not
to belong to the road, but instead to an obstacle, are shown in white, and on the right, the most recent template used to compute the normalized correlation
is shown. The text underneath shows the most recent correlation coefficient and distance estimate. The three graphs underneath the image sequence show
position estimates. The left graph shows thex-coordinates of the left and right side of the left tracked car (“l” and “r”) and thex-coordinates of its left and
right rear lights (“ll” and “rl”). The middle graph shows they-coordinates of the bottom side of the left tracked car (“car bottom”) and they-coordinates
of its left and right rear lights (“rear lights”). The right graph shows the distance estimates for both cars

Figure 9 shows how three cars are recognized and
tracked in an image sequence taken on a German highway.
The graphs in Fig. 10 illustrate how the tracking processes
are analyzed. Figures 11 and 12 show results for sequences
in reduced visibility due to snow, night driving, and a tun-
nel. These sequences were taken on an American highway
and city expressway.

The lane and road boundary detection algorithm was
tested by visual inspection on 14 min. of data taken on a
two-lane highway under light-traffic conditions at daytime.
During about 75% of the time, all the road lanes or bound-

aries are detected and tracked (three lines); during the re-
maining time, usually only one or two lines are detected.

8 Discussion and conclusions

We have developed and implemented a hard real-time vision
system that recognizes and tracks lanes, road boundaries,
and multiple vehicles in videos taken from a car driving on
German and American highways. Our system is able to run
in real time with simple, low-cost hardware. All we rely on
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Fig. 12. Detecting and tracking cars at night and in a tunnel (see caption of previous figure for color code). The cars in front of the camera-assisted car are
detected and tracked reliably. The front car is detected and identified as a car at frame 24 and tracked until frame 260 in the night sequence, and identified at
frame 14 and tracked until frame 258 in the tunnel sequence. The size of the cars in the other lanes are not detected correctly (frame 217 in night sequence
and frame 194 in tunnel sequence)

is an ordinary video camera and a PC with an image capture
board.

The vision algorithms employ a combination of bright-
ness, hue and saturation information to analyze the high-
way scene. Highway lanes and boundaries are detected and
tracked using a recursive least squares filter. The highway
scene is segmented into regions of interest, the “tracking
windows,” from which vehicle templates are created on line
and evaluated for symmetry in real time. From the track-
ing and motion history of these windows, the detected fea-
tures and the correlation and symmetry results, the system
infers whether a vehicle is detected and tracked. Experimen-

tal results demonstrate robust, real-time car recognition and
tracking over thousands of image frames, unless the system
encounters uncooperative conditions, e.g., too little bright-
ness contrast between the cars and the background, which
sometime occurs at daytime, but often at night, and in very
congested traffic. Under reduced visibility conditions, the
system works well on snowy highways, at night when the
background is uniformly dark, and in certain tunnels. How-
ever, at night on city expressways, when there are many city
lights in the background, the system has problems finding
vehicle outlines and distinguishing vehicles on the road from
obstacles in the background. Traffic congestion worsens the
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problem. However, even in these extremely difficult condi-
tions, the system usually finds and track the cars that are
directly in front of the camera-assisted car and only misses
the cars or misidentifies the sizes of the cars in adjacent
lanes. If a precise 3D site model of the adjacent lanes and
the highway background could be obtained and incorporated
into the system, more reliable results in these difficult con-
ditions could be expected.
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